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This article presents an overview of the differential geometry of curves and surfaces using examples
from soft matter as illustrations. The presentation requires a background only in vector calculus and
is otherwise self-contained.
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I. INTRODUCTION

Though geometry is a common part of our early
schooling, a rigorous and thorough education in physics
usually tries to expunge it from our thought. Because of
their predictive powers, there is good reason to empha-
size numbers and formulas. Analytic geometry is the
usual emphasis, while classical geometry is relegated to
popular expositions. Differential geometry is a bridge
between shapes and analytic expressions and is often the
appropriate language for modern physics. Nonetheless,
when necessary, geometry is often slipped in as a bitter
or, at least, tasteless pill—just enough is presented to get
on with the analysis. In these lectures I have made an
attempt to introduce the basics of differential geometry
in the style of a mathematics text: the ideas are grouped
by mathematical subject as opposed to physical subject.
Nonetheless, I follow each newly developed topic with
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an example from soft matter, not only to illustrate the
usefulness of the mathematical structure but also to aid
the reader with a concrete example.

This is by no means a textbook and many details of
the physics are left for the diligent reader to find in the
references. For technical details of many of the topics
discussed here, the reader is referred to Elements of Dif-
ferential Geometry by Millman and Parker (Millman and
Parker, 1977), though any standard reference on classi-
cal differential geometry should suffice. A word on no-
tation: I have tried throughout to explicitly display the
functional dependence of all the fields and functions in
formulas. However, sometimes this would make the no-
tation awkward and the dependencies are dropped. In
each case the context should make clear any lack of pre-
cision.

Finally, I have tried to reduce as much as possible the
use of the powerful formalism of differential geometry.
While this formalism is useful for performing complex
calculations unambiguously, great expertise is often re-
quired to extract the geometrical and physical meaning
of these calculations. An excellent complement to these
notes are the lecture notes by François David (David,
1989) which present the mathematical elegance and logi-
cal compactness of this subject.

II. LOCAL THEORY OF CURVES

A. Conformations of polymers: motivating a geometrical
description of curves

Random walks abound in physics. They are the basis
for understanding diffusion, heat flow, and polymers.
However, polymers are the most interesting of the three:
polymers, unlike diffusing particles, leave a ‘‘tail’’ behind
them which they must avoid. They are described by self-
avoiding random walks. As an introduction to the power
of geometrical modeling, in this section we will consider
the behavior of stiff polymers at the shortest length scale
amenable to a continuum analysis. At these scales, poly-
mers are not random walks at all, but should be thought
of as stiff rods. We take this as our starting point. When
we describe a polymer as stiff, we are ascribing to it an
energy cost for being bent. To model this, we consider a
curve, R(s), parametrized by its arc length s and con-
struct the tangent vector to our curve T(s)5dR(s)/ds
at a point s on the curve. In the next section we will
show that the tangent vector is of unit length. If the
©2002 The American Physical Society
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tangent vector is constant along the curve then it is a
straight line and does not bend. Thus the energy should
depend on derivatives of the unit tangent vector T(s).
Indeed we call the magnitude dT(s)/ds the curvature of
the curve. In the next section we will discuss the geom-
etry of curves in greater detail. In the meantime, we
write the energy as

Ecurv5
1
2

AE
0

LFdT~s !

ds G2

ds , (1)

where s is a parameter that measures the arc length of
the curve, and A is a measure of the stiffness. To study
the statistical mechanics of the curve we write the parti-
tion function for T:

Z~TL!5E
T(0)5 ẑ

T(L)5TL
@dT#e2Ecurv[T]/kBT. (2)

This is the partition function for the curve which starts
with its tangent vector along the z direction and ends
with its tangent vector equal to TL . Note that if we can
calculate ^T(s)T(s8)&, then we can integrate with re-
spect to s and s8 to obtain

^@R~L !2R~0 !#2&5E
0

L
dsE

0

L
ds8K dR~s !

ds
•

dR~s8!

ds L .

(3)

Calculating the correlation function of the tangent vec-
tors proves to be straightforward. Though there are
many ways to proceed (Doi and Edwards, 1986), we will
choose here an analogy with quantum mechanics. In Eq.
(2) let s5it . Then the partition function becomes

Z~TL ,L !5E
T(0)5 ẑ

T(L)5TL
@dT#expH i

kBT E
0

2iL
dt

A

2 S dT
dt D 2J ;

(4)

we recognize this as the path-integral solution to Schrö-
dinger’s equation for a single particle where kBT re-
places \ , A replaces the particle’s mass, and T is the
position of the particle. Since T(t) lives on the unit
sphere, this is just quantum mechanics on a sphere. The
Schrödinger equation is

2
kBT

i

]Z

]L
52

~kBT !2

2A
L̂2Z , (5)

where L̂ is the angular momentum operator. Changing
back to our original coordinate s and defining Lp
[A/kBT we have

]Z~T,s !

]s
5

1
2Lp

L̂2Z~T,s !. (6)

We will soon discover that Lp has an important interpre-
tation.

Since the polymer is the same all along its length, we
have ^T(s)•T(s8)&5^T(s2s8)•T(0)&. Using polar co-
ordinates and enforcing the limits of integration in Eq.
(4) so that T(0)5 ẑ , we discover that we are interested
in ^cos u(S)& at S5s2s8:
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^cos u~S !&5

E
21

1
d~cos u!cos u Z~cos u ,S !

E
21

1
d~cos u!Z~cos u ,S !

, (7)

where we have been sure to normalize Z to get a prob-
ability. The expectation value we seek satisfies a differ-
ential equation since Z(cos u,S) satisfies Eq. (6). More-
over, since L̂2 is a Hermitian operator, we have

d^cos u~S !&
dS

5
1

2Lp
^L̂2 cos u~S !&52

1
Lp

^cos u~S !&,

(8)

where we have used the fact that L̂2 cos u522 cos u and
L̂2(1)50. It follows that

^cos@u~s !2u~s8!#&5e2us2s8u/Lp. (9)

Integrating this expression as in Eq. (3), we have

^@R~L !2R~0 !#2&52Lp~L2Lp1Lpe2L/Lp!. (10)

From Eqs. (9) and (10) we glean the meaning of Lp .
The first equation shows that the tangent vectors along
the curve are uncorrelated after a distance Lp . For this
reason Lp is called the persistence length (de Gennes,
1970). The second equation shows us that for L much
longer than Lp , a stiff rod behaves as a random walk:
i.e., the average square distance that is traveled is pro-
portional to the number of steps or length of the walk,
R2}LLp . For L much shorter than Lp , we may expand
Eq. (10) to see that R2}L2.

The physics of stiff rods can be used to study other
phenomena. For instance, vortices in fluids, superfluids,
and superconductors have a bending stiffness arising
from self-interactions. In the past decade the physics of
stiff rods has been adapted to study the mechanical
properties of DNA (Marko and Siggia, 1994, 1955), and
has been augmented to include twisting degrees of free-
dom (Kamien et al., 1997; Marko, 1997), the topological
constraints imposed by self-avoidance (Vologodskii
et al., 1992) and by closed loops (Moroz and Kamien,
1997; Moroz and Nelson, 1997, 1998), and the effects of
sequence disorder (Bensimon et al., 1998; Nelson, 1998).

B. Frenet-Serret apparatus: DNA and other chiral
polymers

In the previous section we have seen that a simple
geometrical description of polymers leads to a precise
description of their conformational behavior in a variety
of regimes. It is now time to discuss more carefully the
geometry that went into making the expression for en-
ergy in Eq. (1). A curve in three dimensions is a vector-
valued function R(s)5@x(s),y(s),z(s)# that depends
on s , a parameter that runs along the curve. Though we
may choose to label points along the curve as we wish, it
is usually most convenient to let s be the arc length
along the curve. We will see how this simplifies our
equations shortly. If the curve is L long, then s runs
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from 0 to L . The first thing to do is to construct the unit
tangent vector to the curve: as we have already asserted,
the magnitude of the rate of change of the unit tangent
vector is the curvature k of the curve. We have

T~s !5
R8~s !

iR8~s !i , (11)

where X8(s) denotes the derivative of X(s) with respect
to s , and iXi is the length of the vector X. We have
divided by the length of R8(s) to make T(s) a unit vec-
tor. However, if s measures the arc length along the
curve then iR8(s)i51! To see this, recall that the length
of a curve R(t) from t50 to t5t f can be found by add-
ing (integrating) the length of pieces of the curve to-
gether, each AdR(t)•dR(t) long:

L~ t f!5E
0

tfAdR~ t !•dR~ t !

5E
0

tf
dtAdR~ t !

dt
•

dR~ t !

dt
. (12)

If we choose t5s to be the arc length then we have

L5E
0

L
dsiR8~s !i , (13)

where the upper limit is the same as the length of the
curve. Differentiating both sides of Eq. (13), we see that
iR8(s)i51.

Having constructed the unit tangent vector, we may
now take its derivatives to obtain the curvature. Since
the derivative of a vector is another vector, we write

T8~s !5k~s !N~s !, (14)

where k(s) is the curvature at s and N(s) is a new vec-
tor, the unit normal vector, which is also unit length, so
that iT8(s)i5uk(s)u. It is convention to choose k(s) to
be always positive—the sign can alway be absorbed in
the direction of N(s). Note that T(s)•N(s)50 since the
derivative of any unit vector is perpendicular to itself; if
iX(s)i51 then

d

ds
@X~s !•X~s !#5

d

ds
@1# ,

2X~s !•X8~s !50. (15)

Of course, as we move along s , the normal vector
changes direction as well. Changes in the direction of
the normal vector can come from two contributions: the
normal can change by rotating towards or away from the
tangent vector (of course the pair rotate together to stay
perpendicular). It can also change by rotating around
the tangent vector. The former case corresponds to the
curve staying in the same, flat plane, while the second
corresponds to rotations of the plane in which the curve
lies at s . This plane is known as the osculating plane,
from the Greek word for kissing. Moreover, since N8(s)
is perpendicular to N(s), we must introduce a third unit
vector to account for changes in the osculating plane.
We choose B(s)5T(s)3N(s) where 3 denotes the
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
cross product, as shown in Fig. 1. This vector, the binor-
mal vector, is a unit vector perpendicular to both T(s)
and N(s). We then have

N8~s !5a~s !T~s !1t~s !B~s !, (16)

where a(s) is some function of s and t(s) is called the
torsion of the curve. It is a measure of the rate of change
of the osculating plane. Why do we not give a(s) a
name? Because we note that by differentiating the rela-
tion T(s)•N(s)50 we get

05T8~s !•N~s !1T~s !•N8~s !5k~s !1a~s !, (17)

so a(s)52k(s) and Eq. (16) becomes

N8~s !52k~s !T~s !1t~s !B~s !. (18)

Finally, we may calculate B8(s) to complete our
analysis of the curve. We have

B8~s !5T8~s !3N~s !1T~s !3N8~s !

5k~s !N~s !3N~s !2k~s !T~s !3T~s !

1t~s !T~s !3B~s !,

52t~s !N~s ! (19)

where the last line follows from the rule a3(b3c)
5b(a•c)2c(a•b). Putting Eqs. (14), (18), and (19) to-
gether we have the Frenet-Serret equations for a curve
in three-dimensions:

d

ds F T~s !

N~s !

B~s !
G5F 0 k~s ! 0

2k~s ! 0 t~s !

0 2t~s ! 0
G F T~s !

N~s !

B~s !
G . (20)

This shows that k(s) is the rate of rotation of T(s)
about B(s) and similarly, t(s) is the rate of rotation of
N(s) about T(s). Written as one matrix equation, the
Frenet-Serret formula tells us something very important:
given a curvature k(s) and a torsion t(s), we can recon-
struct our entire curve up to a translation (since we can
change the origin) and a rotation „since we can rotate
the initial orthonormal triad $T(0),N(0),B(0)%…. Once
we have set the location and orientation of that triad,
however, the entire curve is determined by only two pa-
rameters, not three as one might have thought.

There is a difficulty with the Frenet-Serret frame:
when the curvature vanishes, N(s) is not well defined

FIG. 1. A curve in space. At R there is a tangent vector T, a
normal vector N, and the binormal vector B.
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and therefore B(s) and, more importantly, the torsion
are not defined either. Thus curves that have straight
segments are problematic from the point of view of the
Frenet-Serret frame. Moreover, if we consider a helix

R~s !5F r cosS qs

A~qr !211
D ,

r sinS qs

A~qr !211
D ,

s

A~qr !211
G (21)

then the curvature and torsion are constant:

k~s !5
q2r

11~qr !2 ,

t~s !5
q

11~qr !2 . (22)

As r→0 we approach a straight line. However, though
the curvature vanishes in this limit, the torsion does not!
This is a problematic feature of the Frenet-Serret
frame—since the torsion is the magnitude of the deriva-
tive of N(s), it is only a meaningful quantity when
N(s)5T8(s)/k(s) is unambiguously defined, and this
requires that k(s)Þ0. In Sec. III.B, we will offer a dif-
ferent frame that does not suffer from this problem.

Knowing that there are only two parameters needed
to describe a space curve, we can now augment Eq. (1)
to include other effects. One interesting effect (Harris
et al., 1999) is the behavior of chiral polymers. While the
curvature does not distinguish between left- and right-
handed helices, we can see from Eq. (22) that the tor-
sion is sensitive to the sign of q . Thus we might add
terms to Eq. (1) to favor a particular chirality for the
stiff polymer. We might be tempted to write

E5Ecurv1E*

5E
0

L
dsH A

2
k2~s !1

B

2
@t~s !2t0#2J . (23)

Though this energy appears acceptable, and favors an
average torsion t5t0 , it only accentuates the ambiguity
of t when k50. Moreover, since Eq. (1) is a functional
of R(s), we should construct the new energy only in
terms of R(s) and its derivatives. In addition to
@R9(s)#25@T8(s)#2, we can also construct the term (Ka-
mien et al., 1997; Marko, 1997)

E* 52
a

2 E
0

L
dsT~s !•@T8~s !3T9~s !# . (24)

From the Frenet-Serret formula, we then have

E5E
0

L
dsH A

2
k2~s !1

C

4
k4~s !2

a

2
k2~s !t~s !

1
b

2
k2~s !t2~s !J , (25)

where A , C , a, and b are all positive. Note that in the
special case of constant curvature and torsion, @T(s)
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3T9(s)#25k2t2. We have added this term and the extra
quartic term to E for reasons that will become clear in
the following. This form does not suffer from the torsion
ambiguity: when k(s)50 the torsion drops out of Eq.
(25). One can minimize this energy for the helix (21),
which has constant curvature and torsion, to find the
ground-state conformation of a chiral polymer. For ap-
propriate parameter values, the tendency for torsion can
overcome the tendency to be straight and both k and t
will be nonvanishing.

III. GLOBAL THEORY OF CURVES

A. Fenchel’s theorem: energetic bounds on closed curves
and knots

When we consider the energetics of closed curves, it is
clear that the curvature cannot vanish everywhere (or
the curve will not close on itself). We can actually estab-
lish a lower bound on the curvature energy by appealing
to a theorem on the total curvature of the curve. Not
only will this be useful when considering closed polymer
loops, the technology of the proof will help us later on
when we consider the geometry of surfaces.

Fenchel’s theorem states that the total curvature of a
closed curve is at least 2p. This is not unreasonable: a
circle of radius R has curvature 1/R and so the total
curvature is 2pR/R52p . In general, other closed
curves only have more curvature (in fact, only planar
convex curves have an integrated curvature of exactly
2p). The statement of the theorem is

R
0

L

k~s !ds>2p (26)

for any closed curve, where, as usual, s is the arc length
of the curve. Before we prove this fact, note that via the
Cauchy-Schwarz inequality we have

R
0

L

~1 !k~s !ds<A R
0

L

k2~s !dsA R
0

L

12ds . (27)

Squaring both sides and using Eq. (26) we find that the
curvature energy (1) satisfies

FIG. 2. The tangent spherical map. The tangent vector of the
curve T traces out a curve G on the unit sphere. The length of
G is the integrated curvature along the original curve.
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Ecurv5
1
2

kBTLp R
0

L

k2~s !ds>2p2kBT
Lp

L
. (28)

To prove Fenchel’s theorem we introduce the tangent
spherical image (Millman and Parker, 1977) of the curve:
we take the tail of the unit tangent vector T(s) at R(s)
and map it to the center of the unit sphere. As shown in
Fig. 2, the tip of the tangent vector then traces out a
curve G on the surface of the unit sphere as s goes from
0 to L . The differential of length of the curve on the
tangent sphere is iT(s)8ids , in analogy with Eq. (13).
But the magnitude of T8 is just the curvature, so we find
that the length of G on the unit sphere is

l5E
0

L
k~s !ds , (29)

the total curvature of our original curve R(s). Now we
note that by definition of T(s),

R~s !2R~0 !5E
0

s
T~s8!ds8, (30)

so if the curve is closed, R(L)5R(0), and the left-hand
side of Eq. (30) is 0. This is really three equations, one
for each component of T. It tells us that the curve G on
the tangent sphere can never be in only one hemisphere.
In order for the curve to close, it must turn around. But
if the tangent spherical map were in one hemisphere, we
could take it to be the upper hemisphere where Tz(s)
.0. Yet if Tz(s) is always positive then its integral can-
not vanish! Therefore, given any hemisphere on the tan-
gent sphere, the curve must be in it and its complement.
But this means that G must be at least the length of the
equator, 2p. We have thus proven Eq. (26). The value of
this result is not just the bound on the energetics of a
closed polymer. It has introduced us to the tangent map.
As we will see in the following it is very useful to take
vectors off of curves and surfaces and translate them to
the center of the unit sphere. This was our first taste of
this procedure.

In closing this section we mention the Fary-Milnor
theorem which pertains to the integrated curvature of a
non-self-intersecting closed knot. Not surprisingly, this
theorem states that a knot has to go around at least
twice:

R
0

L

k~s !ds>4p . (31)

Using the same reasoning that led to Eq. (28), we have

kBTLp R
0

L

k2~s !ds>~4p!2kBT
Lp

L
(32)

for a knotted closed curve.

B. Mermin-Ho relation: basis vectors to the rescue

Up until this point, we have been able to study the
geometry of lines without the introduction of a frame:
that is, all our results rely on the original tangent vector
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
T(s) and its derivatives—at no point were we required
to choose a basis or coordinate system to calculate any
quantities. Unfortunately, we cannot continue our dis-
cussion of lines and we certainly cannot discuss surfaces
without introducing some more paraphernalia. We need
to introduce a set of spatially varying basis vectors in
order to define quantities in addition to the tangent vec-
tor, the curvature, and the torsion. We need to make
sure, however, that all of our physical quantities do not
depend on our arbitrary choice. In this section we will
derive and explain the Mermin-Ho relation (Mermin
and Ho, 1976), originally derived in the context of super-
fluid 3He-A , a phase characterized by an order param-
eter with two directions, a ‘‘long’’ direction and a
‘‘short’’ direction perpendicular to it. Though this sec-
tion is the most technical, it is also straightforward. For-
tunately, once we have established this result we will be
able to make use of it again and again in the following.

Often we have a vector n(x) defined everywhere on a
surface or in space. It could be the director of a liquid
crystal, the normal to a surface or some other field of
interest. We now are interested in a vector N(x) which is
always perpendicular to n(x). This vector might point to
the nearest neighbor or in some special direction on the
surface. To define this vector, we introduce two new unit
vectors, e1(x) and e2(x), which are defined to be
perpendicular to n(x) and each other so that
$e1(x),e2(x),n(x)% is an orthonormal triad and e1(x)
3e2(x)5n(x). A vector which is defined relative to the
spatially varying plane defined by e1(x) and e2(x) will
change not only because its true direction changes (rela-
tive to a fixed triad) but also because the basis vectors
change. If N(x) is a unit vector then N(x)
5cos@u(x)#e1(x)1sin@u(x)#e2(x) is always perpendicu-
lar to n. Its derivatives in the i direction are vectors as
well. In the plane normal to n their components are

e1~x!•] iN~x!52sinu~x!@] iu~x!2e1~x!•] ie2~x!# ,
(33)

e2~x!•] iN~x!5cos u~x!@] iu~x!1e2~x!•] ie1~x!#

5cos u~x!@] iu~x!2e1~x!•] ie2~x!# , (34)

where we have used the fact that e1(x)•e2(x)50 in the
final equality. Notice that the derivatives of N(x) depend
on both gradients of u(x) as well as derivatives of the
spatially varying basis vectors ei(x). Since the basis vec-
tors were chosen arbitrarily, one might be concerned
that the derivatives of N(x) are poorly defined. How-
ever, there is a concomitant change in u(x) whenever
the basis vectors change so that the gradients of N(x)
are well defined. The problem is with gradients of u(x).

To disentangle the arbitrary dependence on basis vec-
tors, we start by considering a vector N0(x) which is
constant in the instantaneous plane perpendicular to
n(x) so that Eqs. (33) and (34) both vanish. For N0(x) to
be constant in the plane perpendicular to n(x), u(x)
must be equal to some u0(x) with “u0(x)5e1(x)
•“e2(x)[V(x), where the last equality defines a new
vector field V(x)5e1(x)•“e2(x) called the spin connec-
tion. Note that we can only solve this equation for u0(x)
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if “3V50. If we now consider an arbitary vector per-
pendicular to n(x), N(x), we should focus not on gradi-
ents of u(x), but rather on @u(x)2u0(x)# , which is a
measure of how much u(x) deviates from its ‘‘constant’’
value. But “u0(x)5V(x), so “@u(x)2u0(x)#5“u(x)
2V(x). Thus we see that by subtracting V(x) from
“u(x), we remove that part of u(x) that is induced by a
spatially varying basis. Moreover, even if “3V is non-
vanishing, we can generalize this discussion to form the
combination Du(x)[“u(x)2V(x), the covariant de-
rivative. It measures the true changes in u(x), relative to
u0(x). If @u(x)2u0(x)# is a smooth field then “

3“@u(x)2u0(x)#50, or

“3“u~x!5“3V~x!. (35)

We might be tempted to set the left-hand side equal to
zero, since usually the curl of a gradient vanishes. How-
ever, as we are about to show, the curl of V(x) is not
always zero! This means that there must be some sort of
singularities or defects in u(x) [and u0(x)—the differ-
ence u(x)2u0(x) is smooth]. We will talk more about
defects in Sec. V.B.

The ith component of the curl is

@“3V~x!# i5e ijk] j@e1
a~x!]ke2

a~x!#

5e ijk@] je1
a~x!#@]ke2

a~x!#

1e1
a~x!e ijk] j]ke2

a~x!

5e ijk@] je1
a~x!#@]ke2

a~x!#10, (36)

where the last term vanishes due to the antisymmetry of
e ijk and we have used indices to make the calculation
unambiguous.1 We have used the Einstein summation
convention of dropping summation signs for repeated
indices. Unless otherwise indicated, an index should be
summed over if it appears twice in any formula. Both
the greek and roman indices run from 1 to 3. Now con-
sider the object ] je1

a(x). Since e1(x) is a unit vector, its
derivative is perpendicular to it. Therefore we can write
] je1

a(x) in terms of the basis vectors na(x) and e2
a(x):

] je1
a~x!5Aj~x!na~x!1Bj~x!e2

a~x!. (37)

Similarly, we can do the same for ]ke2
a(x):

]ke2
a~x!5Ck~x!na~x!1Dk~x!e1

a~x!. (38)

Putting these expressions into Eq. (36) and using the
orthogonality of our triad, we find

@“3V~x!# i5e ijkAj~x!Ck~x!. (39)

By taking the dot product of Eq. (37) with n(x), we find
Aj(x)5nb(x)] je1

b(x)52e1
b(x)] jn

b(x). Similarly, Ck(x)
52e2

g(x)]kng(x) and so

1The only tensor on which we will rely is the antisymmetric
tensor e ijk . It is defined by

eijk5H11 if ijk is an even permutation of 123

21 if ijk is an odd permutation of 123

0 if any two of i , j , or k are the same.
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@“3V~x!# i5e1
b~x!e2

g~x!e ijk@] jn
b~x!#@]kng~x!# .

(40)

We see then that the curl of V(x) does not always van-
ish, but it appears that it depends on our arbitrary vec-
tors e1(x) and e2(x). Note, however, that if we inter-
change the indices b and g in Eq. (40) that it is
equivalent to interchanging j and k , which would intro-
duce a minus sign. Thus we have

@“3V~x!# i5
1
2

@e1
b~x!e2

g~x!2e1
g~x!e2

b~x!#

3e ijk@] jn
b~x!#@]kng~x!#

5
1
2

eabgna~x!e ijk] jn
b~x!]kng~x!, (41)

where we have used the orthonormality of
$e1(x),e2(x),n(x)%. This is the celebrated Mermin-Ho
relation (Mermin and Ho, 1976). Note that because of
the antisymmetry of e ijk , it is unnecessary to keep the
brackets around the gradients of n(x).

This relation between n(x) and vectors perpendicular
to n(x) is rather remarkable. Note that our choice of
e1(x) and e2(x) is arbitrary so that V(x) is not a con-
stant of the geometry. However, Eq. (41) shows that
“3V(x) only depends on n(x), and not our choice of
basis vectors! This is why the Mermin-Ho relation has
been introduced in this section on global properties (Ka-
mien, 1998): if we have a closed curve G of length L ,
then

R
G
@“u~x!2V~x!#•dR

5@u~L !2u~0 !#2EE
M

@“3V~x!#•dS

5@u~L !2u~0 !#

2EE
M

1
2

emnreabgna~x!]nnb~x!]rng~x!dSm , (42)

where we have used Stokes theorem to change an inte-
gral around a curve G into an integral over a capping
surface M . In Eq. (42) dS is an element of area. Thus if
we consider changes in a vector around a closed curve,
our choice of ei(x) is irrelevant. Though it is necessary
that N(L)5N(0), u(L)2u(0) can change by an inte-
gral multiple of 2p. The rest of the change in the direc-
tion of N(x) comes from the geometry of n(x). We will
see how this extra term plays an important role in the
next section, in the physics of surfaces and the physics of
defects in three dimensions.

C. Link, twist, and writhe: dynamics of twist-storing
polymers

One of the more interesting stiff polymers is DNA.
Though it is well known that it has great biological sig-
nificance (Watson and Crick, 1953), it is of interest in
materials for at least two other reasons. First, the persis-
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tence length of DNA is quite long, roughly 50 nm. More
importantly, because there are a plethora of enzymes
available to cleave DNA, a sample of monodisperse
polymers can be prepared much more readily than in
any synthetic system. We have already discussed confor-
mations of chiral polymers like DNA in Sec. II. How-
ever, DNA has one more interesting element: it can
form into a closed loop. This is interesting because DNA
is actually a double stranded helix. Therefore the num-
ber of times that one strand wraps around the other is
fixed when the loop is closed (when the strand is open
the helix can unravel). Thus there is a conserved quan-
tity and this leads to a constraint on the possible dynam-
ics of the double strand. More generally, any polymers
that cannot unwind along their axis are known as twist-
storing polymers.

When we have two closed curves G and G8, we can
assign a linking number Lk to them which counts the
number of times one loop passes through the other.
There is a simple way to calculate this given the two
curves R(s) and R8(s) using an analogy with Ampère’s
law. If we think of the first curve G as being a wire car-
rying a current I , then we know that the line integral of
the generated magnetic field B around the closed curve
G8 is 4pnI , where n is the number of times that the
current passes through the closed loop.2 Setting I51, we
have

Lk5n5
1

4p R
G8

B~x8!•dx8. (43)

We may calculate the resulting field B(x8) from the wire
by use of the Biot-Savart Law:

B~x8!5 R
G

dl3 r̂
r2 5 R

G

dx3@x82x#

ux82xu3 . (44)

Putting these together we find that (with the curves hav-
ing length L and L8, respectively)

Lk5
1

4p R
G
R

G8

@x2x8#•~dx3dx8!

ux2x8u3

5
1

4p R
0

L

ds R
0

L8
ds8FdR~s !

ds
3

dR8~s8!

ds G
•

@R~s !2R8~s8!#

uR~s !2R8~s8!u3

[G~G ,G8!, (45)

the last equality defines G(G ,G8), the Gauss invariant.
Thus two closed curves that cannot separate and rejoin
must keep this invariant constant.

While this may be elegant, it is not especially useful
when studying molecules like DNA. At long length
scales, DNA appears as a single filament. It would be
useful to recast the linking number in terms of the single
polymer picture of DNA. To do this, we consider two

2For simplicity we work in cgs units with c51.
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
curves that are close together (White, 1969; Fuller,
1971). The first curve is R(s), while the second curve is

R8~s8!5R~s8!1eu~s8!, (46)

where, as is the tradition, e is a small number and u(s8)
is a unit vector that is perpendicular to the tangent vec-
tor dR(s8)/ds5T(s8). Inserting these expressions into
Eq. (45), we have

Lk5
1

4p R
0

L

ds R
0

L8
ds8 T~s !

3FT~s8!1e
du~s8!

ds G• @R~s !2R~s8!2eu~s8!#

uR~s !2R~s8!2eu~s8!u3 .

(47)
We now want to take e to zero. While the numerator in
Eq. (47) does not make this a problem, note that the
denominator vanishes whenever s5s8. Thus as long as
us2s8u>d we can take e→0 (Kleinert, 1990). We thus
have

Lk5
1

4p R
0

L8
ds8H E

0

s82d
ds1E

s81d

L
dsJ

3
T~s !3T~s8!•@R~s !2R~s8!#

uR~s !2R~s8!u3

1
1

4p R
0

L8
ds8E

s82d

s81d
ds T~s !

3FT~s8!1e
du~s8!

ds G• @R~s !2R~s8!2eu~s8!#

uR~s !2R~s8!2eu~s8!u3 .

(48)

The first integral bears a resemblance to the Gauss in-
variant, while the second integral depends on the vector
u(s). Since d is small, we can expand R(s) around s8 to
find

R~s !5R~s8!1~s2s8!T~s8!1¯ (49)

and

T~s !5T~s8!1~s2s8!
dT~s8!

ds
1¯ . (50)

Inserting this into the second integrand and using the
fact that T(s)•u(s)50, we find

FIG. 3. The tangent spherical map. The area of the patch M
on the sphere is, through Stokes theorem, the line integral
around G of e1•¹e2 .
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Lk5
1

4p R
0

L

ds R
0

L8
ds8 T~s !3T~s8!•

R~s !2R~s8!

uR~s !2R~s8!u32
1

4p R
0

L8
ds8E

s82d

s81d
ds

3

FT~s8!1~s2s8!
dT~s8!

ds G3FT~s8!1e
du~s8!

ds G•eu~s8!

@~s2s8!21e2#3/2 , (51)
where we have taken e→0 in the first integral and have
used T(s8)3T(s8)50 in the second. Note that the s
dependence of the second integral is manifest and we
may do the integration over s , let e go to zero first and
then let d go to zero. We have separated the link into
two integrals. The first is called the writhe, Wr , and it
only depends on the curve R(s). The second is called
the twist, Tw , and it depends on u(s). We have

Wr5
1

4p R
0

L

ds R
0

L

ds8 T~s !3T~s8!•
R~s !2R~s8!

uR~s !2R~s8!u3 ,

(52)

Tw5
1

2p R
0

L

ds T~s !•Fu~s !3
du~s !

ds G (53)

and thus we arrive at White and Fuller’s celebrated re-
sult (White, 1969; Fuller, 1971):

Lk5Tw1Wr . (54)

Though the expression for writhe (52) bares a strong
resemblance to that for the Gauss invariant (45), it is not
the same. In the Gauss invariant we were considering
two different curves that did not touch and there was no
need to expunge a singularity from the integration. The
expression for writhe, on the other hand, is for the same
curve and is only defined in the limit described above.
Note further that the writhe is nonlocal, while the twist
is local. This is the price we must pay: the link is topo-
logical, the writhe depends only on the backbone R(s)
but is nonlocal, and the twist is local but we must know
about u(s), i.e., the other curve.

Note that the expression for the twist (53) suggests a
use of the results of Sec. III.B. Since u(s) is perpendicu-
lar to T(s), we may expand it in a set of basis vectors
e1(s) and e2(s) both perpendicular to T(s), so that
u(s)5cos u(s) e1(s)1sin u(s) e2(s). Then

T~s !•Fu~s !3
du~s !

ds G5]su~s !2e1~s !•]se2~s !, (55)

where we have used the fact that e13e25T (plus cyclic
permutations). But this is the form we considered in the
discussion of the change in a vector. Following the argu-
ment at the end of the previous section, we find that

Tw5
1

2p R
0

L

ds @]su~s !2e1~s !•]se2~s !#

5m2EE
M

1
4p

emnreabgTa~x!]nTb~x!]rTg~x!dSm

5Lk2W̃r , (56)
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where m is an integer [since u(L)2u(0)52pm]. We
would be tempted to identify the second integral W̃r as
the writhe, since we have an equation that reads just as
Eq. (54). This is not always correct and depends on our
choice of basis vectors. However, it does establish a
weaker result of Fuller’s (Fuller, 1978) that the writhe is
the last term in Eq. (56) mod 1. As we will see in the
next section, the integral has a geometric meaning: it is
the area swept out by the tangent curve on the tangent
spherical map, as shown in Fig. 3.

The difficulty with writhe is that it is nonlocal and
therefore cannot be easily included in a local set of dy-
namical laws—the conformation of the entire curve
must be known to calculate writhe. Moreover, writhe is
only defined for closed curves and so the identity (54)
would not appear to apply to open strands. While the
total amount of writhe including the integral part is im-
portant for calculating ground states of a particular
twisted ribbon (Julicher, 1994; Marko and Siggia, 1994;
Fain et al., 1996; Fain and Rudnick, 1999) when consid-
ering changes in writhe, the constant integer part is less
important. If the time scale for the diffusion of twist
along the polymer is long enough, then even an open
strand should feel the constraint of conserved link.

To this end, a useful result for the change in writhe of
a curve as a function of time t (Aldinger et al., 1995),

] tWr~ t !5
1

2p R ds T~s ,t !•@] tT~s ,t !3]sT~s ,t !# , (57)

can be used. Note that this result follows from the pre-
ceding discussion: if we choose a coordinate system,
then (57) (multiplied by dt) is the differential of area
swept out by the tangents of two closed curves with tan-
gent vectors T(s ,0) and T(s ,dt). Since the twist is really
the local torsional strain of the polymer, we denote the
twist density as v(s ,t) and then we have

] tLk5 R ds $] tv~s ,t !1] tT~s ,t !•@]sT~s ,t !

3T~s ,t !#%1] tn , (58)

where n is the integer difference between Wr and W̃r .
Since continuous evolution cannot lead to discontinuous
changes in the integer n and since link is conserved we
have

05 R ds$] tv1] tT•@]sT3T#%. (59)

This conservation law need not be satisfied locally: the
curve can twist in one place and writhe at some distant
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location to satisfy Eq. (59). In addition, the integer can
change if the curve develops cusps and evolves in a non-
smooth way. Because physics is local, however, we might
expect that linking number is locally conserved and
changes via a ‘‘link current’’ j . This would lead to a local
conservation law

]sj5] tv1] tT•@]sT3T# , (60)

which satisfies Eq. (59). This conservation law enforces
total link conservation since rds]sj[0, yet allows for
local deviations in the twist and writhe (Kamien, 1998).

This geometrically inspired conservation law has been
verified in numerical experiments (Goldstein et al., 1998;
Wolgemuth et al., 2000) which show that there are two
modes of relaxation in the dissipative dynamics: twirling,
in which the link relaxes through torsional modes along
the polymer (like a speedometer cable), and whirling, in
which the link relaxes through crank-shaft-like motions
of the entire chain.

IV. LOCAL THEORY OF SURFACES

A. Area element: minimal surfaces

While it is easy to generalize the equation of a curve
R(s) to an equation for a surface X(s1 ,s2), it turns out
that the theory of surfaces is much richer than that for
curves. In the first place, there is no way to talk about
arc length when defining s1 and s2 , so we will take them
to be arbitrary coordinates of the surface. We can, how-
ever, consider the area of a small patch of our surface.
To do this, we need to construct vectors tangent to the
surface. As shown in Fig. 4, if we have two vectors
a(s1 ,s2) and b(s1 ,s2) in the surface, then they span a
surface area DS5ua(s1 ,s2)u ub(s1 ,s2)usin u, where u is
the angle between the two vectors. We recognize this
expression for DS as the magnitude of the cross product
a(s1 ,s2)3b(s1 ,s2). Since both of these vectors are tan-
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gent to the surface, their cross product is parallel to the
unit layer normal n(s1 ,s2). Thus we have

DS5un~s1 ,s2!•@a~s1 ,s2!3b~s1 ,s2!#u. (61)

But, with this construction, we can also construct the
unit layer normal out of a(s1 ,s2) and b(s1 ,s2):

n~s1 ,s2!56
a~s1 ,s2!3b~s1 ,s2!

ia~s1 ,s2!3b~s1 ,s2!i . (62)

Putting this expression together with Eq. (61), we have

DS5
@a~s1 ,s2!3b~s1 ,s2!#•@a~s1 ,s2!3b~s1 ,s2!#

ia~s1 ,s2!3b~s1 ,s2!i

5A@a~s1 ,s2!3b~s1 ,s2!#2

5Aa2~s1 ,s2!b2~s1 ,s2!2@a~s1 ,s2!•b~s1 ,s2!#2.

(63)

We now need to construct two, nonparallel vectors
a(s1 ,s2) and b(s1 ,s2). The surface provides us
with two: a(s1 ,s2)5]s1

X(s1 ,s2)ds1 and b(s1 ,s2)
5]s2

X(s1 ,s2)ds2 . This tells us that the differential area
element is

FIG. 4. The magnitude of the cross product of two vectors is
the area of the parallelogram swept out by them.
dS5A@]s1
X~s1 ,s2!#2@]s2

X~s1 ,s2!#22@]s1
X~s1 ,s2!•]s2

X~s1 ,s2!#2ds1ds2 . (64)
Often we also need the vector surface element dS
5n(s1 ,s2)dS , for instance when calculating electric and
magnetic flux. The area of the whole surface M is simply

A5EE
M
A~]s1

X!2~]s2
X!22~]s1

X•]s2
X!2ds1ds2 .

(65)

What happens if we choose to parametrize the surface in
terms of a new set of coordinates? If we have two new
coordinates s1 and s2 defined by s i5s i(s1 ,s2), then by
the chain rule

]si
X5

]X
]si

5
]X
]s j

]s j

]si
5

]s j

]si
]s j

X, (66)
where, as usual, there is an implicit sum over j . Because
of this sum, it appears that it would be somewhat tedious
to reexpress Eq. (65) in terms of the new coordinates.
However, we note that if we define a matrix g

g~s1 ,s2!5F ]s1
X•]s1

X ]s1
X•]s2

X

]s2
X•]s1

X ]s2
X•]s2

XG , (67)

then the expression in the radical of Eq. (65) is simply
the determinant of this matrix. In component form, this
matrix is gij(s1 ,s2)5]si

X(s1 ,s2)•]sj
X(s1 ,s2). This ma-

trix is known as the metric tensor which some people
find useful (Minser et al., 1973). Moreover, we note that
the transformation (66) amounts to matrix multiplica-
tion of g(s1 ,s2):
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gij~s1 ,s2!5
]sk

]si

]sm

]sj
g̃km~s1 ,s2!, (68)

where g̃km(s1 ,s2) is the corresponding matrix in the
new coordinate system. If we define a new matrix O by
Oij5]s j /]si , then g5OTg̃O. Thus when we change co-
ordinates, we have

A5EE
M

Adet g ds1ds2

5EE
M

Adet OTg̃O ds1ds2

5EE
M

Adet g̃udet Ouds1ds2 . (69)

But the determinant of O is just the Jacobian determi-
nant of the transformation from si to s i , and so
udet Ou ds1ds25ds1ds2 or

A5EE
M

Adet g ds1ds25EE
M

Adetg̃ ds1ds2 , (70)

and so the area is invariant under coordinate transfor-
mations. This invariance (known as diffeomorphism co-
variance by the cognoscenti) is useful as it allows us to
choose the most convenient set of coordinates for a
given problem. One often used choice is the so-called
Monge gauge or height representation, where s1 and s2
are chosen to be the x and y components of the surface
vector X(s1 ,s2) and the z component is a function of x
and y :

x5X1~s1 ,s2!5s1 ,

y5X2~s1 ,s2!5s2 ,

z5X3~s1 ,s2!5h~s1 ,s2!5h~x ,y !. (71)

It is straightforward to check that the expression for the
area (65) becomes the more familiar expression:

A5EE
M
A11S ]h

]x
D 2

1S ]h

]y
D 2

dxdy . (72)

The height representation requires that for every x and
y , there is only one height or, in other words, the surface
can have no overlaps. Sometimes it is necessary to break
the surface up into different regions or patches in order
to make a good height representation.

The height representation proves useful when consid-
ering the energetics of fluid membranes. By fluid we
mean that the membrane has no internal structure and
the molecules in it can flow freely. Often we are inter-
ested in the shape and dynamics of these membranes
when they are under a uniform applied tension. Soap
films are a common example, though in many cases the
interface between two fluids or two distinct phases can
also be thought of as a membrane under tension. The
free energy of this system is simply F5§A , where § is
the surface tension and A is the area of the interface.
Minimizing the free energy thus amounts to minimizing
the area of the surface. The expression for the area in
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
Eq. (72) looks like an action from classical mechanics. If
we define the Lagrange density L,

L5A11S ]h

]x
D 2

1S ]h

]y
D 2

, (73)

then the Euler-Lagrange equation is (Goldstein, 1980)

]

]x

]L
]~]xh !

1
]

]y

]L
]~]yh !

5
]L
]h

, (74)

or, by inserting Eq. (73),

]

]x S ]xh

A11~“h !2D 1
]

]y S ]yh

A11~“h !2D 50. (75)

This equation has an important interpretation in terms
of the surface normal. If we construct the two tangent
vectors to the surface as we did above, we have

u15]s1
X~s1 ,s2!5@1,0,]xh# ,

u25]s2
X~s1 ,s2!5@0,1,]yh# , (76)

and so the surface normal is parallel to u13u2
5@2]xh ,2]yh ,1# . Normalizing this vector gives us
n(s1 ,s2)52@]xh ,]yh ,21#/A11(“h)2 and so Eq. (75)
becomes “•n50. In other words, a surface which ex-
tremizes its area has a divergence-free unit normal. We
will address this further in the following section. Such a
surface is called a minimal surface. Typically, Eq. (75) is
written equivalently as (Nitsche, 1989) the minimal sur-
face equation:

@11~]yh !2#]x
2h22]xh]yh]x]yh1@11~]xh !2#]y

2h50.
(77)

Though we were seeking a surface with a minimum
area, the Euler-Lagrange equations only guarantee an
extremum—we might have a saddle point or, worse, a
maximum! Rigorous proofs that the area is minimized in
general are difficult. However, we can prove a restricted
result easily. If the projection of the boundary ]M onto
the xy plane is convex, then it is clear that any over-
hangs on the surface add extra area and that the surface
need not ‘‘stick out’’ past the boundary of M projected
onto the xy plane. Thus we can use the height represen-
tation and solve Eq. (77) subject to a boundary condi-
tion h(x ,y)5f(x ,y) on the boundary in the xy plane.
As depicted in Fig. 5, we consider an arbitrary surface M̃
with the same boundary as the surface of which we are
interested. Since the same range of x and y map out
both M and M̃ , we can define n(x ,y) on M̃ and in the
volume between the surfaces. Define

T5EE
M̃

n~x!•dS̃, (78)

where n(x) is the unit normal of the original surface M ,
and dS̃ is the vector element of surface area, pointing
along the normal to the surface ñ(x). If we consider the
same integral for the original surface M , then since n(x)
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is parallel to dS, we have n(x)•dS5dS the element of
surface area! Integrating this over the whole surface just
gives us the area A . Thus

A5EE
M

dS5EE
M

n~x!•dS. (79)

Moreover, we have the inequality ñ(x)•n(x)<1, since
the dot product of two unit vectors is the cosine of some
angle and is therefore less than or equal to 1. We arrive
at

T5EE
M̃

n~x!•dS̃5EE
M̃

n~x!•ñ~x!dS̃<EE
M̃

dS̃5Ã ,

(80)

where Ã is the area of the comparison surface. We are
almost done. Note that if we construct a closed surface
M̂ by gluing together M and M̃ along their common
boundary, then the integral of n(x) over the whole sur-
face is

EE
M̂

n~x!•dŜ5EE
M

n~x!•dS2EE
M̃

n~x!•dS̃5A2T ,

(81)

where the relative minus sign arises because we want the
normal to the closed surface to always point outward.
But by Gauss’s law, the first integral in Eq. (81) can be
converted into an integral over the volume V̂ enclosed
by M̂ , so

A2T5EE
M̂

n~x!•dŜ5EEE
V̂
“•n~x!dV̂50, (82)

since M extremizes the area so “•n(x)50. Using the
inequality (80) we have A5T<Ã and thus the compari-
son surface has an area at least as large as the original

FIG. 5. The original minimal surface M and the comparison
surface M̃.

FIG. 6. Edge (left) and screw (right) dislocations in a smectic-
A liquid crystal.
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surface M . Since M̃ was arbitrary we have shown that
our surface M minimizes the area.3

Examples of minimal surfaces abound. The smectic-A
liquid crystal phase is a one-dimensional crystal, com-
posed of periodic layers of spacing d . Each layer is flu-
idlike, with no internal ordering. Thus, in some sense,
each layer behaves as a minimal surface and the layer
spacing is set by a compression modulus (Kamien and
Lubensky, 1999). The smectic phase can have topologi-
cal defects of two types. As shown in Fig. 6, an edge
dislocation adds or ends a layer in the bulk, while a
screw dislocation connects adjacent layers together. A
screw defect can be represented by the height function

h~x ,y !5
nd

2p
tan21S y

x D , (83)

where n is an integer. By choosing n to be an integer, we
are guaranteed that when going around the origin once
we move up exactly n layers. It is straightforward to
check that the screw dislocation is a minimal surface by
direct calculation of Eq. (77).

Another nice example also arises in smectic liquid
crystals. Scherk’s first surface (shown in Fig. 7) (Scherk,
1835) is a minimal surface which smoothly connects two
smectic regions which are rotated with respect to each
other. It is composed of an infinite set of parallel, screw-
like dislocations (Gido et al., 1993; Kamien, 2001) which
must be slightly squashed to make the surface satisfy Eq.
(77). For those who are interested, the height function is
defined for arbitrary rotation angle a:

h@x ,y ;a#[2secS 1
2

a D tan21H tanhF1
2

x sin~a!G
tanFy sinS 1

2
a D G J .

(84)

It is interesting to note that as a→0 the height function
becomes that of a simple screw dislocation (83) with
nd52p .

3In this context, the vector field n(x) is called a calibration.
The interested (or disinterested) reader will find this and other
results in Morgan (2000).

FIG. 7. Scherk’s first surface. This minimal surface connects
together two layered structures with different orientations.
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B. Mean and Gaussian curvature: energetics of
membranes

When we discussed curves in three dimensions there
were not many options for the definition of curvature:
there was only one coordinate on the curve, and if we
wanted something that was independent of our param-
etrization, we need only take derivatives with respect to
arc length. As we have seen in the last section, however,
surfaces can be reparametrized and have many more de-
grees of freedom. As a result, there is more than one
way to define curvature, in fact there are two.

We have already hinted at one definition in the discus-
sion of minimal surfaces. For curves, we know that a
straight line minimizes the distance between two points
in space, or in other words, k(s)50 is the equation of a
length-minimizing curve. Generalizing this to surfaces,
we might define one curvature which is 0 for surfaces
that minimize the area spanned by a given boundary.
Indeed, this is called the mean curvature, H and H
52 1

2 ¹•n(x) where n(x) is the surface normal. The
other type of curvature is the Gaussian curvature K ,
which we will define in the following.

In order to understand this better and to introduce K ,
we need to step back and consider our surface X(s1 ,s2).
Since the curvature of a line is k(s)52T(s)•N8(s), we
would like to take derivatives of the surface normal
along tangent directions of the surface. As in Sec. III.B,
we now reintroduce the basis vectors perpendicular to
n(s1 ,s2), e1(s1 ,s2), and e2(s1 ,s2), of unit length and
mutually orthogonal. We can take directional
derivatives4 of n(s1 ,s2) along ei(s1 ,s2), (ei•“). Now
instead of one number, we have four, which form a ma-
trix:

L52Fe1•@e1•“#n e2•@e1•“#n

e1•@e2•“#n e2•@e2•“#nG . (85)

The two dot products in the matrix are somewhat con-
fusing. To be concrete we write this matrix using its in-
dices:

Lij52ei
a~s1 ,s2!ej

b~s1 ,s2!
]na~s1 ,s2!

]Xb~s1 ,s2!
. (86)

This matrix is also a tensor, known as the Weingarten
map or second fundamental form.5 We can diagonalize
this matrix via a similarity transform L5S21LS. In this
diagonal basis the entries of L are precisely what we are
after: the first entry in the upper left is the derivative of
the surface normal along a direction ê1 . Moreover, since
the upper right entry vanishes, this derivative has no

4It may seem odd to use the gradient in these definitions since
n(s1 ,s2) is a function of s1 and s2 . The derivatives of n(s1 ,s2)
along the surface tangent vectors ]sj

X(s1 ,s2) are just
]sj

n(s1 ,s2). By writing ei(s1 ,s2) as the linear combination ei

5Aij]sj
X, the chain rule implies that (ei•“)5Aij]sj

.
5The metric tensor g is sometimes called the first fundamental

form.
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components along ê2 . Therefore the upper left corner is
the curvature of the curve in the surface at (s1 ,s2), tan-
gent to ê1 . Similarly, the lower right entry of L gives us
another curvature. Note that the two directions ê1 and
ê2 remain orthogonal.6 They are known as the principal
directions on the surface and their associated curvatures
k1 and k2 are the principal curvatures (see Fig. 8).
Equivalently, we can define the two principal radii of
curvature through Ri51/k i . We can easily extract these
curvatures from the original matrix L. Note that k1k2
5det L and k11k25Tr L. Moreover, since the trace is
cyclic and det AB5det A det B, we see that

Tr L5k1~s1 ,s2!1k2~s1 ,s2!,

det L5k1~s1 ,s2!k2~s1 ,s2!. (87)

The product of the curvatures is known as the Gaussian
curvature, K5k1k2 , while the average of the curvatures
is the mean curvature, H5 1

2 @k11k2# . The Gaussian
and mean curvature contain all the information to de-
scribe the bending of our surface.

The reader may be concerned that our definitions of
curvature remain dependent on our choice of basis vec-
tors. This is not the case. Indeed, using the expression
(86) we have

H52
1
2 (

i51

2

ei
aei

b ]na

]xb ,

K5~e1
ae1

be2
ge2

d2e1
ae2

be2
ge1

d!
]na

]xb

]ng

]xd . (88)

These expressions still look dependent on ei . However,
since n is a unit vector, nanb]bna50 and so we have

H52
1
2

@e1
ae1

b1e2
ae2

b1nanb#
]na

]xb

52
1
2

dab
]na

]xb 52
1
2
“•n, (89)

where we have used the fact that $e1 ,e2 ,n% form an or-

6The orthogonality of the two vectors ê1 and ê2 follows from
the fact the S215ST. In other words, L can be diagonalized via
an orthogonal transformation since it is symmetric: L122L21

52(e1
ae2

b2e2
ae1

b)]bna52n•@“3n#50 when n is normal to a
surface, i.e., n5“f/u“fu.

FIG. 8. Curves on a surface (heavy lines) with tangents along
the principal directions at the point of intersection.
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thonormal triad. Thus, as we hinted at the beginning of
this section, the mean curvature is proportional to the
divergence of the surface normal. Note that the sign of
H depends on the choice of the sign of n.

We have to do a little more work on the expression
for the Gaussian curvature. The form in Eq. (88) re-
minds us of the expressions in the derivation of the
Mermin-Ho relation. Using the orthonormality of the
basis vectors,

K5e1
ae2

g~e1
be2

d2e2
be1

d!]bna]d ng

5e1
ae2

gebdrnr]bna]d ng. (90)

Finally, as in the discussion of Eq. (40), we have

K5
1
2

eabgnge ijknk] in
a] jn

b5n•@“3V# . (91)

Moreover, the Gaussian curvature has a simple interpre-
tation. Consider the normal spherical map defined by
analogy with the tangent spherical map. For each point
on the surface we identify a point on the unit sphere
which corresponds to the surface normal at that point.
This map is also known as the Gauss map. Since the
surface element on our surface is just dSm5nmdS , we
see from the discussion at the beginning of Sec. IV.A,
that the Gaussian curvature is just the area swept out by
the surface normal on the Gauss map as we move along
the surface. In other words, if we have a small region M
of our surface, then

EE
M

KdS5EE
M

1
2

eabg nge ijk] in
a] jn

bdSk . (92)

Thus the Gaussian curvature is the ratio between the
infinitesimal area swept out on the Gauss map and the
infinitesimal area of the original surface to which it cor-
responds.

We have seen that the two principal curvatures de-
pend only on the surface normal and not on our choice
of coordinates or basis vectors. This is useful when we
consider the energetics of fluid membranes. They are
called ‘‘fluid’’ because they have no internal structure.
Therefore it would be unphysical to build an energy out
of anything but the two invariants H and K . Note that if
we have an open surface there is no distinction between
inside and outside, so the layer normal n(s1 ,s2) is de-
fined only up to a sign. Though the Gaussian curvature
is independent of this sign, the mean curvature is not. To
get around this, we insist that the free energy be even in
powers of H (Canham, 1970; Helfrich, 1973):

FCH5EE dS$2kH21k̄K%, (93)

where k and k̄ are (confusingly) the standard symbols
for the bending moduli. This is known as the Canham-
Helfrich free energy for fluid membranes. Note that they
both have units of energy, since the dimensions of K and
H2 cancel the dimensions of the surface. Also note that
the integration is done with respect to the actual surface
area, so that dS5Adet gds1ds2 . We will see in the fol-
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lowing sections that the integral of the Gaussian curva-
ture is a constant and so the term proportional to k̄ is
usually neglected. We will also discover that not only is
the Gaussian curvature independent of our choice of ba-
sis vectors, but that it also can be measured with no
knowledge of the surface normal n(s1 ,s2). Finally, if the
membrane is tethered then it has internal elastic degrees
of freedom. These degrees of freedom couple to the ge-
ometry and produce a variety of singular structures (Di-
Donna et al., 2002).

V. GLOBAL THEORY OF SURFACES

A. Gauss-Bonnet theorem: foams on curved surfaces

We have seen that there are two sorts of curvature
that we can consider on a surface, the mean and Gauss-
ian curvatures. We have studied both of these by consid-
ering deviations of the normal vector to the surface.
However, a large part of differential geometry focuses
on intrinsic properties, those quantities which can be
measured without reference to the space in which the
manifold is embedded. It turns out that the Gaussian
curvature is intrinsic: by measuring the lengths and di-
ameters of small circles entirely in the surface, one can
determine K .

We have all the technology necessary to demonstrate
this remarkable property. To show this, we consider a
patch on our surface M , with boundary ]M . As in Sec.
III.C, we can take the unit normal at each point and map
it to the unit sphere. As shown in Fig. 9, when we
traverse the patch M on the surface, we traverse a patch
M̃ on the unit sphere. As we discussed, the area of M̃ is
the integral of the Gaussian curvature of the patch M :

FIG. 9. Geometry for the Gauss-Bonnet theorem. Note that
now we are using the Gauss map which maps the surface nor-
mal n(x) unto the unit sphere.
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Ã5EE
M̃

dS̃5EE
M

KdS

5EE
M

1
2

emnreabgna~x!]nnb~x!]rng~x!dSm , (94)

where we have used Eq. (91). Now consider the bound-
ary curve ]M . This curve has a tangent vector T(s) in
space. We know from our discussion of curves that
T8(s)5k(s)N(s). However, while T(s) is also tangent
to the sphere, N(s) is, in general, not. The normal to the
curve, N(s), can have a component along the normal to
the surface n(s) and perpendicular to it. If we lived in
the surface and could only make measurements in the
surface, like some kind of bug, then we could only mea-
sure the component of the curve’s normal in the surface,
the surface normal g(s):

g~s !5
T8~s !2@T8~s !•n~s !#n~s !

k~s !A12@N~s !•n~s !#2
. (95)

This is a unit vector which lies in the plane tangent to
the surface and which is perpendicular to T(s), that is,
the tangent to the boundary ]M of the patch M . We
would like to define a curvature which measures the ex-
tra curvature in the curve, not arising from the curvature
of the surface in which it is embedded. By analogy to the
Frenet-Serret formulas, we define the geodesic
curvature7 kg to be

kg~s !5T8~s !•g~s !5k~s !A12@N~s !•n~s !#2. (96)

Since $T(s),g(s),n(s)% form an orthonormal triad, we
have

kg~s !5T8~s !•@n~s !3T~s !#5n~s !•@T~s !3T8~s !# ,
(97)

a form we have seen before in the context of the
Mermin-Ho relation! Since the unit tangent vector lies
in the plane perpendicular to n(x), we may write it in
terms of our arbitrary basis e1(x) and e2(x), introduced
in Sec. III.B, T(s)5cos u e11sin u e2 . Using Eq. (97) to
calculate kg , we find that

kg~s !5]su~s !2e1
a~s !]se2

a~s !, (98)

where we have used the fact that for a unit vector u(s),
]s@u(s)#252u(s)•]su(s)50. In analogy with Eq. (42),
we can integrate the geodesic curvature around the
boundary of M to find

R
]M

kg~s !ds5 R
]M

@“u~x!2V~x!#•dR. (99)

As with our discussion of the relation between link,
twist, and writhe, we may transform the line integral of
V(x) into a surface integral over M so that

7We may also define the normal curvature, kn(s) which is the
curvature of our embedded curve that is imposed by the sur-
face. We define kn(s)5T8(s)•n(s) and thus the total curva-

ture satisfies k(s)5Akn
2(s)1kg

2(s).
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R
]M

]su~s !ds5 R
]M

kg~s !ds1EE
M

KdS , (100)

where we have used Eq. (41) to rewrite the final inte-
grand as the Gaussian curvature (94). Finally, if the
boundary curve does not intersect itself, then the tan-
gent vector rotates around n(x) exactly once, so u(s)
changes by 2p around the curve. We have thus estab-
lished the Gauss-Bonnet theorem:

EE
M

Kds1 R
]M

kgds52p . (101)

By integrating the geodesic curvature around a closed
loop, we can calculate the integrated Gaussian curvature
that we surround. As the loop shrinks ever smaller
around a point x0 , we can calculate the Gaussian curva-
ture at that point through division by the surface area
enclosed. This is remarkable since the geodesic curvature
can be measured without the use of the layer normal! In
other words, since the geodesic curvature is intrinsic, so
is the Gaussian curvature! We can take this result a step
further by considering regions that have discrete angles
in their boundaries (i.e., polygons). When there is a
sharp bend in the boundary curve ]M , we cannot calcu-
late the geodesic curvature kg(s). We can, however, in-
tegrate the geodesic curvature along the smooth parts of
the boundary. If there are j sharp bends with angles Du j ,
respectively, then when we integrate around the bound-
ary as in Eq. (99) we will have a deficit of ( jDu j , or, in
other words, the smooth part of u(s) does not have to
change by 2p for the curve to come around. We thus
have

EE
M

KdS1 R
]M

kgds1(
j

Du j52p , (102)

where we understand that the integral around the
boundary should be broken into smooth segments of the
boundary. The jump angles account for the discontinui-
ties. Note that we can have lines for which kg(s)50.
These are the ‘‘straight’’ lines on the surface and are
called geodesics. If we were to build a polygon with
n-sides, all of which are geodesics, then Eq. (102) reads

2p2(
j

Du j5EE
M

KdS . (103)

Since the sum of the external angles Du j of a polygon in
flat space is 2p, we see that the Gaussian curvature is a
measure of the excess (or deficit) angle in a polygon. If
the Gaussian curvature is positive the sum of the exter-
nal angles is smaller than 2p so the sum of the internal
angles ( j(p2Du j)5(n22)p1**KdS is larger than we
might expect. For example, imagine the triangle on the
sphere connecting the North Pole (90 °N), Pontianak,
Indonesia (roughly 0 °N, 109 °208W) and Loolo, The
Congo (roughly 0 °S, 19 °208W) along great circles. At
each vertex of this triangle the arcs of great circles meet
at 90° and so the sum of the interior angles is 3p/2. Since
n53 for a triangle, we discover that **KdS5p/2 for
this triangle that covers 1

8 of the globe. However, we
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know that for a sphere of radius R , the Gaussian curva-
ture is just 1/R2 and so **KdS5 1

8 (4pR2/R2) 5p/2, as
we expect!

There are many beautiful uses and examples of the
interplay between Gaussian curvature and geodesic cur-
vature in physical systems. For instance, Avron and Le-
vine (Avron and Levine, 1992) have considered dry
foams on curved, two-dimensional surfaces. In this con-
text, ‘‘dry’’ refers to the fact that there is no fluid be-
tween adjacent bubbles so that the walls between them
can be treated as lines and the vertices may be treated as
points. There are two key ingredients to the physics of
dry foams: surface tension and pressure. In two dimen-
sions the surface tension amounts to a line tension s
along the interfaces between neighboring bubbles. If the
soap film is uniform then the line tension is constant as
well. Whenever the lines meet, mechanical equilibrium
must be maintained. The pressure in the bubbles exerts
a force on their boundaries. If two cells are separated by
a boundary line then the pressure difference DP must be
balanced by the boundary. As with the derivation of the
wave equation, the force exerted by the boundary curve
G is sT8(s). However, the pressure exerts forces only
within the surface and so we are only interested in the
component of the force in the plane of the surface. Ac-
cording to the above discussion, that force is
skg(s)g(s), and so the magnitude of the force is
skg(s)5DP . In the case of planar foams, kg(s)5k(s)
and this is known as the Young-Laplace law. To model
the diffusion of gas from one cell to the other, we as-
sume a simple dynamics where

dN

dt
52C(

j
DPjlj , (104)

where N is the number of gas molecules in the cell of
interest, DPj is the pressure difference between it and its
jth neighbor, l j is the length of the boundary separating
the cell from its jth neighbor, and C.0 is a diffusion
constant. This dynamics captures the simple idea that if
a bubble is higher pressure than its neighbors so that
DPj.0, then it loses gas, while if it has lower pressure it
gains gas. Using the generalization of the Young-Laplace
law and the Gauss-Bonnet theorem we have

dN

dt
52Cs R

]M
kg~s !ds

5CsH EE
M

KdS1(
j

~p2a j!22pJ , (105)

where a j are the internal angles.
For flat surfaces with K50 it is known that a hexago-

nal honeycomb network of boundaries minimizes the
length of the cell walls (Morgan, 2000; Hales, 2001). If
we imagine starting with a stable configuration on a flat
membrane and distorting the membrane, we should take
each internal angle to be 2p/3. Doing so Avron and Le-
vine (Avron and Levine, 1992) found
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dN

dt
5CsH p

3
~n26 !1EE

M
KdSJ . (106)

If we seek a stationary configuration so that N is time
independent, we see that for flat membranes K50 and
only bubbles with n56 sides are stationary: hexagons. If
the surface has positive curvature, K.0, and there is an
instability. To make (dN/dt)50, we see that n,6. How-
ever, even if an area and an n were found to make N
time independent, we can see that there is an instability:
if the area grows then (dN/dt) becomes positive so the
bubble grows more. Likewise, if the bubble shrinks then
the integral over K gets smaller and so gas flows out of
the bubble and it shrinks some more. Thus on a posi-
tively curved surface the only stable situation is one for
which one bubble overtakes the whole system. On the
other hand, when the surface has negative Gaussian cur-
vature, it follows from a similar argument that when the
area of the bubble increases (dN/dt),0 and when the
area shrinks (dN/dt).0. In the critical case of a flat
membrane the stationary solution is a hexagon and it is
neither stable nor unstable towards growth (Avron and
Levine, 1992).

B. Euler characteristic and the genus: defects on surfaces

We can take Eq. (102) one step further by considering
a closed surface. In this case we can integrate the Gauss-
ian curvature over the whole manifold. If we triangulate
the entire surface to form a net, then we can use the
Gauss-Bonnet theorem to establish a relation between
the topology of the network and the total Gaussian cur-
vature. At each vertex there is a total angle of 2p which
is divided into the internal angles of the triangles meet-
ing at that point. Each face contributes p to the total
angle at the vertices in addition to the excess angle from
that face, **KdS . Adding all the triangles together we
have

2pV5pF1T
M

KdS , (107)

where V is the number of vertices and F is the number
of faces. Each face contributes three edges E , but each
edge is shared by two triangles, so 3F52E . We then
have

V2E1F5
1

2p T
M

KdS . (108)

This is a remarkable result. As we show in the bottom
two graphs of Fig. 10, if we remove an edge from our
network (E→E21), two faces join into one (F→F
21), and we lose two vertices (V→V22), so V2E
1F does not change! Likewise if we add an edge V
2E1F is unchanged. Thus our result does not require
the use of triangles. This invariant is known as the Euler
characteristic x5V2E1F . Note that if we have any
network that can be deformed into a sphere without cut-
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ting the edges or changing the vertices, then x can be
calculated using Eq. (108) for a perfect sphere, where
the surface area is 4pR2 and the Gaussian curvature is
1/R2. Thus we find that

V2E1F5x52 (109)

for a network with the topology of a sphere. Suppose we
take two faces on the sphere, deform them to be the
same triangle, and place them together, face-to-face. In
the process we lose three edges (E→E23), two faces
(F→F22), and three vertices (V→V23) so x50.
What have we done? We have made a doughnut (or a
torus) with one handle and have reduced the Euler char-
acteristic by 2. Clearly, any time we add a handle x is
reduced by 2. If we define the genus g to be the number
of handles of the surface, then

1
2p T

M

KdS5V2E1F5x52~12g !. (110)

Though the Gaussian curvature was a geometric prop-
erty, when integrated over the entire surface it becomes
a topological invariant, independent of the local geom-
etry.

The Euler characteristic can be used to understand
the topology of defects on closed surfaces. Suppose that
we have a unit vector field v(x) living in the local tan-
gent plane to a closed surface of genus g . Since v(x) lies
in the tangent plane, we have v(x)5cos u(x)e1(x)
1sin u(x)e2(x), where we have reintroduced our vectors
e1(x) and e2(x) which are everywhere perpendicular to
the unit normal n(x) of the surface. We will try to cover
the surface with a vector field that is single valued. In
other words, if we integrate derivatives of v(x) around a
closed curve, we should get back the same vector. But as
we discussed in Sec. III.B, to ensure this property we
should focus on the covariant derivative Du(x). We will
have a single-valued vector field when the curl of this
derivative vanishes. In this case Eqs. (41) and (91) give

T
M

@“3“u~x!#•dS5T
M

KdS52px . (111)

FIG. 10. Removing or adding an edge from a graph maintains
the value of the Euler characteristic V2E1F .
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Usually “3“u50, but this result tells us that it is not
true on an arbitrary genus surface M .

Without presenting a detailed discussion on topologi-
cal defects (Chaikin and Lubensky, 1995), we can see
that “3“u(x) does not vanish in the presence of a de-
fect configuration and that on a two-dimensional sur-
face:

“3“u~x!5(
i

mid
2~x2xi!, (112)

where mi is the charge of the defect and xi is the corre-
sponding position. To see this, we consider

u~x!5m tan21S y

x D . (113)

It is straightforward to calculate “u(x) and then to in-
tegrate the gradient around a closed curve g that con-
tains the origin. We have

2pm5 R
g
“u~x!•dx5EE

M
“3“u~x!•dS, (114)

where g is the boundary of M . Since we may arbitrarily
shrink the path g around the origin and the integral re-
mains constant, it must be that “3“u5md2(x). Gen-
eralizing this to an arbitrary collection of defects leads
us to Eq. (112). Using Eq. (112) in Eq. (111) gives us

(
i

mi52~12g !5x . (115)

This result is known as the Poincaré-Brouwer theorem.
Since a vector field must be single valued on the surface,
mi must be an integer so that cos u and sin u are well
defined. This result tells us, for instance, that a vector
field on the surface of a sphere must have two 11 de-
fects or one 12 defect. On a torus, however, no defects
are necessary.

There is another, more geometric way to establish Eq.
(115). We first argue that two vector fields on the same
surface must have the same total topological charge.
Consider two vector fields u(x) and v(x). We can trian-
gulate the surface so that each triangle contains at most
one defect in u(x) and one defect of v(x) and that every
defect is in some triangle. In each triangle we may now
integrate “uu(x) and “uv(x) around the triangle
boundary. The total topological charge xu of u(x) is

xu5 (
triangles

(
edges

E “uu~x!•dx (116)

and similarly for v(x). Note that to establish the angles
uu(x) and uv(x), we must choose basis vectors ei(x).
Since we know that “uu(x) depends on our choice of
these vectors, the integrals of “uu(x) around each tri-
angle depend on the underlying geometry through the
Mermin-Ho relation (41). More importantly, each vector
field on M may require a different choice of basis vec-
tors ei(x), since a defect in any particular triangle forces
a constraint on ei(x). Thus it is not, in general, possible
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to calculate xu and xv using the same set of ei(x). How-
ever, the difference between xu and xv is just

xu2xv5 (
triangles

(
edges

E ¹@uu~x!2uv~x!#•dx50.

(117)

The difference vanishes since the angle between u(x)
and v(x) is independent of our choice of basis vectors.
Therefore when we sum over all triangles we get each
edge twice but in opposite directions. Since we do not
need the basis vectors to define the integrals, it is clear
that the integrals in opposite directions cancel and we
get 0. Thus any two vector fields have the same topologi-
cal charge.

We will now count the defects of a vector field that we
construct on triangulated surface, via the following rules:
(i) put a defect with 11 charge at each vertex, (ii) put a
defect with 11 charge at each center, and (iii) put a
defect with 21 charge on each edge. We can see that
this will produce a consistent vector field everywhere
else, as shown in Fig. 11. Adding together the charges
we have

xu5V2E1F5x , (118)

and so the topological charge is the Euler characteristic
for any vector field on the surface.

A striking example of the effect of these defects can
be seen when there is a coupling between the bending of
the surface and the configuration of the vector field
(MacKintosh and Lubensky, 1991; Park et al., 1992). For
instance, if we have a vector field living on a closed sur-
face then it must have two 11 defects. But because the
defects are discrete, when we consider Eq. (111) we find
that the Gaussian curvature K must also be confined to
the core of the defect since we may also integrate Eq.
(41) over any submanifold of M . But then all the Gauss-
ian curvature sits at the defects. If instead of viewing Eq.
(41) as a constraint, we can write it as an energy

F5
1
2 EE dS A@“u~x!2V~x!#21FCH , (119)

where FCH is the free energy for the surface (93), and A

FIG. 11. A vector field on a triangular patch. Note that the 11
defects at the vertices and at the center force 21 defects on
the edges.
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is the spin stiffness. On a flat surface we can always
choose V50 and so the first term in Eq. (119) just de-
scribes the usual Goldstone mode of broken rotational
invariance. On a curved surface the inclusion of V is
necessary in order to make the free energy uniquely de-
fined. The energy (119) now represents a competition
between surface bending and the requirement of two
11 topological defects which serve as a source for
Gaussian curvature. Both of these energies vanish for
the plane, but if we restrict our topology to a sphere, for
instance, then neither term can be made to vanish every-
where. Balancing these two effects, a vesicle would form
an oblate shape, as shown in Fig. 12.

VI. THREE DIMENSIONS AND BEYOND

We have covered the basic elements of the geometry
of curves and surfaces. Things become significantly more
abstract in three dimensions because there is no analog
of the normal vector, binormal vector, or surface normal:
the three-dimensional system is not embedded in a
higher-dimensional space. Though it might be hard to
visualize how something can have curvature without an
embedding space, we already know that it is possible.
Recall that the Gaussian curvature could be measured
without any knowledge of the surface normal. Quanti-
ties with that property are called intrinsic. The general
theory of relativity relies on intrinsic quantities to de-
scribe the curvature of four-dimensional space-time
(Misner et al., 1973)—there is no reference to a larger
space in which our universe lives. Though we will not go
into any mathematical detail, it is worthwhile to describe
two examples from soft materials.

The first is the blue phases of chiral liquid crystals
(Meiboom et al., 1981; Wright and Mermin, 1989). These
are phases in which there is a three-dimensional, peri-
odic modulation of the nematic director n(x) with a
length scale comparable to that of visible light. These
usually exist only over a narrow temperature range and
are stabilized by an often neglected term in the nematic
free energy. The Frank free energy for a nematic liquid
crystal is

FIG. 12. A vesicle with some sort of vector order parameter.
The Poincaré-Brouwer theorem assures that there are two de-
fects in the vector field, drawn as the dark lines on the vesicle.
The vesicle distorts so that the Gaussian curvature is larger in
the vicinity of the defects.
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F5
1
2 E d3x$K1~“•n!21K2@n•~“3n!#2

1K3@n3~“3n!#2

12K24“•@~n•“ !n2~“•n!n#%. (120)

The standard elastic constants K1 , K2 , and K3 are a
measure of the energy cost for splay, twist, and bend
modes, respectively (Chaikin and Lubensky, 1995). The
last term with elastic constant K24 is known as the
saddle-splay term. Though it is a total derivative, when
there are defects present it can contribute to the energy.
The blue phase is riddled with precisely those defects
that contribute to saddle splay. The remarkable thing
about this term is that it is precisely the Gaussian curva-
ture as in Eq. (91):

n~x!•“3V~x!52
1
2
“•@~n•“ !n2~“•n!n# . (121)

What does this mean? If there are surfaces to which the
nematic director is normal, then the saddle splay is the
Gaussian curvature of those surfaces. However, the
saddle splay is more general. Even if the director is not a
field of layer normals, the saddle splay is a measure of
curvature. Indeed, the blue phases can be understood as
unfrustrated systems in curved three-dimensional space
(Sethna et al., 1983). Projecting this texture into flat
space leads to the topological defects in these phases. A
compelling and alternative way of viewing the blue
phases is to view them as decorations of space filling
minimal surfaces (Pansu and Dubois-Violette, 1989). It
is the connection between topological defects and curva-
ture that makes it possible to identify and locate defects
in lattice simulations of liquid crystals (Priezjev and Pel-
covits, 2001).

Another three-dimensional system that can be under-
stood in terms of curvature is the melting and freezing of
hard-sphere fluids. In two dimensions, as hard spheres
condense from the fluid phase to the crystalline phase,
they form close-packed triangles. Eventually these can
assemble into a triangular lattice. The situation is not so
happy in three dimensions. There, four spheres can close
pack into a tetrahedron, but tetrahedra cannot assemble
to fill space. As a result, all lattices have a packing den-
sity lower than the best local packing. This difficulty can
be viewed as a geometric frustration along the same
lines as the blue phase. In positively curved space, how-
ever, this frustration can also be eliminated (Nelson,
1983; Nelson and Widom, 1983), and tetrahedral close
packing can fill space.

OUTLOOK

Though the mathematics described here has a certain
elegance and beauty, I hope that I have conveyed the
utility of differential geometry in a variety of physical
problems. While a geometric description of a system of-
ten leads to an intuitive perspective, there are many
other arenas in which a geometric formulation of the
Rev. Mod. Phys., Vol. 74, No. 4, October 2002
problem is not only useful but essential. Put together
with statistical mechanics, differential geometry has
been and will continue to be a powerful tool in the study
of soft materials.
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