Short Course on Polymer Physics

of Self-Assembly

Audience Participation is Required

Self-Assembly of Diblock Copolymers

 in Selective Solvents

Non-selective solvent (good or theta for both blocks): solution of diblock coils

Reduce solvent quality for one block ($T, p, p H$, etc.)
Hydrophobic block collapses into a globule converting diblock coils into tadpoles.

Above critical micelle concentration CMC (temperature CMT) tadpoles self-assemble into micelles in order to lower interfacial energy.

Stabilization mechanism - steric repulsion between hydrophilic corona blocks

Interface - Corona Balance

Self-assembly is driven by the "desire" or core blocks to reduce interfacial energy (and thus area s per chain).
corona

This results in increasing overlap, steric repulsion, and elongation of corona blocks that limits the decrease of s.

Equilibrium properties of micelles are determined by the balance of corona and interfacial free energies.

$$
F_{\text {corona }} \sim F_{\text {interface }} \gg \boldsymbol{k T}
$$

Shapes of Micelles

Terminology of micellar hair-styles

Hairy (star-like) micelle: corona thickness
$\boldsymbol{H}>$ core radius \boldsymbol{R}

Crew-cut micelle: corona thickness $\boldsymbol{H}<$ core radius \boldsymbol{R}

Balancing Free Energies Within Micelle

$\boldsymbol{F}_{\text {Total }}=\boldsymbol{F}_{\text {corona }}+\boldsymbol{F}_{\text {interface }}+\boldsymbol{F}_{\text {core }}$

Free energy of the corona depends on the solvent quality determined by measuring second virial coefficient $\left(A_{2}\right)$ of
hydrophilic chain.

Surface free energy at the interface arises from the
$F_{\text {interface }}=4 \pi R_{\text {core }}{ }^{2} \gamma$
interaction of hydrophobic core blocks with water in corona.

Coronas Desire More Space

 Area per chain s in coronas of micelles of morphology \boldsymbol{j} varies with distance r from core center

$$
s(r)=s(R)(r / R)^{j-1}
$$

$$
\text { planar } \boldsymbol{j}=1 \boldsymbol{s}(\boldsymbol{r})=\text { const }
$$

$$
\text { cylindrical } \boldsymbol{j}=2
$$

spherical $\boldsymbol{j}=3$

core

Steric repulsion between corona chains is weakest in spherical and strongest in planar geometries.

Star-like spherical micelles are favorable for very long hydrophilic blocks.

Equilibrium - lowest total free energy $\boldsymbol{F}^{\prime}=\boldsymbol{F}_{\text {core }}+\boldsymbol{F}_{\text {corona }}^{\prime}+\boldsymbol{F}_{\text {interface }}^{\prime}$ Core Free Energy $F_{\text {core }}$
Hydrophobic interaction between core blocks B determines core volume fraction ϕ "and does not depend on micelle morphology \boldsymbol{j}.
Core volume fraction $\phi^{\prime}=j \frac{b^{3} N_{b}}{s R_{j}}$
s - interface area per chain $s R_{j} / j$ - core volume per chain Elastic stretching of core blocks $F_{\text {core }}$ depends on micelle morphology \boldsymbol{j}

$$
\begin{gathered}
\frac{F_{\text {core }}}{k T}=k_{j} \frac{R_{j}^{2}}{b^{2} N_{B}}=k_{j} j^{2} \frac{b^{4} N_{B}}{s^{2} \phi^{\prime 2} \quad k_{1}=\frac{\pi^{2}}{8} \quad k_{2}=\frac{\pi^{2}}{16} \quad k_{3}=\frac{3 \pi^{2}}{80}} \\
R_{j}=j \frac{b^{3} N_{b}}{s \phi^{\prime \prime}} \quad \begin{array}{l}
\text { Elastic free energy of core } F_{\text {core }} \text { is the smallest } \\
\text { term of total } F . \quad F_{\text {core }}<F_{\text {corona }} \sim F_{\text {interface }}
\end{array}
\end{gathered}
$$

Equilibrium - lowest total free energy $\boldsymbol{F}^{\prime}=\boldsymbol{F}_{\text {core }}+\boldsymbol{F}_{\text {corona }}^{\prime}+\boldsymbol{F}_{\text {interface }}^{\prime}$

Interfacial Free Energy $\boldsymbol{F}_{\text {interface }}^{\prime}$

Interfacial free energy per chain

$$
\frac{F_{\text {interface }}}{k T}=\gamma \frac{s}{b^{2}}=\gamma j \frac{N_{B} b}{\phi^{`} R_{j}}
$$

γ - interfacial (surface) energy per monomer b^{2}
S - interface area per chain $\quad s=j \frac{b^{3} N_{b}}{\phi^{"} R_{j}}$

Isolated Spherical Globule

Radius of the globule

- single collapsed block B $R_{B 0}=b\left(\frac{3 N_{B}}{4 \pi \phi^{\prime \prime}}\right)^{1 / 3}$

Surface free energy of a unimer

$$
\frac{F_{s 0}}{k T}=4 \pi \gamma\left(\frac{R_{B 0}}{b}\right)^{2}=(36 \pi)^{1 / 3} \gamma\left(\frac{N_{B}}{\phi^{\prime \prime}}\right)^{2 / 3}
$$

Spherical Micelle

$$
F_{3}^{\prime}=F_{\text {cove }}^{\prime}+F_{\text {interface }}+F_{\text {corona }}
$$

$$
\frac{\boldsymbol{F}_{3}}{k T}=\frac{3 \pi^{2} R_{3}^{2}}{80 N_{B} b^{2}}+\gamma \frac{3 N_{B} b}{\phi^{`} R_{3}}+C_{F} \frac{\phi^{\prime 1 / 2} R_{3}^{3 / 2}}{N_{B}^{1 / 2} b^{3 / 2}} \ln \left[1+C_{H} N_{A}\left(\frac{\phi^{`} b}{R_{3} N_{B}}\right)^{1 / 2}\right]
$$

Minimize total free energy $\partial F_{3} / \partial R_{3}$ to calculate core radius R_{3}
Corona thickness

$$
H_{3}=R_{3}\left\{\left[1+C_{H} N_{A}\left(\frac{\phi^{`} b}{R_{3} N_{B}}\right)^{1 / 2}\right]^{1 / 2}-1\right\}
$$

Total size of a spherical micelle $\boldsymbol{R}_{3}{ }^{\boldsymbol{t o t}}=\boldsymbol{R}_{\mathbf{3}}+\boldsymbol{H}_{3}$
Aggregation number - total number of chains per micelle

$$
Q=\frac{4 \pi R_{3}^{3} \phi^{\prime}}{3 N_{b} b^{3}}
$$

Zhulina, E.B.; Adam, M.; LaRue, I.; Sheiko, S.S. Rubinstein, M.
Macromolecules 2005, 38, 5330.

Strong Micellization: Spherical Micelles

Equilibrium properties of spherical micelles are determined by the balance of corona and interfacial free energies

$$
F_{\text {corona }} \sim F_{\text {interface }} \gg k T
$$

Aggregation number Q decreases with increasing DP N_{A} of solvophilic block (PI in n-heptane) and increases with DP N_{B} of core block (PS).

$$
Q \sim N_{B}{ }^{2} N_{A}^{-0.47}
$$

Solid lines - scaling theory Points - data from light scattering
Zhulina, E.B.; Adam, M.; LaRue, I.; Sheiko, S.S. Rubinstein, M.
Macromolecules 2005, 38, 5330.

Morphological Transitions of Strong Micelles

 Morphological transitions occur for crew-cut micelles.

Free energy per chain $\boldsymbol{F} / \boldsymbol{k T}$

Balance of core
corona-to-core size ratio $\mathrm{H}_{\mathrm{j}} / \mathrm{R}_{\mathrm{j}}$

Diagram of States for Strong Block-Copolymer Micelles

PS-PI in n-heptane ${ }^{2}$
\diamond Spherical micelle
\triangle Cylindrical micelle

\square Lamellar mesophase

Zhulina, E.B.; Adam, M.; LaRue, I.; Sheiko, S.S. Rubinstein, M. Macromolecules 2005, 38, 5330.

Reversible Morphological Transitions of Polystyrene-b-Polyisoprene Micelles in Heptane Zhulina, E.B.; Adam, M.; LaRue, I.; Sheiko, S.S. Rubinstein, M. Macromolecules 2005, 38, 5330. Isaac LaRue, Mireille Adam, Marinos Pitsikalis, Nikos Hadjichristidis, Michael Rubinstein, and Sergei S. Sheiko Macromolecules, 2006, 39, 309-314

Micelles Undergo Morphological Transformations

 in the Crew-Cut Regime ($\boldsymbol{H}_{\text {corona }}<\boldsymbol{R}_{\text {core }}$)

What are chain properties that Reduce surface tension γ make this regime wider? Reduce repulsion in corona

Elastin-Like Polypeptides (ELPs)

 [Valine-Proline-Glycine-X-Glycine] ${ }_{\mathrm{n}} \mathrm{n}=10-330$ pentapeptides Valine Proline Glycine

ELPs are perfectly monodispersed structurally disordered polypeptides. X is any guest amino acid except proline for example: Serine

ELPs are synthesized recombinantly by expression of a synthetic gene in E . coli and have complete sequence \& molecular weight control.
ELPs phase separate upon heating (LCST)

Phase Diagram of Elastin-Like Polypeptides

phase diagram of an ELP homopolymer was obtained by DLS and SLS
(Val-Pro-Gly-X-Gly) ${ }_{\mathrm{n}}$

Simon

Carroll

ELP Block Copolymer Self-Assembly

Each ELP block is
[Valine-Proline-Glycine-X-Glycine] ${ }_{n}$

Yornconw
Hydrophilic ELP Hydrophobic ELP
$\mathrm{X}=$ Serine
$\mathrm{X}=$ Valine

Both blocks share four out of five repeat amino acids.

Unimer Micelle

Aggregate

† Temperature
CMT
$\mathbf{T}_{\text {aggregation }}$

Critical Micelle Temperature (CMT)

Surface theoretical prediction of CMT

$\mu_{\text {unimer }}=\mu_{\text {micelle }}$
number of
pentapeptides per block
W. Hassouneh, E. B. Zhulina, A. Chilkoti, and M. Rubinstein
Macromolecules 48, 4183-4195, 2015

CMT decreases with length $\boldsymbol{n}_{\boldsymbol{B}}$ of hydrophobic block and is almost independent of the length of hydrophilic block.

Scaling Diagram for Weak Micelles

 that form at low surface tension (ELPs)Star-like micelles with

Complexation of Oppositely Charged Polyelectrolytes and Block Polyampholytes The Story of Love and Hate in Charged Systems
General Rule

Both for Electrostatics and for Life Stay close
to the ones you Love and stay away
from the ones you Hate.

Classes of Charged Systems

ionic solution (simple salt)

polyelectrolyte solution

solution of oppositely charged polyelectrolytes

random

block

Two Types of Attraction

"Weak" fluctuation-induced attraction

- less than $k T$ per charge
- high T, high ε,
- low valence, low charge density Flirting regime

"Strong" binding

- more than kT per charge
- low T, low ε,
- high valence, high charge density

Marriage and beyond

Coil-Globule Transition of a Symmetric Block Polyampholyte

Weak Association - "Flirting" Regime

 "Flirting" globule - dense packing of electrostatic attraction blobs. Electrostatic blob with size ξ_{e} is a section of the chain with Distance to the Nearest Opposite Charge electrostatic energy $k T$.
de Gennes et al 1976 $\xi_{e} \approx b\left(\frac{l_{b} f^{2}}{b}\right)^{-\frac{v}{2-v}}$

f - fraction of charged monomers

For $v=0.588$, the "flirting" exponent $-v /(2-v)=-0.42$.

$\Delta 4^{\text {th }}$ nearest opposite

- $3^{\text {rd }}$ nearest opposite
- $2^{\text {nd }}$ nearest opposite
- $1^{\text {st }}$ nearest opposite
- $3^{\text {rd }}$ nearest same sign
- $2^{\text {nd }}$ nearest same sign
- $1^{\text {st }}$ nearest same sign

Probability of Finding a Charged Monomer in a Multiplet

polyelectrolyte -
ionomer transition
$N=256, f=1 / 16$, good solvent

Diagram of Conformational States

Z. Wang and M. Rubinstein, Macromolecules 39, 5897-5912 (2006)

Asymmetric Block Polyampholytes

On the issue of equality

I. Asymmetry in Block Charge

$$
Q_{-}<Q_{+} \quad f_{-}=f_{+}
$$

II. Asymmetry in Charge Density

$$
f_{-}>f_{+} \quad Q_{-}=Q_{+}
$$

Asymmetry in Block Charge

For small charge difference $\Delta N=N_{+}-N_{\text {. }}$ both blocks are confined in a globule.

For large charge difference extra charge cannot be confined in a globule.

What will it do?
A. Hate: Extra section of the long block will form a tail of a tadpole.

B. Love: A smaller section of the shorter block will accompany longer section of the larger block in a double-tail.
C. Compromise: Globule will elongate
D. All of the above.
E. None of the above.

Asymmetry in Block Charge

B. Love: A smaller section of the shorter block accompanies longer section of the larger block in a double-tail.

$$
\begin{gathered}
\text { Appearance of a } \\
\text { Single-Stranded Tail } \\
\frac{L_{\text {eil }} \sim N_{\text {eil }}}{L_{\text {naid }} \sim N .}
\end{gathered}
$$

Charge of the head $Q_{\text {head }} \sim f\left(N_{+}-N_{-}-N_{\text {tail }}\right) \quad$ Shklovski \& Hu
Coulomb energy of the head $F_{\text {head }} / k T \sim l_{B} Q_{\text {head }}{ }^{2} / L_{\text {head }}$
Coulomb energy of the tail $F_{\text {tail }} / k T \sim l_{B}\left(f N_{\text {taii }}\right)^{2} / L_{\text {tail }}$
Minimization of the free energy $N_{\text {tail }}=N_{+}-3 N_{-} / 2$
No single-stranded tail (love holds the two strands together)

$$
\text { for } N_{+}<1.5 N_{-} \quad\left(\Delta N=N_{+}-N_{-}<N / 5\right)
$$

Single-stranded tail grows linearly with ΔN for larger charge asymmetry.

Number of Monomers in a

 Single-Stranded Tail

Disproportionation in Micelles

 of Asymmetric Block Polyampholytes

Instead of all blocks being in the same conformation with charge-compensated sections in the core and parts of all blocks with extra charge in corona block polyampholytes in micelles split into two populations.

Some chains are completely inside the core, while others put higher charged block completely into the corona.

Block Polyampholytes with an Asymmetric Charge Density

Consider block polyampholyte with the fraction of positive charges f_{+} much lower than the fraction of negative charges $\boldsymbol{f}_{\text {- }}$, but with equal number of charges per block $f_{+} N_{+}=f_{-} N_{-}$.

Love Soothes Tension of Short Block

$\frac{\left(f_{+} N_{+}\right)^{2}}{b}<1<l_{-} \frac{\left(f_{-} N_{-}\right)^{2}}{b N_{-}}$Shorter block with higher charge density $l_{B} \frac{\left(f_{+} N_{+}\right)}{b N_{+}^{\nu}}<1<l_{B} \frac{\left(f_{-} N_{-}\right)}{b N_{-}^{v}}$ becomes strongly elongated, while the other block is unperturbed.

End-to-end distance of polyelectrolytes

$$
R_{e} \approx N\left(l_{B} f^{2} / \sigma\right)^{(1-v) /(2-v)} \quad(1-v) /(2-v)=0.29
$$

Screening of self-hate by loving oppositely charged block

Block Polyampholytes with

an Asymmetric Charge Density

Fatal Attraction: Collapse of Weaker

 Charged Block on Stronger Charged BlockAdsorption starts if electrostatic attraction $\sim k T: l_{B} Q^{2} / R_{g 0^{+}} \approx 1$

"Atomic" Globule: Electrostatic attraction is stabilized by steric repulsion (osmotic pressure $\Pi \sim c^{9 / 4}$)
$k T l_{B} Q^{2} / R_{g^{+}} \approx \Pi R_{g^{+}}{ }^{3} \quad \frac{R_{g+}}{R_{g 0+}} \approx\left(\frac{R_{g 0+}}{l_{B} Q^{2}}\right)^{\frac{3 v-1}{4-3 v}}(3 v-1) /(4-3 v) \approx 0.35$

Block Polyampholytes
Asymmetric Charge Density

Ion Binding - Formation of Bottlebrush

Correlation length increases with distance from the center of the globule with decreasing electrostatic potential due to screening of short block charge by inner parts of long block.

Flirting globule - bottlebrush "wedding" transition at one charge per inner blob

Crew-cut bottlebrush - cylindrical micelle with loop sizes of strands between charges $b f_{+}^{-2 v /(1+v)} f_{-}^{(1-v) /(1+v)}$ smaller than the length of shorter block $\boldsymbol{b} N_{\text {. }}$

Hairy bottlebrush with loop sizes $b f_{+}^{(1-3 v) / 2} N_{+}{ }^{(1-\nu) / 2}$ longer than the size of short block $\boldsymbol{b} N_{\text {_ }}$

Ion Binding From Distance Between Charges

 Distance Between Same Sign ChargesShort block

Distance between
stretching $l_{B} \sim \sigma$

Flirting long block adsorption $l_{B} \sim 10 \sigma$

Marriage ion binding $l_{B} \sim 20 \sigma$

Bottlebrush of loops
$l_{B} \sim 60 \sigma$

$$
{ }^{10} N_{+}=512, f_{+}=1 / 32, N_{-}=32, f_{-}=1 / 2
$$

Conclusions

I. There are two classes of association for all charged systems including block and random polyampholytes, polyelectrolytes, and their transition to ionomers:

1. Weak fluctuation-induced association (less than kT per charge) leading to the "flirting" globule.

2. Strong ion-binding association (marriage) stabilized by neutral strands with a cascade of multiplet transitions

love holding the overcharged pair together up to $Q_{+}=1.5 Q$. and hate (expulsion) for $Q_{+}>1.5 Q_{\text {_ }}$
III. Charge density asymmetry leads through flirtation ("atomic" globule) and marriage (ion binding) to crew-cut or hairy loopy bottle brushes.

Self-Assembled Wrath of Flower Micelles

A. N. Semenov and M. Rubinstein Macromolecules, 35, 4821 (2002)

Associating Polymers

$\{\Omega_{\xi} \underbrace{}_{\xi} \quad n$ monomers between stickers $n \gg 1$

 Multi-block copolymer ...-A-A-B-B-...-B-B-A-A -...-A-A-B-B -... in selective solvent $\quad \ldots-(A)_{n}-(B)_{k}-(A)_{n}-(B)_{k}-(A)_{n}-(B)_{k}-(A)_{n}-(B)_{k}-\ldots$
Flower Micelle

Polymers aggregate into micelles with m stickers in the core and soluble n-spacers in the corona. $m \gg 1$ Association energy per sticker is $\varepsilon k T \quad \varepsilon \gg 1$

Correlation length increases linearly with distance r to the center

$$
\xi \approx r / \boldsymbol{m}^{1 / 2}
$$

Volume fraction ϕ decreases $\phi \approx\left(\frac{b \sqrt{m}}{r}\right)^{(3 v-1) / v}$
with distance r to the center

Size \& Structure of a Flower Micelle

 m loops n monomers each

Balance of elastic and osmotic parts of free energy
Flory theory

$$
F \approx k T\left(m \frac{R^{2}}{n b^{2}}+b^{3} \frac{(m n)^{2}}{R^{3}}\right) \quad R^{*} \approx b m^{1 / 5} n^{3 / 5}
$$

Size of an uncompressed micelle $\quad R^{*}=b n^{\nu} m^{(1-v) / 2}$
Average volume fraction in an isolated micelle $\phi^{*}=\frac{m n b^{3}}{\left(R^{*}\right)^{3}}=\left(\frac{\sqrt{m}}{n}\right)^{3 / 1}$
Free energy of an isolated flower micelle

$$
F \approx m k T \int_{R_{\text {core }}}^{R^{*}} \frac{d r}{\xi} \approx m k T \int_{R_{\text {core }}}^{R^{*}} m^{1 / 2} \frac{d r}{r} \approx k T m^{3 / 2} \ln \left(\frac{R^{*}}{R_{\text {core }}}\right)
$$

For micelle to be stable, the energy of sticker $\varepsilon k T$ has to be larger than

$$
\varepsilon k T>\partial F / \partial m \approx k T \sqrt{m}
$$

Flower micelles attracts each other by forming $m^{5 / 6}$ bridges each and phase separate in dilute solution into a gel with concentration ϕ^{*}.

Network of Interconnected Micelles at $\phi>\phi^{*}$

$\Delta F \approx m k T\left(\frac{R}{R_{n}}\right)^{2} \approx m k T\left(\frac{\tilde{\phi}}{\phi}\right)^{1 /[3(3 v-1)]}$
Elastic free energy of the outer part ~ interaction between micelles
~ deformation energy upon displacement of a micelle.
$R_{n} \approx b n^{1 / 2} \phi^{-(v-1 / 2) /(3 v-1)} \quad$ - size of free n-mer at concentration ϕ
ΔF decreases with increasing concentration (strands are less extended)
Number of bridges per micelle $N_{b} \approx\left\{\begin{array}{c}m(\phi / \tilde{\phi})^{1 /[9(3 v-1)]} \phi^{*}<\phi<\tilde{\phi} \\ m\end{array}\right.$ Above the concentration $\tilde{\phi} \approx\left(m^{2} / n\right)^{3 v-1} n$-spacers are no longer stretched

Summary of the Structure of the Network of Interconnected Micelles

Free energy at $\phi>\phi^{*}$ is dominated by the osmotic pressure of the outer region

$$
\Pi \approx k T \phi^{3 v /(3 v-1)}
$$

Size of high concentration inner corona zones

$$
r_{i n} \approx R^{*}\left(\phi^{*} / \phi\right)^{3 v /(3 v-1)}
$$

decreases faster than spacing between micelles
Most of the gel volume has uniform concentration.
For $\phi^{*}<\phi<\widetilde{\phi}$ spacers are in extended loops and bridges (mostly loops) Elongation of n-mers decreases with concentration $F_{e l} \sim \phi^{-0.43}$ Fraction of bridges increases as $\phi^{0.14}$, they connect neighboring micelles For $\phi>\tilde{\phi}$ flowers loose their petals; n-strands are undeformed (outside very near-core zone $r_{i n}$) and most of them are bridges connecting distant aggregates $\left(R_{n}>R\right)$.

Elastic Modulus of a Reversible Gel

Elastic free energy of the outer part
\sim interaction between micelles

$$
\Delta F \approx m k T\left(\frac{\widetilde{\Phi}}{\phi}\right)^{1 /[3(3 v-1)]}
$$

\sim deformation energy upon displacement of a micelle.
Shear elastic modulus $G \approx \frac{\Delta F}{R^{3}} \approx \frac{k T}{b^{3}} \frac{m^{2 / 3}}{n^{4 / 3}} \phi^{1-1 /[3(3 v-1)]} \sim \phi^{0.57}$ of unentangled gel and at intermediate time scales (longer than disentanglement time) of entangled gel

Chain Dynamics

Stickers hop between micellar cores
No renormalization of bond lifetime as aggregation number m can fluctuate around its average value if

$$
\sqrt{m}<\varepsilon<m^{4 / 3}
$$

Introduction to Polymer Dynamics

Particle Dynamics Diffusive Motion

mean-square displacement
$\left\langle[\vec{r}(t)-\vec{r}(0)]^{2}\right\rangle=6 D t \quad D$ - diffusion coefficient
\vec{v} - velocity of particle due to applied force

$$
\vec{f}=\vec{v} \zeta \quad \zeta-\text { friction coefficient }
$$

Stokes Law $\zeta=6 \pi \eta R$

Einstein relation
R - radius of the particle η - viscosity of the fluid

$$
D=\frac{k T}{\zeta} \quad \text { Stokes-Einstein relation } \quad D=\frac{k T}{6 \pi \eta R}
$$

Time required for a particle to move a distance of order of its size

$$
\tau \approx \frac{R^{2}}{D} \approx \frac{R^{2} \zeta}{k T}
$$

Rouse Model

N beads connected by springs with root-mean square size b. ζ - friction coefficient of a bead
No hydrodynamic coupling between beads
$\zeta_{R}=N \zeta-$ total friction coefficient of the Rouse chain
$D_{R}=\frac{k T}{N \zeta}$ - diffusion coefficient of the Rouse chain

$$
\tau_{R} \approx \frac{R^{2}}{D_{R}} \approx \frac{\zeta}{k T} N R^{2}-\text { Rouse time } \quad \begin{aligned}
& \text { for } t<\tau_{R}-\text { viscoelastic modes } \\
& \text { for } t>\tau_{R}-\text { diffusive motion }
\end{aligned}
$$

$R \approx b N^{\nu} \longrightarrow \tau_{R} \approx \frac{b^{2} \zeta}{k T} N^{1+2 v} \approx \tau_{0} N^{1+2 v}$
$\tau_{0} \approx \frac{b^{2} \zeta}{k T}-$ Kuhn monomer relaxation time $\quad \tau_{0} \approx \frac{b^{3} \eta_{s}}{k T}$
Stokes Law
$\zeta \approx \eta_{s} b$

For ideal linear chain $v=1 / 2$

$$
\tau_{R} \approx \tau_{0} N^{2}
$$

Rouse model draining limit

Zimm Model

Hydrodynamic interactions
couple the motion of monomers with the motion of solvent.

Chain drags with it the solvent in its pervaded volume.
Friction coefficient of chain of size R in a solvent with viscosity η_{s}

$$
\zeta_{Z} \approx \eta_{s} R
$$

Zimm diffusion coefficient $\quad D_{Z}=\frac{k T}{\zeta_{Z}} \approx \frac{k T}{\eta_{s} R}$
Zimm time $\quad \tau_{\mathrm{Z}}=\frac{R^{2}}{D_{Z}} \approx \frac{\eta_{s}}{k T} R^{3} \approx \frac{\eta_{s} b^{3}}{k T} N^{3 v} \approx \tau_{0} N^{3 v \quad \begin{array}{r}\text { in } \theta \text {-solvent } v=1 / 2 \\ \tau_{z} \sim N^{3 / 2}\end{array}}$
in good solvent $v=3 / 5$
$3 v<1+2 v$ for $v<1 \quad$ Zimm time is shorter than $\quad \tau_{z} \sim N^{9 / 5}$ Rouse time in dilute solutions.

Hydrodynamic interactions are important in dilute solutions.

Self-Similar Dynamics

Chains are fractal - they look the same on different length scales and move in the same way on different time scales.

Rouse Model Zimm Model

Longest relaxation time
Rouse time $\tau_{R} \approx \tau_{0} N^{2} \quad$ Zimm time $\tau_{Z} \approx \tau_{0} N^{3 v}$
p-th mode involves relaxation of N / p monomers.
Sections of the chain with $g=N / p$ monomers relax like a g-mer.

$$
\tau_{p} \approx \tau_{0}\left(\frac{N}{p}\right)^{2} \quad \tau_{p} \approx \tau_{0}\left(\frac{N}{p}\right)^{3 v}
$$

At time τ_{p} modes with index higher than p have relaxed, while modes with index lower than p have not relaxed.

At time τ_{p} there are p un-relaxed modes per chain each contributing energy of order kT to the stress relaxation modulus. $G\left(\tau_{p}\right) \approx \frac{k T}{b^{3}} \frac{\phi}{N} p$

Self-Similar Dynamics

Rouse Model
 Zimm Model

$$
G\left(\tau_{p}\right) \approx \frac{k T}{b^{3}} \frac{\phi}{N} p
$$

Index p of the mode that relaxes at $t=\tau_{p} \approx \tau_{0}\left(\frac{N}{p}\right)^{\alpha}$
$p \approx\left(\frac{t}{\tau_{0}}\right)^{-1 / 2} N$

$$
p \approx\left(\frac{t}{\tau_{0}}\right)^{-1 / 3 v} N
$$

Stress relaxation modulus at $t<\tau_{\text {relax }}$
$G(t) \approx \frac{k T}{b^{3}} \phi\left(\frac{t}{\tau_{0}}\right)^{-1 / 2} \quad G(t) \approx \frac{k T}{b^{3}} \phi\left(\frac{t}{\tau_{0}}\right)^{-1 / 3 v}$
Stress relaxation modulus approximation for all $t>\tau_{0}$
$G(t) \approx \frac{k T}{b^{3}} \phi\left(\frac{t}{\tau_{0}}\right)^{-1 / 2} \exp \left(-\frac{t}{\tau_{R}}\right)$

$$
G(t) \approx \frac{k T}{b^{3}} \phi\left(\frac{t}{\tau_{0}}\right)^{-1 / 3 v} \exp \left(-\frac{t}{\tau_{Z}}\right)
$$

Stress Relaxation Modulus Rouse Model

Scaling approximation $G(t) \approx \frac{k T}{b^{3}} \phi\left(\frac{t}{\tau_{0}}\right)^{-1 / 2} \exp \left(-\frac{t}{\tau_{R}}\right)$
Exact solution

Rouse Relaxation Modes

Stress relaxation modulus $G(t) \approx \frac{k T}{b^{3}} \phi\left(\frac{t}{\tau_{0}}\right)^{-1 / 2} \exp \left(-\frac{t}{\tau_{R}}\right)$
$G^{\prime}(\omega) \approx G^{\prime \prime}(\omega) \sim \omega^{1 / 2}$ in the frequency range $1 / \tau_{\mathrm{R}} \ll \omega \ll 1 / \tau_{0}$
Rouse Viscosity

$$
\begin{array}{lll}
\eta \approx G\left(\tau_{R}\right) \tau_{R} \approx \frac{k T}{b^{3}} \frac{\phi}{N} \frac{b^{2} \zeta}{k T} N^{2} \\
\eta \approx \frac{\zeta}{b} N \phi
\end{array}
$$

Zimm Relaxation Modes

Stress relaxation modulus $G(t) \approx \frac{k T}{b^{3}} \phi\left(\frac{t}{\tau_{0}}\right)^{-1 / 3 v} \exp \left(-\frac{t}{\tau_{Z}}\right)$
$G^{\prime}(\omega) \approx G^{\prime \prime}(\omega) \sim \omega^{1 / 3 v}$ in the frequency range $1 / \tau_{\mathrm{Z}} \ll \omega \ll 1 / \tau_{0}$ in θ-solvents $v=1 / 2$
$G^{\prime}(\omega) \approx G^{\prime \prime}(\omega) \sim \omega^{2 / 3}$

Zimm model is valid in dilute solution and is used for polymer characterization using intrinsic viscosity

Mean Square Displacement of Monomers Rouse Model

Section of N / p monomers moves by its size during its relaxation time τ_{p}
ok for melts
for ideal chain $v=1 / 2$

$$
\left\langle\left[\vec{r}_{j}\left(\tau_{p}\right)-\vec{r}_{j}(0)\right]^{2}\right\rangle \approx b^{2}\left(\frac{N}{p}\right)^{2 v}
$$

p ok for dilute solutions

$$
p / N=\left(t / \tau_{0}\right)^{-1 / 2} \quad p / N=\left(t / \tau_{0}\right)^{-1 / 3 v}
$$

Mean square monomer displacement for $\tau_{0}<t<\tau_{\text {relax }}$

$$
\begin{array}{r}
\left\langle\left[\vec{r}_{j}(t)-\vec{r}_{j}(0)\right]^{2}\right\rangle \approx b^{2}\left(t / \tau_{0}\right)^{1 / 2} \quad\left\langle\left[\vec{r}_{j}(t)-\vec{r}_{j}(0)\right]^{2}\right\rangle \approx b^{2}\left(t / \tau_{0}\right)^{2 / 3} \\
\text { Sub-diffusive motion } \\
\text { log - log plot }
\end{array}
$$

Sections of N / p monomers move coherently on time scale τ_{p}

Monomer motion in Zimm model is faster than in Rouse model

Quiz \# 5

Which model is better in dilute solutions?

A. Rouse model with chain friction $\zeta=\zeta_{0} N$
B. Zimm model with chain friction $\zeta \sim \eta R$
C. Reptation model
D. None of the above
E. All of the above

Summary of Single Chain Dynamics

Rouse model - local monomer friction ζ and no hydrodynamic interactions. It is applicable to unentangled polymer melts.

Rouse friction coefficient of an N-mer is $N \zeta$ and diffusion coefficient

$$
D_{R}=k T /(N \zeta)
$$

Zimm model - motion of monomers is hydrodynamically coupled. Polymer drags solvent in its pervaded volume. It is applicable to dilute solutions. Diffusion coefficient $\quad D_{Z}=k T /\left(\eta_{s} R\right)$
Polymer diffuses distance of order of its size during its relaxation time.

$$
\tau_{R} \approx \frac{\zeta}{k T} N R^{2} \quad \tau_{Z} \approx \frac{\eta_{S}}{k T} R^{3}
$$

Self-similar structure of stress relaxation function
$G(t) \approx \frac{k T}{b^{3}} \phi\left(\frac{t}{\tau_{0}}\right)^{-1 / 2} \exp \left(-\frac{t}{\tau_{R}}\right)$

$$
G(t) \approx \frac{k T}{b^{3}} \phi\left(\frac{t}{\tau_{0}}\right)^{-1 / 3 v} \exp \left(-\frac{t}{\tau_{\mathrm{Z}}}\right)
$$

Rheology - Dilute Solutions

Chains are far apart and move independently of each other, dragging solvent with them. non-draining (Zimm) dynamics relaxation time $\tau \sim R^{3} \quad$ modulus $G(\tau) \sim k T \phi / N$ $\phi<\phi^{*} \approx N b^{3} / R^{3} \quad$ viscosity $\eta \sim G(\tau) \tau \sim \phi R^{3} / N \quad \eta_{s p}=\left(\eta-\eta_{s}\right) / \eta_{s} \sim \phi / \phi^{*}$

Unentangled Semidilute Solutions

For $r<\xi$ dynamics are the same as in dilute solutions - non-draining (Zimm).

$$
\tau_{\xi} \sim \xi
$$

For $r>\xi$ overlapping chains screen
ξ hydrodynamics.
draining (Rouse) dynamics
hydrodynamic screening length ~ correlation length
relaxation time $\tau \sim \tau_{\xi}(\mathrm{N} / \mathrm{g})^{2}$

Unentangled Semidilute Solutions

Dilute-like Zimm dynamics on length scales up to correlation length ξ (\sim hydrodynamic screening length) $\xi \approx b g^{v} \quad \phi \approx \frac{g b^{3}}{\xi^{3}} \quad \xi \approx b \phi^{-v /(3 v-1)} \quad g \approx \phi^{-1 /(3 v}$
Relaxation time of a correlation blob $\tau_{\xi} \approx \frac{\eta_{s}}{k T} \xi^{3}$
Draining (Rouse-like) on scales > correlation length ξ
Relaxation time of the chain - Rouse time of N / g blobs

$$
\tau_{\text {chain }} \approx \tau_{\xi}\left(\frac{N}{g}\right)^{2} \approx \frac{\eta_{s}}{k T} \xi^{3}\left(\frac{N}{g}\right)^{2} \approx \frac{\eta_{s} b^{3}}{k T} N^{2} \phi^{(2-3 v) /(3 v-1)}
$$

In θ-solvents $\tau_{\text {chain }} \sim \phi$
In good solvents $\tau_{\text {chain }} \sim \phi^{0.31}$
Polymer size in semidilute solutions $R \approx \xi\left(\frac{N}{g}\right)^{1 / 2} \approx b N^{1 / 2} \phi^{-(2 v-1) /(6 v-2)}$
Diffusion coefficient decreases with ϕ in semidilute solutions

$$
D \approx \frac{R^{2}}{\tau_{\text {chain }}} \approx \frac{k T}{\eta_{s} b} \frac{\phi^{-(1-v) /(3 v-1)}}{N} \approx D_{Z}\left(\frac{\phi}{\phi^{*}}\right)^{-(1-v) /(3 v-1)} \quad \begin{gathered}
\text { In good solvents } \\
D \sim \phi^{-0.54}
\end{gathered}
$$

Concentration Dependence of Diffusion Coefficient in Semidilute Solutions

Filled symbols - polystyrene in benzene
Open symbols - poly(ethylene oxide) in water

Quiz \# 1

How does relaxation time $\tau_{\text {chain }}$ vary with polymer concentration ϕ in semidilute unentangled regime for different values of exponent v ?

A. Increases
B. Decreases $\tau_{\text {chain }} \sim \phi^{(2-3 v) /(3 v-1)}$
A. for $1 / 3<v<2 / 3$

C. All of the above
B. for $v>2 / 3$
D. None of the above

Correct answer - C

Concentration Dependence of Viscosity

Viscosity at ϕ^{*} is approximately twice the solvent viscosity η_{s}
Viscosity in semidilute solutions $\eta-\eta_{s} \approx \eta_{s}\left(\frac{\phi}{\phi^{*}}\right)^{X}$

$$
\phi^{*} \approx N b^{3} / R^{3} \approx N^{1-3 v} \longrightarrow \eta-\eta_{s} \approx \eta_{s} N^{(3 v-1) x} \phi^{x}
$$

In semidilute solutions: modes shorter than correlation blobs are Zimm-like, while long-time modes are Rouse like $\eta-\eta_{\mathrm{s}} \sim N$

$$
x=1 /(3 v-1)
$$

Specific viscosity

$$
\eta_{s p}=\frac{\eta-\eta_{s}}{\eta_{s}} \approx\left(\frac{\phi}{\phi^{*}}\right)^{1 /(3 v-1)}
$$

In θ-solvents $v=1 / 2$ and $\eta_{s p} \approx N \phi^{2} \approx\left(\phi / \phi^{*}\right)^{2}$
In good solvents $v=0.588$ and $\quad \eta_{s p} \approx N \phi^{1.3} \approx\left(\phi / \phi^{*}\right)^{1.3} \dot{\phi}_{g}^{*} \phi_{\theta}^{*} \quad \phi^{* *}$

Concentration Dependence of Specific Viscosity

$$
\eta_{s p}=\left(\eta-\eta_{s}\right) / \eta_{s}
$$

Polyethylene oxide in water at $25^{\circ} \mathrm{C}$

Summary of Semidilute Unentangled Dynamics

Hydrodynamic interactions in semidilute solutions are important up to the scales of hydrodynamic screening length (Zimm non-draining modes).

On larger length scales both excluded volume and hydrodynamic interactions are screened by surrounding chains (Rouse draining modes).

Dynamics of Entangled Polymers

Entanglements!

Multi-chain effects due to topological interactions (e.g. knots).

Entanglements dramatically effect polymer properties e.g. viscosity, elasticity

- viscoelasticity.

Visco - elastic
"Silicone bouncing putty appeals to people of superior intellect" (Peter Hodgson)

Tube Model of Polymer Entanglements

transverse distance

Edwards 1967

a - tube diameter

N_{e} - number of Kuhn monomers in an entanglement strand

$$
a \approx b \sqrt{N_{e}}
$$

Confining tube consists of $N / N_{e} \quad R \approx a \sqrt{\frac{N}{N_{e}}} \approx b \sqrt{N}$
entanglement strands of size a
The center of confining tube is called primitive path of length L

$$
\langle L\rangle \approx a \frac{N}{N_{e}} \approx \frac{b^{2} N}{a} \approx \frac{b N}{\sqrt{N_{e}}}
$$

Overlap criterion for entanglements: number of chains in volume a^{3} is $P_{e}=$ const

$$
P_{e} \approx \frac{a^{3}}{v_{0} N_{e}} \approx \frac{b^{3}}{v_{0}} \sqrt{N_{e}} \cong 20
$$

Reptation in Polymer Melts

de Gennes 1971

Motion of chain along the contour of the tube is unhindered by topological constraints.
Curvilinear diffusion coefficient along the primitive path is Rouse diffusion $D_{c}=k T /(N \zeta)$
Time it takes chain to diffuse out of its original tube is reptation time

$$
\tau_{\text {rep }} \approx \frac{\langle L\rangle^{2}}{D_{c}} \approx \tau_{e}\left(\frac{N}{N_{e}}\right)^{3}
$$

Rouse relaxation time of an entanglement strand $\tau_{e} \approx \frac{b^{2} \zeta}{k T} N_{e}^{2}$
Experimentally $\tau_{\text {rep }} \sim M^{3.4}$

Diffusion Coefficient in Entangled Melts

Reptation time

$$
\tau_{\text {rep }} \approx \frac{b^{2} \zeta}{k T} \frac{N^{3}}{N_{e}} \approx \tau_{e}\left(\frac{N}{N_{e}}\right)^{3}
$$

Diffusion coefficient $D \approx \frac{R^{2}}{\tau_{\text {rep }}} \approx \frac{k T}{\zeta} \frac{N_{e}}{N^{2}}$
Experimentally $D \sim M^{-2.3}$

Stress Relaxation of Entangled Melts

On length scales between Kuhn b and tube diameter a sections of chain do not "feel" entanglements and relax by Rouse modes.

$$
\begin{aligned}
& G(t) \approx G_{0}\left(t / \tau_{0}\right)^{-1 / 2} \\
& \quad \text { for } \tau_{0}<t<\tau_{e}
\end{aligned}
$$

Relaxation time of a Kuhn segment $\tau_{0} \approx b^{2} \zeta / k T$ Relaxation time of an entanglement strand $\tau_{e} \approx \tau_{0} N_{e}^{2}$ Stress relaxation modulus at τ_{e} is $k T$ per entanglement strand

Oscillatory Shear Data for Polybutadiene Melt

Viscosity of Entangled Melts

$$
\eta \approx G_{e} \tau_{r e p} \approx G_{e} \tau_{e}\left(\frac{N}{N_{e}}\right)^{3} \approx \frac{b^{2} \zeta}{v_{0}} \frac{N^{3}}{N_{e}^{2}}
$$

Viscosity of polymer melts

Experimentally

$$
\eta \approx G_{e} \tau_{r e p} \sim M^{3.4}
$$

open circles - polyisobutylene open squares - polybutadiene open triangles - hydrogenated polybutadiene
 filled circles - repton model

Semidilute Entangled Solutions

Tube Diameter

In θ-solvents the distance between 2-body contacts $\sim \phi^{-2 / 3}$, while correlation length is proportional the distance between 3-body contacts.

$$
a(\phi) \approx a(1) \phi^{-2 / 3}
$$

in θ-solvents

Plateau Modulus in Entangled Solutions

Tube diameter is a random walk of correlation volumes $a \approx \xi \sqrt{\frac{N_{e}}{g}}$ Number of monomers in
an entanglement strand $N_{e}(\phi) \approx g\left(\frac{a}{\xi}\right)^{2} \approx N_{e}(1)\left\{\begin{array}{l}\phi^{-1.3} \text { for good solvent } \\ \phi^{-4 / 3} \text { for } \theta \text {-solvent }\end{array}\right.$

Plateau modulus is kT per entanglement strand

$$
G_{e}(\phi) \approx \frac{k T \phi}{b^{3} N_{e}(\phi)} \approx
$$

$\approx G_{e}(1)\left\{{ }^{\phi^{2.3}}\right.$ for good solvent $\phi^{7 / 3}$ for θ-solvent

Relaxation Time of Entangled Solutions

Diffusion Coefficient in Semidilute Solutions

Unentangled semidilute 10° good solvent
$D \approx D_{Z}\left(\frac{\phi}{\phi^{*}}\right)^{-0.54}$

Entangled semidilute
$D \approx \frac{R^{2}}{\tau_{\text {rep }}} \approx \frac{b^{2}}{\tau_{0}} \frac{N_{e}(1)}{N^{2}} \phi^{-1.85} 10^{-3} \frac{r_{1}}{1} \quad 10$

Filled symbols - polystyrene in benzene
Open symbols - poly(ethylene oxide) in water

Viscosity of Entangled Solutions

$$
\eta-\eta_{s} \approx G_{e} \tau_{\text {rep }} \approx \eta_{s} \frac{N^{3}}{\left[N_{e}(1)\right]^{2}}\left\{\begin{array}{l}
\phi^{3.9} \text { for good solvent } \\
\phi^{4.7} \text { for } \theta-\text { solvent }
\end{array}\right.
$$

$$
\eta_{s p}=\left(\eta-\eta_{s}\right) / \eta_{s} \approx \begin{cases}\left(\phi / \phi^{*}\right)^{3.9} /\left[N_{e}(1)\right]^{2} & \text { for good solvent } \\ \left(\phi / \phi^{*}\right)^{14 / 3} N^{2 / 3} /\left[N_{e}(1)\right]^{2} & \text { for } \theta \text {-solvent }\end{cases}
$$

Dynamics of Networks of Flower Micelles

A. N. Semenov and M. Rubinstein Macromolecules, 35, 4821 (2002)

Chain Dynamics

 Sticker lifetime
 $\tau_{b} \approx \tau_{0} \exp \left(\varepsilon+\varepsilon_{a}\right) \approx \tau_{0} \exp \varepsilon_{t o t}$
 $k T \varepsilon_{a}$ - energy barrier
 Sticky Rouse time of a chain with f stickers $\tau_{R} \approx \tau_{b} f^{2}$

I. Weakly entangled regime (unentangled n-spacers) $n<N_{e}(\phi)<N$ entanglements do not affect spacer hops

Sticky reptation time $\tau_{\text {rept }} \approx \tau_{R} N / N_{e}(\phi)$

II. Strongly Entangled Regime

Transport by unentangled n-loops (n-hernias)

Reptation by n-hernias $\tau_{\text {rept }} \approx \tau_{b} f^{3} \exp \left(F_{e} / k T\right) \approx \tau_{b} f^{3} \exp \left\lfloor\left(\phi / \phi_{e}\right)^{1 /(3 v-1)}\right\rfloor$

Strongly Entangled Regime Collective Tube Leakage

At concentrations higher than

$$
\phi_{k i n k} \approx \tilde{\phi}\left(N_{e 0} / m^{2}\right)^{3(3 v-1) / 4}
$$

the free energy of a collective kink

 is lower than that of an unentangled n-loop

Entanglement concentration of n-loop $\phi_{e} \approx\left(N_{e d} / n\right)^{30-1}$

Dynamics of Micelles

Micelle hopping involves deformation free energy ΔF
To hop micelle has to remove its bridges with old neighbors and to create new bridges.
All the entanglements with old neighbors must be relaxed.
Kinetic pathway 1 - all involved chains are relaxed at all stages of the micellar core displacement.
Kinetic pathway 2
Debridging stage - all bridges are transformed into loops. $F_{b} \approx k T N_{b}$ Hopping stage - micellar core hops into a new cell without dissociation of stickers paying additional deformation cost.
Deformation costs consists of phantom ΔF and entanglement ΔF_{e} part.
Entanglement cost per micelle ($k T$ per entanglement)

$$
\Delta F_{e} \approx m F_{e} \approx k \operatorname{Tm}\left(\phi / \phi_{e}\right)^{1 /(3 v-1)}
$$

Activation Energy of the Kinetic Pathway 2

$$
F_{a} \approx F_{b}+\Delta F+\Delta F_{e} \approx k T m\left[\left(\frac{\phi}{\tilde{\phi}}\right)^{1[[9(3 v-1)]}+\left(\frac{\tilde{\phi}}{\phi}\right)^{1[3(3 v-1)]}+\left(\frac{\phi}{\phi_{e}}\right)^{1 /(3 v-1)}\right]
$$

Both kinetic pathways contribute to hopping frequency

$$
1 / \tau_{h}=1 / \tau_{h 1}+1 / \tau_{h 2}
$$

Non-Monotonic Relaxation Time

Case A: $\varepsilon_{\text {tot }}>\max \left(\mathrm{m}^{3 / 2}, \mathrm{~m}^{3} / \mathrm{N}_{\mathrm{e} 0}\right)$

Non-Monotonic Relaxation Time

Case $\mathrm{B}^{`}: \mathrm{m}^{3} / \mathbf{N}_{\mathrm{e} 0}<\varepsilon_{\mathrm{tot}}<\mathrm{m}^{3 / 2}$

Non-Monotonic Relaxation Time
Case D: $\quad \mathrm{m}\left(\mathrm{N}_{\mathrm{e} 0} / \mathrm{m}^{2}\right)^{1 / 8}<\varepsilon_{\mathrm{tot}}<\mathrm{m}^{3 / 2} / \mathrm{N}_{\mathrm{e} 0}{ }^{1 / 4}$

Summary

1. Conformational relaxation time of chains in strongly entangled regime increases exponentially with concentration.

2 Stress relaxation time of the reversible network is much longer than conformational relaxation time of individual chains.
3. Stress relaxation is determined by positional rearrangement of micelles which is very slow because of high barriers.
4. Non-monotonic dependence of relaxation time and viscosity on concentration with anomalous exponential decrease due to decrease in deformation energy controlling the activation barrier for micellar hops.

Macromolecules, 35, 4821 (2002)

