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Part II: The Quantum Hall Effect 
Overview 

 Classical Hall effect 

 Two-dimensional electron gas 

 Landau levels 

 Measurement technique 

 Accuracy of the quantized Hall resistance 

 Applications in dc and ac electrical 

metrology 
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Discovery of the Quantum Hall Effect 
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K. Von Klitzing discovers the quantum Hall 

effect in on 5 February 1980 in Grenoble   

K. v. Klitzing et al, Phys. Rev. Lett., 45, 494 (1980) 



Classical Hall effect 

(1879) 
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Classical Hall effect (2) 
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Hall effect independent of geometrical 

dimensions !  
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Realisation of a 2D electron gas 

Si MOSFET 
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GaAs Heterostructure 

Layers grown by: 

Molecular Beam Epitaxy (MBE) 

or Metal Organic Chemical 

Beam Epitaxy (MOVCD) 

4 mm 
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Inversion Layer 

de Broglie wavelength: 

typically 100 nm (GaAs) 

level spacing at 10 T: 

Si:  7.9 meV 

GaAs: 17 meV 

Graphene: 120 meV 

 

thermal energy: 

T = 4 K: kT = 0.36 meV 
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Landau levels 

cyclotron motion in a strong magnetic field 

Classical: 
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   ,12magnetic length: 

(8 nm @ 10 T) 

(spin neglected) 
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Landau quantization (2) 

B = 0 Bz>0

no scattering

E Orbital degeneracy 
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State density 

Number of flux quanta within  

the area of the sample 
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Quantum Hall effect ? 

observed when i levels are fully occupied ! 
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Hall voltage in a 2D-system: 
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Mobility gap 

extended states

localized states

state
density

Fermi
level

Bz>0

no scattering

Bz>0

scattering

mobility gap

Disorder and scattering 

removes orbital 

degeneracy 

 

Localized states do not 

carry current 

 

Plateau forms when EF 

resides within the 

localized states 
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QHE in a real device 

I

VH + Vc

VH
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QHE in a real device (2) 

E

EF

o-Ly/2 +Ly/2

electronic states at Fermi 

energy 

No energy gaps for real devices with finite width 
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Edge state picture 

Landauer formalism 

current = driving force of electronic transport 

 

Skipping Orbits 

source and drain contact are 

connected by a common edge 

 

one-dimensional edge channels 

carry the current 
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Büttiker formalism 
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QHE Model 
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 The QHE is a collective phenomenon, it can not be explained 

by a microscopic model 

 A vanishing longitudinal resistivity indicated the absence of 

backscattering 

 Under this condition, the QHE is the direct consequence of 

the transmission of one-dimensional channels. 



QHE in Graphene 
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Graphene: 2D crystal of carbon atoms 

with charge carriers » massless relativistic 

particles 

Geim & Novoselov 

Nobel Prize in Physics (2010) 

http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjc7oblr8_NAhWG1hQKHQVoBAgQjRwIBw&url=http://www.extremetech.com/extreme/185737-researchers-may-have-solved-graphenes-production-problems-cleared-way-for-mass-production&psig=AFQjCNFgwlsnaaoRWkjzFzXRlpThTgDevA&ust=1467363097433901


Unconventional quantum Hall effect 
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Novoselov, et al, Nature 438, 2005 



Interest for graphene 
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E required 

for 10-9-accuracy of 

RH at T 

B / T 


E

 /
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e
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Potential to develop a quantum Hall resistance standard  

At T >5 K and B < 5 T 

 

 Cryogen-free and cheap  
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Fine structure constant 
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Test the validity of 

or: additional route to the determination of  independent of QED)  

 

most accurate value for : 

measurement of ae + theoretical expansion of ae in a series 

expansion of  (numerical computations: Kinoshita et al.)  

)(iRiR HK 
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Fine structure constant 

 

RK 
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e2 
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ae: Anomalous magnetic moment of e 

µMu: Ground state hyperfine splitting 

G90: Gyro-magnetic moment of the proton  

h/m:  Neutron diffraction; cold atoms.. 

RK: QHE 

QED theory 

necessary 

without QED 
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Metrological application 
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• Ideal systems: T = 0 K, I = 0 A 

 

 

• No dissipation: Rxx = 0  

RK is a universal quantity 

Localization theory,  

Edge state model  
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• Real experiment: T > 0.3 K, I = 40 µA 

 Non-ideal samples 

 

•  Dissipation: Rxx > 0  

Is RH (i) a universal quantity? 

Independent of device material, mobility,  

carrier density, plateau index,  

contact properties.....? 

Few quantitative theoretical models available  

 empirical approach,  

 precision measurements 

  ??0,
2ei

h
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QHE devices for metrology 

Carrier concentration 

21015 m-2 < ns < 71015 m-2  

ns > 71015 m-2: 2nd subband fills up 

 

Mobility: 

 > 10 T-1 to have clear separation of the LL 

up to plateau 4 

Hall bar defined by photolithography and 

wet etching techniques 

 

Alloyed AuGeNi contacts 

   iReniB Hs 
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QHE in a real device 
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•  Thermal activation:  

 1 K  T  10 K 

 electrons thermally activated  

 to the nearest extended states 

xx T    xx

0  e

kT

  EF  ELL

xy(T)  sxx (T) Cage et al. 1984:  

1.2 K < T < 4.2 K,   

2 GaAs samples, i = 4  

-0.01 < s < -0.51 

xy T   xy (T) 
ie2

h

Temperature dependence 
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Current dependence 

Breakdown 

GaAs 

T = 0.3 K 

i = 2 

W = 400 µm 
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Measurement technique 

 To make use of the QHE for metrological applications, a 

measurement technique, capable of transferring the QHR to 

room temperature resistance standards must be available. 

 

 Most accurate resistance bridge technique: 

 

 Cryogenic Current Comparator (CCC) 

30 
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The cryogenic current comparator (CCC): Principles 

Meissner effect: 

Harvey 1972 
2211 InInSQUID 

Harvey 1972 
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The CCC bridge: 

NP  IP  NS  IS (1 d)
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Detector: 
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Ratio accuracy: 

W1  N(1 w1 )

W2  N(1 w2 )

USQUID  (w1  w2 )

Windings in a binary series: 

1, 1, 2, 4, 8, 10, 16, 32, 32, 64, 

100, 128, 256, 512, 1000, 1097, 

2065, 4130 
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Ratio accuracy 

34 
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Performance 

RH (2) : 100 Ω  

NP = 2065, NS = 16, IP = 50 µA 

Vn-rms: 7 nV/Hz 

uA: 1 nW/W in 2 min 
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Universality of the quantum Hall effect 

 Width dependence 

 Contact resistance 

 Device mobility 

 Plateau index 

 Device material: MOSFET-GaAs - Graphene 
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No size effect observed within 

the measurement uncertainty 

2  (1.8 1.8)  10
3

4  (0.7  5.0) 103

• Deviation on 500 µm wide         

samples: 

i = 2   < 0.001 ppb 

i = 4   < 0.003 ppb 

• Value of : 

• No influence 

OFMET EPFL

200 µm

10 µm 

20 µm 

50 µm 

100 µm 

Geometry of the QHE device 

Jeanneret et al., 95 
Some theories predict a width 

dependence of the QHR 
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Effect of the contact resistance Rc 
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M. Büttiker, 1992: “...It is likely, therefore, that in the future, contacts will play an 

essential role in assessing the accuracy of the QHE.” 

38 

On a perfectly quantised plateau: 

Real sample 

 Rc > 0  

 Transmission  1 

 Reflection  0 

 Bad contacts 

  electron gas depletion in the 

 contact region 

  non-ohmic behaviour of 

 metal semiconductor interface 

  IVPR PPc 211 
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Contact resistance (2) 
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Contact resistance (3) 
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Deviation of RH related  

to finite Vxx  
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Scattering parameters 

RH independent of the device mobility or the fabrication 

process to 2 parts in 10-10  

Electron mobility: measure 

of the electron velocity 

Jeckelmann et al. 97 
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Step ratio measurements 

i RH (i)

2 RH 2 
 1 (1.2  2.9) 10

10

i 1,3, 4,6,8

RH independent of the 

plateau index to 3 parts in 

10-10 

Jeckelmann et al. 97 
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RH MOSFET GaAs 

RH
 2.3 10

10
Jeckelmann et al., METAS, 1996 

QHR comparison GaAs - MOSFET  
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QHR comparison GaAs - Graphene 
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A. Tzalenchuk et al., Nat. Nanotech. (2010) 

High precision measurements in epitaxial graphene on SiC at NPL 

T. J. B. M. Janssen et al., New J. of Phys. and Metrologia (2012) 

1110)6.87.4( 

  grapheneGaAs



QHR comparison GaAs – Graphene (2) 
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F. Lafont et al. LNE, 2014: graphene grown by CVD on SiC 

1110)2.89.0( 

  grapheneGaAs
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Universality: Summary 

The quantum Hall resistance is a universal quantity independent of: 

  Device width 

  Device material: MOSFET- GaAs - Graphene 

  Device mobility 

  Plateau index 

…..to a level of < 10-10 

CCEM Technical Guidelines: 

F. Delahaye and B. Jeckelmann, Metrologia 40, 217-223, (2003) 
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International QHR Key-comparison 
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Application: DC Resistance Standard  
(data METAS) 

100 Ω resistance standard 

• Deviation from fit < 2 nΩ/Ω 

   over a period of 10 years 
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QHE arrays 

Connection of several Hall bars 

(Delahaye 1993)  cHAB RR  12

A
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QHE array (LNE) 

129 W @ i = 2 10 mm 
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AC-QHE: Applications 

• SI realisation of the Farad: Calculable 

capacitor 

• complicated experiment 

 

• Representation of the Farad: DC QHE 

• New route: AC measurements of the QHR 
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First AC measurements of the QHE 

i = 2 

T = 1.3 K 

I = 40 µA 

f = 800 Hz 

Delahaye 94 

• Narrow bumpy “plateau “ (PTB, NPL,     

NRC, BIPM) 

• Frequency dependence:  

 RH( i, )/ RH =   

   = 1  to 5 10-7/ kHz 

 

Measurement problems:  AC Losses 

 Delahaye et al. 2000, Shurr et al. 2001, 

Overney et al.  2003  
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Ratio Bridge: Principle 
0D T B Qi i i i   
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Calculable Resistor: Quadrifilar Resistor (QR) 

Transmission line equations 

 // , , , ,R f R L C G 

  2(1 )dc

c cR R    

=0.0129 10-6/kHz2 
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AC measurements of the QHE  
(with grounded back gate) 

 B 

 B 

 C 

 C 

Capacitive losses scale with the surface 

Linear frequency dependence of the Hall resistance observed 
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Model for ac Losses 
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Adjusting capacitive losses  
(2 back gates) 

V
G

V
H
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Double shielding technique 
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B.P. Kibble, J. Schurr, Metrologia 45, L25-L27 (2008).  

 Meet the defining condition: ALL currents which have 

passed the Hall-potential line are collected and measured. 

 Adjust the high-shield potential sU so that  dRH/dI = 0. 



QHR as impedance standard 
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J. Schurr, J. Kucera, K. Pierz, and B.P. Kibble, Metrologia 48, 47-57 (2011).  

 capacitive effects < 1.4·10-9 kHz-1 for different devices 

 better than artefacts 



Realization of the Farad 
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10:1 calibration

1 nF

100 pF

10 pF

10 nF10 nF

10 nF

10:1 bridge

quadrature bridge

frequency

QHR
RC = 1

QHR = /h e
2

RK

10:1 bridge

10:1 bridge

J. Schurr, V. Bürkel, B. P. Kibble, Metrologia 46, 619-628, 2009 

-  relative uncertainty of 10 pF:  

   4.7·10-9  (k = 1) 

   (cryogenic quantum effect 

   without ’calculable‘ artefacts)  

-  quantum standard of capaci- 

   tance, analogous to RDC  
    



Varenna 2016  / El. Standards II 

 RH is a universal quantity 

 QHR improved electrical calibrations in National Metrology 

Institutes considerably 

 QHR plays an important role in the determination of the fine 

structure constant 

 QHR can be used as quantum standard for impedance 

 

Conclusions 
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Thank you very much for your attention 


