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Elements of price formation

The mechanism of price formation stems from the complicated interplay
between incoming orders (and cancellations) and price change due to these
orders

Market reaction to trades, termed market impact, describes how much
price change immediately and in the near future in response to order !
mechanical vs induced response

The order flow is composed by market orders, limit orders and
cancellations and depends on the state of the book as well on the past
price history
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Dynamics of Limit Order Book
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Dynamics of Limit Order Book
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What is market impact?

Market impact refers to the ”correlation” between an incoming order (to
buy or to sell) and the subsequent price change.

Market impact induces extra costs. Indeed, large volumes must typically be
fragmented and executed incrementally. The total cost of this large trade
is quickly dominated, as sizes become large, by the average price impact

Monitoring and controlling impact has therefore become one of the most
active domains of research in quantitative finance since the mid-nineties.

Volume dependence of impact (By how much do larger trades impact
prices more than smaller trades?), and temporal behavior of impact (is the
impact of a trade immediate and permanent, or does the impact decay
after one stops trading?).

Impact is a dynamical quantity since it depends on the available liquidity,
but also on the recent history of my trades.
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Why is there market impact?

Agents successfully forecast short term price movements and trade
accordingly. This does result in measurable correlation between trades and
price changes, even if the trades by themselves have absolutely no e↵ect
on prices at all. If an agent correctly forecasts price movements and if the
price is about to rise, the agent is likely to buy in anticipation of it.‘Noise
induced’ trades, with no information content, have no price impact.

The impact of trades reveals some private information. The arrival of
new private information causes trades, which cause other agents to update
their valuations, leading to a price change. But if trades are anonymous
and there is no easy way to distinguish informed traders from non
informed traders, then all trades must impact the price since other agents
believe that at least of fraction of these trades contains some private
information, but cannot decide which ones.

Impact is a purely statistical e↵ect. Imagine for example a completely
random order flow process, that leads to a certain order book dynamics
(see, e.g. “zero-intelligence” models). Conditional to an extra buy order,
the price will on average move up if everything else is kept constant.
Fluctuations in supply and demand may be completely random, unrelated
to information, but a well defined notion of price impact still emerges. In
this case impact is a completely mechanical – or better, statistical –
phenomenon.
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Which market impact?

There are di↵erent types of price impact (often confused even in the specialized
literature)

Impact of an individual market order of size v (or more generally of a limit
order or even of a cancellation)

The correlation of the average price change in a given time interval T with
the total market order imbalance in the same interval (i.e. the sum of the
signed volume ±v of all individual trades.)

Cross impact, i.e. how do trades on asset A impact the price of asset B.

The impact of a given order of size Q, executed with many trades in a
given direction, originating from the same agent.
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Terminology

Large orders executed incrementally have di↵erent names in the literature

Large trades

Large orders

Hidden orders

Packages

Algorithmic executions

Metaorders (Bouchaud et al.)

......
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A benchmark model: linear and permanent impact (Kyle)

The average price variation due to a signed volume ✏v is given by:

�p = �✏v , (19)

where � is the inverse of liquidity and ✏ is +1 (�1) for buyer (seller) initiated
trade.
It is direct to show that

The impact of individual trades is linear in volume and permanent i.e.

Rso(T ) = E [(pT � p0) · ✏0] = �E [v ], (20)

The impact of aggregated order flow is linear in the volume imbalance

pT = p0 + �
N�1X

n=0

✏nvn +
N�1X

n=0

⌘n, (21)

The price impact of a metaorder of total volume Q is linear

Rmo(T |Q) = E [(pT � p0) · ✏mo |
X

n2mo

vn = Q] = �Q, (22)

The time correlation properties of returns are “inherited” by those of order
flow ! market e�ciency
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Empirical facts: individual impact

Empirical data consistently shows a sublinear (concave) volume dependence of
impact of individual orders

E [�p|v ] ⌘ Rso(T = 1|v) / v
 ;  2 [0.1, 0.3], (23)

or even a logarithmic dependence Rso(T = 1|v) / ln v .

Figure: Impact of individual market orders for London Stock Exchange (left, from Lillo
and Farmer 2004) and Paris Bourse (right, from Bouchaud and Potters 2002)
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Empirical facts: individual impact (II)

By considering stocks with di↵erent market capitalization C on the immediate
impact, one can show that impact of individual transactions can be
approximately rescaled

Rso(T = 1|v) ⇡ C
�0.3

F

⇣
C

0.3 v

v

⌘
, (24)

where v is the average volume per trade for a given stock, and F (u) a master
function that behaves as a u

 for small arguments.

Figure: Impact of individual transactions of groups of stocks with di↵erent
capitalization (left) and the same curves after rescaling (right) (Lillo et al. 2003).

23 / 166



Empirical facts: individual impact (III)

Di↵erent colors are di↵erent years (Lillo et al. 2003).

Kyle lambda (illiquidity) scales as � ⇠ C
�0.4 (note that the dependence of the

average volume on market cap has been already considered).
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The role of liquidity fluctuations
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Gaps in the order book and return distribution

From Farmer et al 2004. Red circles for low liquidity stocks, blue squares for
medium liquidity stocks, and green triangles for high liquidity stocks. Empty
symbols refer to sell market orders and filled symbols to buy market orders.

Liquidity fluctuations are key determinants of fat tails of return distribution
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Persistence of illiquidity (gaps)

From Lillo and Farmer 2005. Autocorrelation function of the first gap size for
bids and o↵ers of AstraZeneca in a log-log plot.

Size of gaps, measuring illiquidity, are very autocorrelated, consistent with
long memory processes.

Similar result for spread.

The state of the order book is extremely persistent
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Order flow
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Order flow

We focus here on orders that trigger transactions, i.e. market orders

A buy market order moves the price up and a sell market order moves the
price down (on average)

The flow of market orders reflects the supply and demand of shares

A market order is characterized by a volume v and a sign ✏ = +1 for buy
orders and ✏ = �1 for sell orders.

We consider the time series in market order time, i.e. time advances of
one unit when a new market order arrives.

The unconditional sample autocorrelation function of signs is

C(⌧) =
1
N

X

t

✏t✏t+⌧ �
 

1
N

X

t

✏t

!2

,

where N is the length of the time series.
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Autocorrelation of market order flow

From Lillo and Farmer (2004)
Similar plots observed in many di↵erent markets, di↵erent periods, di↵erent
asset classes.
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Market order flow is very persistent in time

It has been shown (Bouchaud et al., 2004, Lillo and Farmer, 2004) that the
time series of market order signs is a long memory process.
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C(⌧) of market order signs ✏ (left) and signed volumes ✏v (right).
The autocorrelation function decays asymptotically as

C(⌧) ⇠ ⌧�� = ⌧ 2H�2

where H is the Hurst exponent. For the investigated stocks H ' 0.75 (i.e.
� ' 0.5).

44 / 166



Long memory processes

Let �(k) be the autocovariance function of a time series Xt . A process is
long memory if in the limit k ! 1 it is

�(k) ⇠ k
��

L(k) � 2 (0, 1) (29)

where L(k) is a slowly varying function.

The Hurst exponent is H = 1� �/2

Equivalently the spectral density diverges for low frequencies ! ! 0 as

g(!) ' !1�2H
L(!) (30)

The integrated process is superdi↵usive Var(
Pt

s=0 Xs) ⇠ t
2H

Examples: fractional ARIMA (fARIMA)

(1� L)dXt = ✏t d = H � 1/2 (31)

fractional Brownian motion (in continuous time)

Frequently observed in finance: volatility, volume, spread,....
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What is the origin of long-memory in order flow?

Two explanations have been proposed

Herding among market participants (LeBaron and Yamamoto 2007).
Agents herd either because they follow the same signal(s) or because they
copy each other trading strategies. Direct vs indirect interaction

Order splitting (Lillo, Mike, and Farmer 2005). To avoid revealing true
intentions, large investors break their trades up into small pieces and trade
incrementally (Kyle, 1985). Convert heavy tail of large orders volume
distributions in correlated order flow.

Is it possible to quantify empirically the contribution of herding and order
splitting to the autocorrelation of order flow?
Note that this is part of the question on the origin of diagonal e↵ect raised in
Biais, Hillion and Spatt (1995).
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Decomposing the autocorrelation function

Assume we know the identity of the investor placing any market order.

For each investor i we define a time series of market order signs ✏it which is
equal to zero if the market order at time t was not placed by investor i
and equal to the market order sign otherwise

The autocorrelation function can be rewritten as

C(⌧) =
1
N

X

t

X

i,j

✏it✏
j
t+⌧ �

 
1
N

X

t

X

i

✏it

!2
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Decomposing the autocorrelation function

We rewrite the acf as C(⌧) = Csplit(⌧) + Cherd(⌧) where

Csplit(⌧) =
X

i

0

@Pii (⌧)

"
1

Nii (⌧)

X

t

✏it✏
i
t+⌧

#
�
"
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Ni

X

t

✏it

#21

A

Cherd (⌧) =
X

i 6=j

 
Pij (⌧)

"
1

Nij (⌧)

X

t

✏it✏
j
t+⌧

#
� PiPj

"
1

Ni

X

t

✏it

#"
1

Nj

X

t
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#!

N
i is the number of market orders placed by agent i , P i = N

i/N, N ij(⌧) is the
number of times that an order from investor i at time t is followed by an order
from investor j at time t + ⌧ , and P

ij(⌧) = N
ij(⌧)/N
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Market member (brokerage) data
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Market members’ persistence in activity

The activity of market members (independently from their trading direction) is
characterized by the persistence

P̃
ii (⌧) = P

ii (⌧)� (P i )2
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Figure: The diagonal terms of persistence in activity, i.e., Pii (⌧) � [Pi ]2 of MO
placement for the 15 most active participant codes, the first half of 2009 for AZN.

Market member activity is highly clustered in (transaction) time. I.e. there is
some degree of predictability that a member active now will be active in the
near future.

50 / 166



Herding or splitting?
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Figure: Left panel. The splitting and the herding term of the correlation of MO signs
(the two terms sum up to C(⌧)) for the first half year of 2009 for AZN. Right panel.
The splitting ratio of MO signs (defined as the ratio of the splitting term in the
correlations and the entire correlation) for the first half year of 2009 for AZN.

From Toth et al. 2015.
Splitting dominates herding at the broker level (especially for large lags)
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A preliminary investigation of real agents

Figure: Splitting and herding component for brokers (top) and agents/accounts
(bottom) of a European stock.
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Direct evidence for order splitting

We have seen that correlated order flow is mostly due to order splitting.

We want to find direct evidence of splitting, characterize the large trades
and the splitting characteristics, and to measure the market impact of
these large orders.

The di�culty is, of course, data.

Some studies use proprietary data of a large financial institution

We follow a di↵erent approach: statistical identification of large trades
from market member data.
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An example: inventory time series

Credit Agricole trading Santander

Clear trends are visible

The identification of large trades (metaorders) must be statistical: a
typical regime switching problem
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Segmentation algorithms

Credit Agricole trading Santander

Di↵erent algorithms:

Modified t-test (G. Vaglica, F. Lillo, E. Moro, and R. N. Mantegna, Physical
Review E 77, 036110 (2008).)

Hidden Markov Model (G. Vaglica, F. Lillo, and R. N. Mantegna, New Journal of
Physics, 12 075031 (2010)).
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Scaling of metaorder size

Metaorder size is asymptotically power law distributed

Di↵erent ”size” measures (number of trades, time, total volume) roughly
agree on the tail exponent.

Which model can generate this power law distribution?
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The Lillo-Mike-Farmer (2005) order flow model

M funds that want to trade one metaorder each of a size Li (i = 1, ..,M)
taken from a distribution pL, (L 2 N+).

The sign of the each metaorder is taken randomly and at each time step
one fund is picked randomly with uniform probability.

The selected fund initiates a trade of the sign of its metaorder, and the
size of the metaorder is reduced by one unit.

When the metaorder is completely traded, a new one is drawn from pL and
assigned a random sign.

The distribution pL of metaorder size with the autocorrelation function of
trade signs. In particular if the distribution is Pareto

pL =
1

⇣(↵)
1

L1+↵

where ⇣(↵) is the Riemann zeta function, then the autocorrelation
function of trade signs decays asymptotically as

⇢s(`) = E [✏n✏n+`] ⇠
M
↵�2

`↵�1
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The Lillo-Mike-Farmer (2005) order flow model (II)

The model connects the exponent of the autocorrelation function of order
signs with the tail exponent of metaorder distribution, since � = 1� ↵.

There is a growing empirical evidence that the distribution of metaorder
size is asymptotically Pareto distributed with a tail exponent close to
↵ = 1.5 (Lillo et al. 2005, Gabaix et al. 2006, Vaglica et al. 2008,
Bershova et al. 2013).

Hence the model predicts that � = ↵� 1, i.e. � ' 0.5, as observed
empirically.

Numerical simulations
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Indirect validation of the splitting model

In many markets there are two alternative methods of trading

The on-book (or downstairs) market is public and execution is completely
automated (Limit Order Book)

The o↵-book (or upstairs) market is based on personal bilateral exchange
of information and trading.

We assume that revealed orders are placed in the on-book market, whereas
o↵-book orders are proxies of metaorders
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Indirect validation of the splitting model

Figure: From Lillo et al 2005. Left. Volume distributions of o↵-book trades (circles),
on-book trades (diamonds), and the aggregate of both (squares). The dashed black
lines have the slope found by the Hill estimator and are shown for the largest one
percent of the data. Right. Hill estimator of the tail exponent.

The fitted exponent ↵ ' 1.5 for the metaorder size and the market order sign
autocorrelation exponent � are consistent with the order splitting model
(� = ↵� 1).
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Direct validation of the splitting model
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Metaorder size is asymptotically power law distributed (left from Vaglica
et al 2008)

The tail exponent is consistent with the splitting model

Recently Bershova and Rakhlin (2013) found a tail exponent of 1.56 by
investigating metaorders of clients of AllianceBernstein (right)

63 / 166



Heterogeneity of time scales of agents in financial markets

There is a growing evidence of a power law tailed distribution of time scales of
agents

Distribution of duration of metaorders has a tail exponent of ⇠ 1.5
(Vaglica et al 2008, Bershova and Rakhlin 2013)

A multiscale GARCH introduced by Borland and Bouchaud (2005) where
agents use stop loss on a given time horizon is consistent with data if the
distribution of time scale is power law with tail exponent ⇠ 1.2

A simple optimization argument for limit order execution shows that fat
tail in limit order prices is consistent with a power law tailed time horizon
distribution with exponent ⇠ 1.5 (Lillo 2007)

A censored data analysis of the time to fill of limit orders can be used to
obtain the distribution of intended lifetime of limit orders. Empirical data
are consistent with a power law distribution with tail exponent ⇠ 1.6
(Eisler et al 2009).
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Building a predictor: The DAR(p) model

DAR(p) model: a generalization of autoregressive models for discrete valued
variates

Xn = VnXn�An + (1� Vn)Zn,

Zn ⇠ ⌅, Vn ⇠ B(1,�), P(An = i) = �i ,
pX

i=1

�i = 1

Autocorrelation function ⇢k = Corr(Xn,Xn+k) satisfies:

⇢k = �
pX

i=1

�i⇢k�i , k > 1

Model predictor conditional on ⌦n�1 = {Xn�1, . . . ,Xn�p}:

X̂n+s ⌘ E[Xn+s |⌦n�1] = �
pX

i=1

�iYn+s�i+E[Z ](1��), Yn+s�i =

⇢
X̂n+s�i for i 6 s

Xn+s�i for i > s
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Predictability of order flow has significantly increased from 2004 to 2009
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Figure: From Taranto et al. 2014. Distributions of the sign predictor for the stocks
AAPL, MSFT, AZN, VOD and s = 0, 3, 10 with a DAR(p) model with p = 500.
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Predictability of order flow and metaorder execution

The exact predictor discriminates orders due to the active metaorder to
those due to the noisy background.
If n trades of the current metaorder has been already traded, the
probability that the metaorder continues is (Farmer et al. 2013)

Pn =

P1
i=n+1 piP1
i=n pi

For example, if the metaorder size distribution is Pareto

Pn =
⇣(1 + ↵, 1 + n)
⇣(1 + ↵, n)

'
✓

n

n + 1

◆↵
⇠ 1� ↵

n

Let us suppose that the active metaorder is a buy and the participation
rate is ⇡. The probability that the next order is a buy is

p
+
n =

1� ⇡
2

+ ⇡

✓
Pn +

1� Pn

2

◆
=

1 + ⇡Pn

2

If sn indicates the sign of the active metaorder at time n

p
+
n =

1 + sn⇡Pn

2

Since ✏̂n = 2p+
n � 1, it is

✏̂n = sn⇡Pn ⇠ sn⇡(1� n
�1)
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Market impact models
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A fixed permanent impact model

rn is the midquote price change between just before the nth trade and just
before the n + 1th trade.

Immediate impact, E [rn|✏nvn], is non zero and can be written as
E [r |✏v ] = ✏f (v), where f is a function that grows with v

Impact of a transaction is permanent, like in usual random walks, and the
equation for the midquote price mn at time n is

rn = mn+1 �mn = ✏nf (vn;⌦n) + ⌘n, (32)

where ⌘n is an additional random term describing price changes not
directly attributed to trading itself (e.g. news). We assume that ⌘n is
independent on the order flow and we set E [⌘] = 0 and E [⌘2] = ⌃2.

We have included a possible dependence of the impact on the
instantaneous state ⌦n of the order book. We expect such a dependence
on general grounds: a market order of volume vn, hitting a large queue of
limit orders, will in general impact the price very little. On the other hand,
one expects a very strong correlation between the state of the book ⌦n

and the size of the incoming market order: large limit order volumes
attract larger market orders.
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A fixed permanent impact model

The above equation can be written as:

mn =
X

k<n

✏k f (vk ;⌦k) +
X

k<n

⌘k , (33)

which makes explicit the non-decaying nature of the impact in this model:
✏k@mn/@vk (for k < n) does not decay as n � k grows.

The lagged impact function R(`) and the lagged return variance V(`) is

R(`) ⌘ E [✏n·(mn+`�mn)] = E [f ]; V(`) ⌘ E [(mn+`�mn)
2] =

⇣
E [f 2] + ⌃2

⌘
`,

(34)
i.e. constant price impact and pure price di↵usion, close to what is indeed
observed empirically on small tick, liquid contracts.

However if we consider the autocovariance of price returns we find that

E [rnrn+⌧ ] / E [✏n✏n+⌧ ] ⇠ ⌧�� (35)

which means that price returns are strongly autocorrelated in time. This
fact would violate market e�ciency because price returns would be easily
predictable even with linear methods.

We therefore come to the conclusion that the empirically observed long
memory of order flow is incompatible with the random walk model above
if prices are e�cient .
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Visualizing the paradox
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A Gerig. A theory for market impact: How order flow a↵ects stock price. PhD thesis, University of Illinois, Urbana,

Illinois, 2007.

How can the market be statistically e�cient (i.e. unpredictable) in the presence
of an autocorrelated order flow?
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A transient impact model (TIM)

We go back now to the model without spread and consider the consequences of
the long memory of order flow.

The Transient Impact Model (or propagator model)

mt =
X

t0<t

⇥
G(t � t

0)✏t0 + ⌘t0
⇤
+m�1 (54)

or in di↵erential form, setting rt = mt+1 �mt :

rt = G(1)✏t +
X

t0<t

G(t � t
0)✏t0 + ⌘t , G(`) ⌘ G(`+ 1)� G(`), (55)

where G(`  0) ⌘ 0

Hence past order flow a↵ects future returns.

Note that e�ciency (i.e. martingale assumption) is not required.

82 / 166



A transient impact model (TIM)

For an arbitrary function G(`), the lagged price variance can be computed
explicitly and reads:

V(`) =
X

0j<`

G
2(`� j) +

X

j>0

[G(`+ j)� G(j)]2 + 2�(`) + ⌃2`, (56)

where �(`) is the correlation induced contribution:

�(`) =
X

0j<k<`

G(`� j)G(`� k)C(k � j)

+
X

0<j<k

[G(`+ j)� G(j)] [G(`+ k)� G(k)]C(k � j)

+
X

0j<`

X

k>0

G(`� j) [G(`+ k)� G(k)]C(k + j). (57)

Assume that G(`) itself decays at large ` as a power-law, �0`
�� . When

�, � < 1, the asymptotic analysis of �(`) yields:

�(`) ⇡ �2
0c0I (�,�)`2�2��� , (58)

where I > 0 is a certain numerical integral.
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A transient impact model (TIM)

If the single trade impact does not decay (� = 0), we recover the above
superdi↵usive result.

But as the impact decays faster, superdi↵usion is reduced.

At the critical value � = �c = (1� �)/2, �(`) grows exactly linearly with
` and contributes to the long term value of the volatility.

However, as soon as � exceeds �c , �(`) grows sublinearly with `, and
impact only enhances the high frequency value of the volatility compared
to its long term value ⌃2, dominated by ‘news’.

The long range correlation in order flow does not induce long term
correlations nor anticorrelations in the price returns if and only if the
impact of single trades is transient (� > 0) but itself non-summable
(� < 1).
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Calibration of TIM

The average impact function R(`) of the model is

R(`) = G(`) +
X

0<j<`

G(`� j)C(j) +
X

j>0

[G(`+ j)� G(j)]C(j). (59)

This equation can be used to extract the impact of single trades G from
directly measurable quantities, such as R(`) and C(n).

An alternative method of estimation, which is less sensitive to boundary e↵ects,
uses the return process of Eq. 55, such that the associated response function
S(`) = E[rt+` · ✏t ] and C(`) are related through:

S(`) =
X

n�0

G(n)C(n � `),

whose solution represents the values of the kernel G(`). The relation between
R(`) and S(`) is:

R(`) =
X

0i<`

S(i) (60)

allowing to recover the response function from its di↵erential form.
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Empirical propagator

Figure: Comparison between the empirically determined G(`), extracted from R and C
using Eq.(59), and the power-law fit Gf (`) = �0/(`20 + `2)�/2, for a selection of four
stocks: ACA, CA, EX, FP.
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Response function of TIM

The asymptotic analysis can again be done when G(`) decays as �0`
�� .

When � + � < 1, one finds:

R(`) ⇡`�1 �0c0
�(1� �)

�(�)�(2� � � �)


⇡

sin⇡�
� ⇡

sin⇡(1� � � �)

�
`1���� ,

(61)

Note that numerical prefactor exactly vanishes when � = �c .

When � < �c , one finds that R(`) diverges to +1 for large `, whereas for
� > �c , R(`) diverges to �1, which means that when the decay of single
trade impact is too fast, the accumulation of mean reverting e↵ects leads
to a negative long term average impact .

When � is precisely equal to �c , R(`) tends to a finite positive value
R(1): the decay of single trade impact precisely o↵sets the positive
correlation of the trades.
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Figure: Theoretical impact function R(`), from Eq. (59), and for values of � close to
�c . When � = �c , R(`) tends to a constant value as ` becomes large. When � < �c
(slow decay of G), R(` ! 1) diverges to +1, whereas for � > �c , R(` ! 1)
diverges to �1.
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Empirical response function
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Figure: Average empirical response function R(`) for FT, during three di↵erent
periods (first and second semester of 2001 and 2002). We have given error bars for
the 2002 data. For the 2001 data, the y�axis has been rescaled such that R(1)
coincides with the 2002 result. R(`) is seen to increase by a factor ⇠ 2 between ` = 1
and ` = 100.
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Transient impact model: summary

TIM assumes that price mn at transaction time n is

mn = m�1 +
1X

k=1

✏n�k f (vn�k)G(k) +
X

k

⌘k (65)

or equivalently

mn+1 �mn = G(1)✏nf (vn) +
1X

k=1

[G(k + 1)� G(k)]✏n�k f (vn�k) + ⌘n (66)

Thus past trades a↵ect future returns.

If C(j) = E [✏k+j✏k ] ' j
�� with 0 < � < 1, long term di↵usivity of prices is

recovered only if G(`) ⇠ `�� .

Notice that Eq. 66 suggests to regress price returns on contemporaneous and
past order flow to estimate the (increments of the) propagator G(k)
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History dependent impact model (HDIM)

An alternative interpretation of the above formalism is to assume that price
impact is permanent, but history dependent as to ensure statistical e�ciency of
prices

Let us consider a generalized MRR model:

rn = mn+1 �mn = ⌘n + ✓(✏n � ✏̂n), ✏̂n = En[✏n+1|I ] (67)

where I is the information set available at time n.

This model implies that En�1[rn|I ] = 0.

Within the above simplified model, in which we have neglected volume
fluctuations, there are only two possible outcomes. Either the sign of the
nth transaction matches the sign of the predictor En[✏n+1|I ], or they are
opposite. Let us call r+n and r

�
n the expected ex-post absolute value of the

return of the n
th transaction given that ✏n either matches or does not

match the predictor. If we indicate with '+
n and ('�

n ) the ex ante
probability that the sign of the n-th transaction matches (or disagrees)
with the predictor ✏n,
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History dependent, permanent impact

We can rewrite En�1[rn|I ] = 0 as:

'+
n r

+
n � '�

n r
�
n = 0. (68)

i.e.

r
+
n = ✓(1� ✏̂n) (69)

r
�
n = ✓(1 + ✏̂n). (70)

This result shows that the most likely outcome has the smallest impact.
We call this mechanism asymmetric liquidity: each transaction has a
permanent impact, but the impact depends on the past order flow and on
its predictability.

The price dynamics and the impact of orders therefore depend on (i) the
order flow process (ii) the information set I available to the liquidity
provider, and (iii) the predictor used by the liquidity provider to forecast
the order flow.
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Equivalence between the two models

Consider the case where the information set available to liquidity providers
is restricted to the past order flow. We call this information set
anonymous because liquidity providers do not know the identity of the
liquidity takers and are unable to establish whether or not two di↵erent
orders come from the same trader.

We assume also that the predictor used by liquidity takers to forecast
future order flow comes from a linear model, namely a K

th order
autoregressive AR model

✏̂n =
KX

i=1

ai✏n�i , (71)

where ai are real numbers that can be estimated on historical data using
standard methods. The MRR model corresponds to an AR(1) order flow,
with a1 = ⇢ and ak = 0 for k > 1, with an exponential decay of the
correlation.
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Equivalence between the two models

The resulting impact model, Eq. (67) with a general linear forecast of the
order flow is in fact equivalent, when K ! 1, to the temporary impact
model of the previous section. It is easy to show that one can rewrite the
generalized MRR model in terms of a propagator as

mn = mn�1 + ✓✏n +
1X

i=1

[G(i + 1)� G(i)]✏n�i + ⌘n, ✓ = G(1). (72)

The equivalence is obtained with the relation:

✓ai = G(i + 1)� G(i) or G(i) = ✓[1�
i�1X

j=1

aj ]. (73)
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Building a predictor: The DAR(p) model

DAR(p) model: a generalization of autoregressive models for discrete valued
variates

Xn = VnXn�An + (1� Vn)Zn,

Zn ⇠ ⌅, Vn ⇠ B(1,�), P(An = i) = �i ,
pX

i=1

�i = 1

Autocorrelation function ⇢k = Corr(Xn,Xn+k) satisfies:

⇢k = �
pX

i=1

�i⇢k�i , k > 1

Model predictor conditional on ⌦n�1 = {Xn�1, . . . ,Xn�p}:

X̂n+s ⌘ E[Xn+s |⌦n�1] = �
pX

i=1

�iYn+s�i+E[Z ](1��), Yn+s�i =

⇢
X̂n+s�i for i 6 s

Xn+s�i for i > s
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Asymmetric liquidity (Lillo and Farmer 2004)

When it is very likely that the next order is a buy, if a buy occurs the impact is
small, while if it is a sell the impact is large.
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Figure: Expected return behavior as a function of an autoregressive sign predictor
✏̂n ⌘ E[✏n|✏n�1, ✏n�2, ...] for Astrazeneca (from Taranto et al. JSTAT 2014).
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Fitted propagators
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dependence of order flow on price movement
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Signature plot

100 101 102 103

�

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
D

(�
)

(b
p2 )

MSFT
TIM1
Data

100 101 102 103

�

1.00

1.05

1.10

1.15

1.20

D
(�

)
(b

p2 )

AAPL
TIM1
Data

Small tick (AAPL): ‘trend-like” behaviour for ` � 3 and high frequency
activity with the spread leading to a minimum in D(`).

Large tick (MSFT) “mean-reverting” behaviour, with a steadily decreasing
signature plot.
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Market impact of metaorders: phenomenology

4 / 85



Market Impact
❖Market Impact (M.I.):

❖Why the M.I.  is relevant?
• Theory: it is the mechanism through which prices becomes efficients (Supply/Demand).

• Practice (I): for regulators because it influences the market stability. 

• Practice (II): it is a cost for traders, which need to accurately control in order to optimize execution.

Time

Price

Start End

p0

pT

Q

T

Metaorder: ensemble of trades, executed 
incrementally and that belong to one single 
trading decision.

A trade which is split up in order 
to be executed over a time 
windows forces us to think of 
cost due to the price impact as a 
statistical quantity. Breaking up 
the trade and executing  it slowly 
means that each scenario is 
different and the measurement 
of cost now becomes an exercise 
in averaging over  trades, Having 
a precise estimate of one’s cost 
noew requires many trades to be 
analysed and in evaluating the 
worth of an algorithm or a 
broker, an individual trade is 
quite meaningless.

Price impact is an all
traders who need to buy or sell  large 
quantities of an asset. To these traders, 
price impact is tantamount to a
cost, because the impact of their earlier 
trades makes the price of their subsequent 
trades worse on average. Therefore, 
monitoring and controlling impact
costs is one of the most active and rapidly 
expanding domains of research in both 
academic circles and trading firms

Trading Decision Time

average signed price change  conditioned to the sequential execution  of a volume Q of contracts 
(metaorder)



Market impact laws

Kyle’s original model (1985) predicts that price impact should be a linear
function of the metaorder size

Empirical studies have consistently shown that the price impact of a
metaorder is a non-linear concave function of its size.

Market impact I, i.e. the expected average price change between the
beginning and the end of a metaorder of size Q is empirically fit by

� ln p ⌘ I(Q) = ±Y�D

✓
Q

VD

◆�
(79)

where �D is the daily volatility of the asset, VD is the daily traded volume,
and the sign of the metaorder is positive (negative) for buy (sell) trades.
The numerical constant Y is of order unity and the exponent � is in the
range 0.4 to 0.7, but typically very close to 1/2, i.e. to a square root.

This is the square-root impact law (Barra 1997, Almgren et al 2005,
Moro et al 2009, Toth et al 2011, Bershova et al 2013)
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Impact of metaorders from proprietary data

Figure: From Toth et al. 2011. The impact of metaorders for Capital Fund
Management proprietary trades on futures markets, Impact is measured here as the
average execution shortfall of a metaorder of size Q. The data base contains nearly
500, 000 trades. We show I(Q)/�D vs Q/VD on a log-log scale, where � and V are
the daily volatility and daily volume measured the day the metaorder is executed.
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Temporary and permanent impact

By using brokerage data of LSE and BME, we reconstruct statistically the
metaorders and we measure the dynamics of price during the their execution,
by rescaling the time in [0, 1].
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Figure: Market impact versus time. The symbols are the average value of the market
impact of the metaorder as a function of the normalized time to completion t/T . The
rescaled time t/T = 0 corresponds to the starting point of the metaorder, while t/T
= 1 corresponds to the end of the metaorder.

We find approximately the square root law

E [r |N] = A✏sN� � ' 1/2 (80)

and a decay at approximately 2/3 of the peak impact.
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A portfolio manager liquidates a position and splits its order between brokers.

Portfolio manager 1

Portfolio manager 2

Portfolio manager 3

Broker 1

1_V Broker 2

Broker 3

Investment Fund

1_V_3

1_V_1

1_V_2

Portfolio manager 1

Portfolio manager 2

Portfolio manager 3

Broker 1

Investment Fund

3_V_1

1_V_1

2_V_1

1_V_1

V_1

Market

A broker receives orders from different portfolio managers and bundles 
them in a unique metaorder.   

Ancerno Dataset - 1



Ancerno Dataset - 2
• Metaorder definition: an execution performed by a single Broker, on a single stock, in a given 

direction. All metaorders are completed within a trading day. 
• The dataset is heterogeneous, containing metaorders traded by many financial institutions for different 

purposes and it spans several years. 
• US Equity in Russel 3000 Index in 2007-2009 
• The metaorders account for roughly 5% of ADV for the top 20 stocks 
• For each metaorder in the dataset we recover the relative daily fraction π, the participation rate η, 

and the duration F.  
• We work in volume time (intraday patterns)  
• We introduce the following filters:

Filter 0 Selecting metaorders traded between 
January 2007 and December 2009 ~ 28,500,000

Filter 1 Selecting metaorders traded on 
Russell3000 index ~ 23,000,000

Filter 2 Selecting metaorders traded during 
regular trading section: 09:30 - 16:00 ~ 11,000,000

Filter 3 Selecting metaorders with duration 
longer than 2 minutes ~ 7,500,000

Filter 4 Selecting metaorders whose 
participation rate is smaller than 0.3 ~ 7,000,000

Sign

Duration

Participation rate

Daily rate

Trading profile

✏ = ±1

⌘ := Q/VP

⇡ := Q/VD

⇢(v, vs, ve)

F := VP /VD

Not available information

⇡ = ⌘F



Distribution of the describing variables

F := VP /VDDuration ⌘ := Q/VPParticipation rate
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C = 0.220 a = -0.932

f (x) = C · xa
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p(
⌘)

C = 0.223 a = -0.864

f (x) = C · xa

The participation rate η and the duration F are both well 
approximated by a truncated power-law distribution over 

several orders of magnitude
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I t
m

p(
⌦

=
{⇡

})

f(⇡) = Y ⇡�

g(⇡) = a log10(1 + b⇡)

Ŷ =0.15±0.01 �̂ =0.47±0.02 ERMS =6.70

â =0.028±0.001 b̂ =465±33 ERMS =2.80

The price impact curve: excess concavity

Rescaled price

⇡ := Q/VD

A square-root model well describe price 
impact only in the central region (red 
curve).  

A logarithmic (more concave) model 
allows to capture the whole shape of the 
curve (blue curve). 

Price impact curve: the average relative price change between the end 
and the beginning of the execution, conditioning on the daily rate 

I(⇡) := E [✏ (s(ve)� s(vs))|⇡] s(v) := logS(v)/�D


