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2The tendency of a system to spontaneously reach a well-defined structure is often named ”self-assembly” [1].
Originally used in biology to describe the process that brings to the self organization of proteins into complex
structures (like virus capsides), the word self-assembly has progressively permeated physics, chemistry and
material science, becoming almost a substitute (despite its equivalence) for the more precise thermodynamic
term, the minimization of the system free energy on going from a collection of disordered particles to the
final (possibly ordered) structure. Crystallization of a metastable fluid can be properly considered as a well
known example of self-assembly.

While the search for a minimum free energy state is ubiquitous, the word self-assembly, expecially in the
context used in this school, is commonly limited to the case in which the final structure is composed by (often
ordered) aggregates of finite size [2]: micelles, vescicles, filaments, ribbons, self-assembling spontaneously
under the appropriate external conditions (density, temperature, salt concentration, pH and so on).

Given the generality of the concept, a lecture on self-assembly can take an enormous number of directions
(some of which will be exploited in details by the school lectureres). Here I will limit myself to some general
consideration on self-assembly of one-component systems into finite size aggregates, and more specifically on
its thermodynamic basis. Specifically, I will focus on particles whose interaction energy scale is indicated by
ε and whose interaction range is indicated by ∆. I will use the generic word ”particle”, which according to
the context can refer to an atom, a molecule, a macromolecule, a colloidal particle.

To exploit self-assembly into finite size structures it is fundamental to understand:

1) the need of operating at low kBT (compared to ε )

2) the need of directional attractive interactions (or alternatively of highly non-monotonic interaction po-
tentials)

3) the need to suppress collective phenomena (competition with crystallization and phase separation)

4) how to predict the structure of the aggregate from the knowlege of the interaction potential (direct) or
how to design the interaction potential to spontaneously assemble a desired structure (inverse).

5) how to develop a thermodynamic description of the clustering process, highlighting the role of the bonding
volume compared to the volume per particle and the bonding energy and the competition between the
entropic driving force disfavouring self-assembly and the energetic (or enthalpic) driving force favoring the
formation of low energy aggregates

6) How external fields can be exploited to modify the routes toward the assembly of ordered structured.

The next sections address some of these points in more detail, for one-component systems. Others will be
discussed in the school lectures.

LOW T

Differently from bulk (infinite size) systems which can be stabilized also by repulsive interactions (as in the
paradigmatic case of hard-sphere crystallization), the formation of a stable aggregate of finite size requires
attraction between the participating particles. When the distance between two particles is within σ and
σ + ∆ (being σ the characteristic particle size), a ”bond” of strenght ε > 0 sets in. The values of ∆ and ε
enter in the evaluation of the partition function of the system (and hence in the free energy) determining the



3temperature T and density ρ conditions under which bonding becomes statistically relevant. Typically, ∆ is
a fraction of σ (larger ∆ values do not allow for self-assembly of finite size clusters). As we will demonstrate
later on, the probability of creating a bond between two particles reaches a value of the order 0.5 when
ρσ2∆ exp(ε/kBT ) ≈ 1. Assuming typical values for ∆ ≈ 0.1σ and for the packing fraction φ ≡ π

6σ
3ρ ≈ 0.1

this condition already teach us that since ρσ2∆ ≈ 0.01, kBT must be smaller than ε if the probability that
the bond is formed have to be not negligible (more precisely kbT/ε ≈ (ln ρσ2∆)−1 ≈ −(ln 0.01)−1 ≈ 0.2),

It is also important to consider the lifetime of the bonds, i.e. their persistence. As a first approximation,
the lifetime of this bond is proportional to exp(ε/kBT ). This immediately clarifies that to form a stable
aggregate, i.e. an aggregate in which the relative position of the constituent particles is persistent in time,
one need to go to kBT � ε. It also clarifies that at the typical temperature when fifty per cent of the possible
bonds are formed (i.e. exp(ε/kBT ) ≈ 100 ) the bonds are generally still very intermittent and the aggregates
are to be considered as transient clusters with significant exchange of particles between aggregates. To
generate bonds that are persistent (e.g. long compared to the experimental observation time) already at the
temperature where they form requires to find ways to significantly lower the term ρσ2∆, compared to the
typical case. We will come back to this point later on.

A persistent bond typically requires 108 − 109 attempts before breaking (this estimate of course depend on
the attempt rate and the experimental observation time). This correspond to kBT/ε ≈ 0.045− 0.05. Hence,
in summary, at the temperature where bonds start to form between spherically interacting particles, they
are very transient.

THE NEED OF DIRECTIONAL ATTRACTIVE INTERACTIONS

In the previous section we have seen that the formation of stable bonds between the particles require T
significantly smaller than kBT . At these low T , if the interaction potential is isotropic, the particles will
have a tendency to phase separate, forming coarsening liquid droplets in the interior of which each particle is
surrounded by approximatively twelve neighbours. Indeed, particles interacting via isotropic potentials (and
with short-ranged interactions) are known to phase separate when the normalised second virial coefficient B∗2
(normalized to the hard-sphere value BHS2 ) reaches the value (B∗2)Tc ≈ −1.2[3]. For the isotropic square-well
potentials (our paradigmatic potential)

B∗2 ≡
B2

BHS2

= 1− (σ + ∆)3 − σ3

σ3

(
eε/kBT − 1

)
(1)

which means that

kBTc
ε

=

{
ln

[
1 +

(1−B∗2)
|Tc
σ3

[(σ + ∆)3 − σ3]

]}−1

(2)

For a typical range ∆ ≈ 0.1, kBTc/ε ≈ 0.5 and hence it is impossible to bring the system to the T at which
the bond lifetime would be sufficiently long to observe the presence of long-living well-defined aggregates,
without phase separation.

In principle one could attempt to decrease ∆ to lower Tc. Still, Eq. 2, in the limit of ∆/σ → 0, tends to

kBTc
ε
≈

{
ln

[
(1−B∗2 |Tc

)σ

3∆

]}−1

≈ (ln ∆/σ)−1 (3)



4which means that in the case of spherically interacting potentials only in the limit of very sticky (almost
unphysical) interactions (∆/σ ≈ 10−9 or smaller) Tc is so small that the bond lifetime becomes longer than
the experimental observation lifetime before the phase separation is encountered, at least for interactions
potentials which can be modelled as short-range attraction. As a word of caution, we note that in soft matter,
it may happen than bonding arises as a result of an effective interaction which may involve a large entropic
component. One typical case is offered by electrostatic interactions when counter ions redistribute in space
as a consequence of bonding or when significant conformational changes are associated to the bond-formation
process (see DNA self-assembly). Under these conditions, it is possible to modulate the bond lifetime and
generate persistent bonds even for T > Tc).

Isotropic attractive interactions are thus not suited for self-assembly. Can the picture change with directional
interactions ? The answer is certainly positive. Directional attractive interactions offers many advantages.
For a conical bonding surface of semi-angle θ = 30o the entropic reduction is of the order of 103 compared to
the isotropic case. Indeed, the bonding volume changes from the value 4πσ2∆ typical of spherical potential
to 4πχ2σ2∆, where χ = (1−cos(θ))/2, commonly indicates the fraction of solid angle accessible for bonding.
This reduction in the entropy help making the temperature at which bonds form and the temperature at
which bonds are stable for sufficiently long times closer. There is another very important consequence of
directional interactions. The possible suppression of the gas-liquid phase separation [4, 5]. Indeed, already
the reduction in the number of bonded neighbours has a dramatic effect on the gas-liquid phase diagram,
progressively decreasing both the critical temperature and the density of the liquid coexisting with the
gas. This opens a region of packing fractions (above the coexisting liquid density but still smaller than
the density at which packing becomes relevant) where it is possible to cool the system down to very low
T without encountering phase separation. The suppression of the gas-liquid phase separation is even more
striking if the directional interactions favor the formation of aggregates that do not significantly attract each
other. If bonding sites are completely saturated in each aggregate than these super-particles will feel each
other essentially as hard-spheres suppressing any driving force toward phase separation. This important
consideration clarifies why long range attractive interactions and isotropic potentials are not suited for self-
assembly.

Fig. 1 shows schematic examples of one component system (Janus particles), interacting via hard-core (red)
and square-well (green) potentials, which form aggregates similar to micelles and vesicles at low T for which
the intra-aggregate attraction can be considered negligible [6, 7].

FIG. 1. example caption



5THERMODYNAMIC DESCRIPTION OF THE CLUSTERING PROCESS

In the case in which clusters do not significantly interact (e.g. in the case in which the dominant contribution
is excluded volume and the system packing fraction is small, then clusters can be considered isolated) the
thermodynamic of the system significantly simplify. The definition of a cluster as an entity requires first a
definition of existence of a bond between particles and of the cluster as a set of particles connected by an
uninterrupted sequence of bonds. In the case of strong bonds (the one commonly found in association) or
in the case of square-well like interaction, the definition of ”bond” is anambiguous.

The partition function of the system, in the NV T ensamble (where N is the total number of monomers) can
be written as [8]

Q =

∞∏
n=1

QNn
n

Nn!
(4)

where Qn is the partition function of the cluster composed of n monomers and Nn is the number of clusters
of size n. For isotropic interactions

Qn =
1

n!λ3n

∫ ′

d~r1....d~rN exp−βV (~r1, ~r2, ..., ~rN ) (5)

where the ′ sign in the integration limits indicates that only points in phase space d~r1....d~rN for which the
cluster does not break into disconnected smaller clusters should be considered.

For the monomer,

Q1 =
V

λ3

For directional interactions, one need to integrate over all Euler angles of the particles Ωj and the partition
function becomes

Qn =
1

n!λ3n

∫ ′

d~r1....d~rndΩ1...dΩn exp−βV (~r1, ~r2, ..., ~rn,Ω1, ....Ωn) (6)

where now λ includes the rotational component of the integral over the kinetic energy. In these cases it is
convenient to redefine Λ3 = λ3/

∫
dΩ1 and define a spherically averaged partition function

Qn =
1

n!Λ3n

∫ ′

d~r1....d~rNdΩ1...dΩn exp−βV (~r1, ~r2, ..., ~rn,Ω1, ....Ωn)∫
dΩ1...dΩn

(7)



6The Helmotz free energy F , is then given by

βF = − lnQ = −
∞∑
n=1

[Nn lnQn −Nn lnNn +Nn] =

∞∑
n=1

Nn[lnQn − lnNn + 1] (8)

and we have to minimize over all possible cluster sizes Nn to find the lowest free energy value. Still, we must
satisfy the constraint

∑
n nNn = N . Introducing a Lagrange multiplier α, we get

∂(βF + α
∑
k kNk)

∂Nn
= 0 (9)

ln
Nn
Qn
− nα = 0 (10)

or

Nn = Qn(expα)n (11)

Since N1 = Q1 expα, the same expression can be written as

Nn = Qn
Nn

1

Qn1
= Qn(ρ1Λ3)n (12)

This expression is particularly informative, since it shows that the probability of observing an aggregate of
size n is proportional to the strenght of the partition function Qn.

Often one find defined

Qn = e−βfn

so that

Nn
N

= Qn
Nn

1 N
n−1

NnQn1
=

(
N1

N

)n
e−β[(fn+lnN)−n(βf1+lnN)] (13)

The resulting free energy is

βF = −
∞∑
n=1

[
Nn lnQn −Nn lnQn

Nn
1

Qn1
+Nn

]
= −

∞∑
n=1

[
nNn ln

N1

Q1
+Nn

]
= N lnN1/Q1 −#c (14)

where #c is the total number of clusters in the system. The free energy, in the ideal gas of cluster approxi-
mation, can always be written as



7

βF = Nβµ−#c (15)

It is interesting to note that, being an ideal gas, the pressure is proportional to the number of clusters
(#c = βPV ) and that the monomer concentration (which fix the value of µ) and the total number of
clusters are the only information requested to write down the system free energy.

ANALOGIES WITH CHEMICAL REACTIONS (USEFUL TO TALK TO CHEMISTS)

An equivalent way of looking at the problem of clustering can be derived in term of chemical reactions.
Each cluster can be considered a different chemical species and the equilibration process that starts from a
collection of monomers and ends into and equilibrium distribution of different clusters can be considered as
the progression of the reactions toward equilibrium.

In this terminology, we could write

N1 +N1 ⇐⇒ N2

N1 +N2 ⇐⇒ N3

and so on and associate to each of these reactions a reaction constant Kn (with the dimension of an inverse
concentration). We would thus write

[N2]

[N1]2
= K2 (16)

[N3]

[N1][N2]
= K3

or substituting the precedent expression

[N3]

[N1]3
= K2K3

and so on. In the case of an isolated chemical reaction (e.g. Eq. 16) the equilibrium constant indicates the
volume per particle at which half of the particles are in monomeric state and half in dimeric. Indeed, due to
particle conservation when N1 = N/2, N2 = N1/2 and

K2 =
N/4V

(N/2)2
=
V

N
|N1= N

2
(17)

With the expression previously derived for the ideal gas of cluster (Eq. 13)

[N2]

[N1]2
= K2 =

Q2

Q2
1V



8[N3]

[N1]3
= K2K3 =

Q3

Q3
1V

2

or

K3 =
Q3

Q1Q2V

Chemical constant provide infomartion on the change in free energy associated to the clustering process at
fixed center of mass, e.g. independently from the system volume. For example, for the reaction

N1 +N1 ⇐⇒ N2

K2 =
N2/V

(N1/V )2
= V

N2

N2
1

= V
Q2N

2
1 Λ6

N2
1

= V
V Kbond

Λ6
Λ6 = Kbond

where

Kbond =

∫ ′

dr12e
−βV (r12) ≈ Vbondeβε

THE SIMPLEST SELF-ASSEMBLY PROCESS. EQUILIBRIUM POLYMERIZATION

The simplest case of self-assembly refers to particles that can form two bonds each (e.g. particles with
functionality f = 2) [9–12] . To evaluate the partition function we make a few approximations. First of all
we consider that the surface of the particle is decorated with two patches on the poles, and that a bond is
present between the two patches when the relative distance between the particles is within σ + ∆ (like in
a square well interaction) but also when the orientation of both patches involved in the bonds is within a
cone of semiamplitude cos θ. This model is commonly named Kern-Frenkel [13]. For example, for a dimer
we have

Q2 =
1

2!Λ6

∫ ′

d~r1d~r2dΩ1dΩ2e
−βV (~r1,~r2,Ω1,Ω2)/

∫
dΩ1dΩ2 (18)

With the simple model selected, the Boltzmann factor exp (βε) is constant in all points in space where a
bond is present. Changing variable to ~r1 and ~r2 − ~r1, the integration over ~r1 is immediate and gives a V
term. The integration over ~r2 − ~r1 is limited for relative distances between σ and σ + ∆ and so it gives
4
3π[(σ + ∆)3 − σ3)] while the integration over angles. Normalized by the (4π)2 factor, gives a contribution

( 1−cos θ
2 )2. This last term correspond to the coverage χ (the fraction of the sphere surface associated to

bonding) squared. The resulting partition function is

Q2 =
V

2Λ6
f2 4

3
π[(σ + ∆)3 − σ3)]χ2 exp (βε)

where the term f2 counts the four ways a bond can be formed between two particles with two patches each.
Condensating in a term commonly named bonding volume Vb ≡ 4

3π[(σ + ∆)3 − σ3)]χ2, one can write in a
transparent way



9

Q2 = 2
V Vb
Λ6

exp (βε) =
V

Λ3
Qbond Qbond = 2

Vb
Λ3

exp (βε) (19)

where the term V/λ3 indicates the contribution to the partition function associated to the exploration of the
system volume of the cluster center of mass, while the remaining part is the bond partition function in which
the term 2Vb/λ

3 counts the number of microstates associated to the existence of the bond and exp (βε) is
the Boltzmann term, which depends on the ratio between the bond energy and the thermal energy.

Pictorial representation of a f = 4 Kern-Frenkel particle (left), in a non-bonded dimer configuration (center) and in a bonded one (right)

Generalization to the case of a cluster of size n (neglecting self-avoiding contributions and under the assump-
tion that there is no change in the bonding energy on clustering, the so-called isodesmic hypothesis, implicit
in the simple classical potential we are using) the partition function can be written as

Qf=2
n =

ωn
n!λ3n

V [V 11
b exp (βε)]#b (20)

with #b = n− 1 and

ωn
n!

= 2n−1 (21)

where ωn counts the number of distinct bonded chains that can be formed by n distinguishble particles.
To calculate ωn one considers that the first particle can be selected in n ways and that it has two possible
bonding configurations. The second one among the n − 1 remaining particles, always with two bonding
possibilities. Hence

ωn = 2n× 2(n− 1)× 2(n− 2)× .....× 2 = n! 2n−1

and

Qf=2
n = 2n−1 V

λ3

[
Vb
λ3

exp (βε)

]n−1

=
V

λ3

[
2
Vb
λ3

exp (βε)

]n−1

=
V

Λ3
Qn−1
bond (22)

which can be interpreted as the center of mass partition function (V/Λ3) and the bonds (n − 1) partition
function Qn−1

bond.

The cluster size distribution is then given by

Nn =
Nn

1

Qn1
Qn =

(
N1λ

3

V

)n
V

λ3
Qn−1
bond = ρ1V

(
ρ1λ

3Qbond
)n−1

= N1

(
ρ1λ

3Qbond
)n−1

= N1e
(n−1) ln(ρ1λ

3Qbond)

e.g. an exponential distribution of polymer lenghts, with characteristic decay n̄ = −[ln(ρ1λ
3Qbond)]

−1.



10EQUILIBRIUM POLIMERIZATION IN CHEMICAL LANGUAGE

In chemical language, the case of equilibrium polymerization correspond to assuming that the equilibrium
constant Kn are all identical and equal to K2. Under this hypothesis,

[Nn]

[N1]n
= K2K3....Kn =

n∏
2

Kn = Kn−1
2

and

Nn = Nn
1 (K2/V )n−1 = N1(K2ρ1)n−1

and remembering that K2 = Q2

Q2
1V

we recover the same expression we derived thermodynamically in the

previous section

Nn = N1

(
Qbρ1λ

3
)n−1

COOPERATIVE POLYMERIZATION: SLAVED EQUILIBRIUM POLYMERIZATION

A relevant case of self-assembly is provided by the ”explosive” formation of very long one dimensional
aggregates (fibers, fibrils and so on) [14? ]. In this cases, a very small change in the external control
parameters determines the formation of extremely long chains. Behind this important case is the presence
of two mechanisms. A very slow preliminary aggregation process, with a very small reaction constant and
a following aggregation process with a large reaction constant. A typical example is provided by the coil
to helix transition, where first four monomers need to arrange in an proto-helix configuration and then the
helix polymerization is rather fast.

This time let’s formulate the problem in chemical language first and then look at the thermodynamic analog.
Let’s start with the usual expressions

[N2]

[N1]2
= K2

[N3]

[N1][N2]
= K3

but this time we assume that K3 and K4 are unrelated, while all successive terms are equal to K3. In other
words, we assume that first one need to nucleate a dimer and then the dimer can grow with an isodesmic
process. In this case

[Nn]

[Nn−1][N1]
= K3, n ≥ 3

In terms of concentrations

[N2]

[N1]2
= K2

and

[Nn]

[N1]n
= K2K

n−2
3 , n ≥ 3



11The total monomer concentration can thus be written as

ρ =

∞∑
1

n[Nn] = [N1] + 2K2[N1]2 +

∞∑
3

nK2K
n−2
3 [N1]n = [N1] +

∞∑
2

nK2K
n−2
3 [N1]n

and using

∞∑
2

nxn =
(2− x)x2

1− x)2

ρ = [N1] +
K2

K3

(2−K3[N1])K3[N1]2

(1−K3[N1])2

By multiplying for K3 and defining Σ ≡ K2

K3
one obtains a a-dimensional expression

K3ρ = K3[N1] + Σ
(2−K3[N1])K2

3 [N1]2

(1−K3[N1])2

Fig. 2 shows that for small Σ the total density coincides with the monomer density till ρ = K−1
3 and then

it abruptly decay to zero.

10-6 10-4 10-2 100

ρ

0

0.2

0.4

0.6

0.8

1

[N
1]/ρ

K2=K3

K2=10-1K3

K2=10-3K3

K2=10-5K3

K3=100

FIG. 2. Plot of the fraction of particles in monomeric state [N1]/ρ as a function of the total density ρ for different
values of the ratio K2/K3. Note the abrupt onset of polymerisation when K2/K3 is small.

Recently, a simple model for patchy particles interacting with pair-wise additive interactions has been shown
to undergoes cooperative polymerisation [15], forming abruptly extremely long tuber, as shown in Fig. 3
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FIG. 3.

MICELLES

In this section I present a minimal model for micelle aggregation [16? ]. For the sake of simplicity I assume
that particles can only exist in monomieric state or in a cluster of M >> 1 particles (the micelle)

As we have demonstrated previously, in the case of an ideal gas of non-interacting clusters

NM = QM
NM

1

QM1

Then, indicating with N the original number of particles in the system

N = N1 +MNM = N1 +MQM
NM

1

QM1

or

N1

N
= 1−MQM

NM
1

NQM1

Now we can write, assuming that a micelle has a well defined energy EM in all of its configurations, the
partition function of the micelle as

QM =
V

λ3

(
Vb
λ3

)M−1

exp(−βEM )

to emphasize the entropic and energetic (or enthalpic) contributions and the partition function of the
monomer ad Q1 = V

λ3 . Then
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N1

N
= 1−M V

λ3

(
Vb
λ3

)M−1

exp(−βEM )
NM

1

N( Vλ3 )M

and after some algebra

N1

N
= 1−M

(
N1

N

)M (
NVb
V

)M−1

exp(−βEM ) (23)

which can be written symbolically x = 1−xMA, with A = M
(
NVb

V

)M−1
exp(−βEM ). Fixing the properties

of the micelle (M and the model parameters Vb and EM ) it is possible to solve Eq. 23 for all densities
and temperatures. The solution for N1/N depends on the value of A. For values of A smaller than one,
N1/N ≈ 1 and the system is a monomeric state. For A greater than N , ρ1 ≡ N1/V reaches a constant value,
as shown in Fig. . Note also that both the entropic and the energetic contributions scale with M . Hence,
the cross-over from values smaller than 1 to values larger than 1 is extremely fast. The concentration for
which A = 1 is commonly indicated critical micelle concentration (cmc). Fig. 5 in Ref. ?? shows the analog
of Fig. for the case of Janus colloidal particles aggregating in micelles and vesicles.

0 0.2 0.4 0.6 0.8 1
ρ

0

0.05

0.1

0.15

0.2

ρ 1

M=50
M=100

βEM=M     Vb=2

cmc

FIG. 4. Monomer density as a function of the total density for a system forming micelles composed each of M = 100
particles. The criticam micelle concentration (cmc) marks the cross-over from the monomeric state to the aggregated
miceller state. Beyond the cmc, increasing the density results in an increase of the number of micelles. No significant
changes of the monomer density takes place.



14HOW DO WE ”EXACTLY” CALCULATE Qn

The partition function Qn for a cluster with a given size n, can be evaluated numerically [17–19]. An efficient
numerical method is outlined in Refs. [19, 20], in which the relations between the various Qn is obtained
directly from a grand-canonical Monte Carlo (GCMC) simulation, i.e. a simulation at fixed T , V and
chemical potential µ. The simulation starts with a single cluster and rejects all moves (insertion, deletion,
translation or rotation) in which the system breaks into more than one cluster. By imposing the constraint
of simulating only a single cluster, in the grand-canonical ensemble, the probability P(n) of observing a
cluster of size n is

P(n) =
enβµQn∑
n e

nβµQn

so that

P(n)

P(1)
=
Qn
Q1

eβµ(n−1). (24)

Hence, the ratio Qn/Q1 can be directly obtained for all n from a GCMC simulation. Note that Qn/Q1

is independent of µ, and therefore one can set µ = 0 in the grand-canonical simulation without loss of
generality. With this choice,

Qn =
P(n)

P(1)
Q1 =

V

Λ3

P(n)

P(1)
. (25)

The procedure can be numerically optimised in several ways, as described in Refs. [19, 20]. Fig. 5 shows a
comparison between the cluster size distribution calculated with the described methodology and the cluster
size observed in standard Monte Carlo simulations for a Janus colloid model.

CONCLUSIONS

In this short lecture, I have presented some basic self-assembly introductory concepts. Building on these
concepts, I hope it will be possible to better grasp the contents of the following lectures, and the sophisti-
cated level of understanding and exploitation of self-assembly which is nowaday possible in colloidal science.
Specifically, I like to recall two important aspects: (i) how to predict the structure of the aggregate from the
knowlege of the interaction potential (direct) or how to design the interaction potential to spontaneously
assemble a desired structure (inverse); (ii) how to exploit external fields to modify the pathways leading to
self-assembly.
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[15] T. Vissers, F. Smallenburg, G. Munaò, Z. Preisler, and F. Sciortino, The Journal of chemical physics 140,

144902 (2014).
[16] J.-L. Barrat and J.-P. Hansen, Basic concepts for simple and complex liquids (Cambridge University Press, 2003).
[17] R. Fantoni, A. Giacometti, F. Sciortino, and G. Pastore, Soft Matter 7, 2419 (2011).
[18] R. Pool and P. G. Bolhuis, The Journal of Physical Chemistry B 109, 6650 (2005),

http://pubs.acs.org/doi/pdf/10.1021/jp045576f.
[19] D. J. Kraft, R. Ni, F. Smallenburg, M. Hermes, K. Yoon, D. A. Weitz, A. van Blaaderen, J. Groenewold,

M. Dijkstra, and W. K. Kegel, Proc Natl Acad Sci U S A 109, 10787 (2012).
[20] T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, and F. Sciortino, J. Chem. Phys. 138, 164505 (2013).

http://dx.doi.org/10.1039/C0SM00995D
http://dx.doi.org/10.1021/jp045576f
http://arxiv.org/abs/http://pubs.acs.org/doi/pdf/10.1021/jp045576f
http://www.ncbi.nlm.nih.gov/pubmed/22715288
http://dx.doi.org/ 10.1063/1.4801438

	Basic Concepts in Self Assembly
	Low T
	The need of directional attractive interactions
	Thermodynamic description of the clustering process
	Analogies with chemical reactions (useful to talk to chemists)
	The simplest self-assembly process. Equilibrium polymerization
	Equilibrium polimerization in chemical language
	Cooperative polymerization: Slaved equilibrium polymerization
	Micelles
	How do we "exactly" calculate Qn
	Conclusions
	References


