Introduction to the physics of artificial gauge fields

Lecture 2: Magnetism in a periodic lattice

Jean Dalibard
Collège de France and Laboratoire Kastler Brossel
Magnetism and periodic potential

cyclotron motion

\[\ell_m = \sqrt{\frac{\hbar}{qB}} \]

motion on a square lattice

\[\begin{align*}
\frac{a^2}{\ell_m^2} &= \frac{qBa^2}{\hbar} = 2\pi \frac{\Phi}{\Phi_0} \\
\Phi &= Ba^2 \quad : \text{flux across a cell} \\
\Phi_0 &= \frac{\hbar}{q} \quad : \text{flux quantum}
\end{align*} \]

= Aharonov-Bohm phase along the contour of a cell
Relevant values for Aharonov-Bohm phase $2\pi \frac{\Phi}{\Phi_0}$

In a regular solid:

$$B \sim 100 \text{ T} \quad a \sim 1 \text{ Å} = 10^{-10} \text{ m}$$

$$\Phi = B a^2 \sim 10^{-18} \text{ Wb}$$

$$\Phi_0 = \frac{h}{q} \approx 4 \times 10^{-15} \text{ Wb}$$

$$\rightarrow 2\pi \frac{\Phi}{\Phi_0} \sim 10^{-3}$$

No drastically new effect expected in this “weak field” regime

If the flux $B a^2$ becomes much larger thanks to synthetic materials or artificial gauge fields, frustration may play a dominant role.
Outline

1. Gauge fields on a lattice
 Tight-binding model, gauge choice

2. Hofstadter butterfly
 Sub-bands, Chern number

3. Shaken lattices
 How to obtain non real tunnel matrix elements

4. Lattices combining several internal states
 Laser assisted tunnelling, flux lattices
Outline

1. Gauge fields on a lattice
 Tight-binding model, gauge choice

 Lewenstein et al., Advances in Physics, 56:2, 243-379 (2007)

2. Hofstadter butterfly
 Sub-bands, Chern number

3. Shaken lattices
 How to obtain non real tunnel matrix elements

4. Lattices combining several internal states
 Laser assisted tunnelling, flux lattices
2D tight-binding model

\[\hat{H} = \hat{H}_x + \hat{H}_y \quad : \text{separable} \]

\[\hat{H} = -J \sum_{j,l} (|w_{j+1,l}\rangle\langle w_{j,l}| + |w_{j,l+1}\rangle\langle w_{j,l}|) + \text{h.c.} \]

2D Bloch waves

\[q = (q_x, q_y) \quad |\psi_q\rangle = \sum_{j,l} e^{ia(q_xj + q_yl)} |w_{j,l}\rangle \]

\[E(q) = -2J (\cos(aq_x) + \cos(aq_y)) \]

Brillouin zone: \(q_j \in] -\pi/a, \pi/a] \)
Lattice in the presence of a magnetic field

Aharonov-Bohm phase associated to the link $r \rightarrow r'$

\[
\phi(r \rightarrow r') = \frac{q}{\hbar} \int_{r}^{r'} A \cdot dr
\]

Peierls substitution in the tight-binding regime:
Each tunnel term of the Hamiltonian gets the corresponding phase

\[
-J |w_{j+1,l}\rangle \langle w_{j,l}| \quad \rightarrow \quad -J e^{i\phi(j,l \rightarrow j+1,l)} |w_{j+1,l}\rangle \langle w_{j,l}|
\]
Uniform field and Landau gauge for a square lattice

On a given lattice cell, the only relevant physical quantity (gauge invariant) is $e^{i\Theta}$, where Θ is the sum of the phase of the tunnel coefficients around the cell.

Choose a zero-phase for all vertical links: discrete version of $A = (-By, 0, 0)$

Phase along a cell: $2\pi \alpha$ with $\alpha = \Phi/\Phi_0$

\[
\begin{align*}
\Theta &= 2\pi \alpha l + 0 - 2\pi \alpha (l - 1) + 0 \\
&= 2\pi \alpha
\end{align*}
\]

Here:

\[
\begin{align*}
\Phi &= B\alpha^2 & \text{: flux across a cell} \\
\Phi_0 &= h/q & \text{: flux quantum}
\end{align*}
\]
Outline

1. Gauge fields on a lattice

2. Hofstadter butterfly

 Sub-bands, Chern number

 Lewenstein et al., Advances in Physics, 56:2, 243-379 (2007)
 Di Xiao, Ming-Che Chang & Qian Niu, Rev. Mod. Phys. 82, p. 1959 (2010)

3. Shaken lattices

4. Lattices combining several internal states
General formulation of the problem

We look for the spectrum of the Hamiltonian

\[\hat{H} = -J \sum_{j,l} e^{i2\pi \alpha l} |w_{j+1,l}\rangle\langle w_{j,l}| + |w_{j,l+1}\rangle\langle w_{j,l}| + \text{h.c.} \]

We keep the periodicity along \(x \), but loose the periodicity along \(y \)

We look for the eigenstates as Bloch functions for \(x \)

\[|\Psi\rangle = \sum_{j,l} C_l e^{iqa_j x} |w_{j,l}\rangle \]

Recursion equation (Harper) for the coefficients \(C_l \)

Important particular case when the coefficient \(\alpha \) is rational, \(\alpha = p'/p \)

One then recovers periodicity along \(y \), but with the period \(pa \) instead of \(a \).

\[e^{i2\pi \alpha l} = e^{i2\pi \alpha (l+p)} \]
Example for the flux $\alpha = 1/3$

Unit cell with 3 sites $|A\rangle, |B\rangle, |C\rangle$ of size $a \times 3a$

Look for eigenstates as Bloch functions:

$$|\Psi_q\rangle = \sum_{j,l} e^{ia(jq_x + 3lj_y)} (\alpha |A_{j,l}\rangle + \beta |B_{j,l}\rangle + \gamma |C_{j,l}\rangle)$$

$$\hat{H}|\Psi_q\rangle = E(q) |\Psi_q\rangle \quad \text{3 x 3 matrix to diagonalize for each } q$$

The band gets fragmented in three sub-bands
General shape of the spectrum

Hofstadter, 1976

Fractal structure, self-similarity

Dirac points for $\alpha = 1/2, 1/4, \ldots$
Landau levels recovered

Hofstadter, 1976

Very narrow equidistant levels

\[E_n = (n + 1/2)\hbar\omega_c \]

with \(\omega_c = qB/M_{\text{eff}} \)

For the square lattice: \(M_{\text{eff}} = \frac{\hbar^2}{2Ja^2} \)
Hall conductance of a filled band (fermions)

Consider for example an electron gas with a chemical potential
\[\frac{\hbar \omega_c}{2} < \mu < \frac{3\hbar \omega_c}{2} \]

Transverse current:
\[\dot{N}_y = \frac{1}{\hbar} \Delta E_x \]

Generalization to insulator-type filling of any band structure:
\[\dot{N}_y = \frac{C}{\hbar} \Delta E_x \]

where \(C \) is an integer (Chern number) [Thouless et al, 1982]

What does one get for the lowest band of the Hofstadter butterfly?
\[\alpha = 1/p \quad \Rightarrow \quad C = 1 \quad \text{“topologically equivalent to LLL”} \]
How to calculate the Chern number?

Suppose that only the lowest band is filled

Bloch functions \(\psi_q(r) = e^{i q \cdot r} u_q(r) \) or \(|u_q⟩ \): periodic part

Thouless et al (1982): linear response theory (Kubo formula) to calculate the current \(J_y \) for a given \(\Delta E_x \)

Berry connection in quasi-momentum space: \(A(q) = i \langle u_q | \nabla_q u_q \rangle \)

Associated Berry curvature: \(B(q) = \nabla_q \times A(q) \)

\[
C = \frac{1}{2\pi} \int_{BZ} B_z(q) \, d^2q = \frac{1}{2\pi} \oint A(q) \cdot dq
\]

Integer number: robust property that can be changed only with a contact between two bands

In cold atom physics, the Berry curvature \(B(q) \) can be measured locally thanks to the Bloch oscillation technique
Physical interpretation of the Chern number

\[\dot{N}_y = C \Delta E_x / h \]

Apply a force \(F \) associated with the energy difference \(\Delta E_x = FL_x \)

Bloch oscillations along \(x \) with the period \(\tau_B = \frac{h}{Fa} \)

During one Bloch period, how many particles do cross a segment of length \(a \) ?

\[\delta N = a J_y \tau_B \]
\[= a \frac{1}{L_x} \left(\frac{C}{h} \Delta E_x \right) \left(\frac{h}{Fa} \right) \]
\[= C \quad \text{Chern number} \]
Outline

1. Gauge fields on a lattice

2. Hofstadter butterfly

3. Shaken lattices

 How to obtain non real tunnel matrix elements

 Goldman, Juzeliunas, Ohberg, Spielman, arXiv:1308.6533

4. Lattices combining several internal states
Goal of this approach

Lattice modulated in time

One wants to use the different parameters of the modulation
- amplitude
- frequency
- phase

to engineer the tunnel matrix elements \(J \rightarrow J e^{i\theta} \)

Systematic approaches to this type of problem:
- Floquet formalism
- Effective Hamiltonian: Rahav et al (2003); Goldman & Dalibard, arXiv 1404.4373

Here, we will use a simple treatment based on a (non-rigorous) time-average of the Schrödinger equation
Modulated 1D lattice

\[V(x, t) = V[x - x_0(t)] \]

Unitary transform \(\hat{U}(t) = \exp(\text{i}x_0(t)\hat{p} / \hbar) \) that allows one to go from

\[\hat{H}(t) = \frac{\hat{p}^2}{2M} + V[x - x_0(t)] \quad \text{to} \quad \hat{H}(t) = \frac{[\hat{p} - A(t)]^2}{2M} + V(x) \quad \text{with} \quad A(t) = M\dot{x}_0(t) \]

Tight-binding approach:

\[\hat{H}(t) = -J \ e^{iM\dot{x}_0(t)/\hbar} \sum_{j} |w_{j+1}\rangle\langle w_{j}| + \text{h.c.} \]

The Schrödinger equation for the state vector \(|\Psi(t)\rangle = \sum_{j} \alpha_{j}(t) |w_{j}\rangle \) leads to

\[i\hbar \dot{\alpha}_{j} = -J \left(\alpha_{j+1} e^{-iM\dot{x}_0(t)/\hbar} + \alpha_{j-1} e^{+iM\dot{x}_0(t)/\hbar} \right) \]

Two time scales: fast motion \(\dot{x}_0(t) \), slow motion \(J/\hbar \). A temporal average then gives:

\[i\hbar \dot{\alpha}_{j} = -J^{*} \alpha_{j+1} - J \alpha_{j-1} \]

Average matrix element: \(\bar{J} = J \langle e^{iM\dot{x}_0(t)/\hbar} \rangle \)
Changing the amplitude of the tunnel coefficient

\[\bar{J} = J \langle e^{iM\alpha x_0(t)/\hbar} \rangle \]

Eckardt, Weiss, Holthaus (2005)

Experiment in Arimondo’s group (Pisa, 2007) : sine modulation

\[\frac{Ma}{\hbar} \dot{x}_0(t) = \xi_0 \sin(\Omega t + \phi) \]

\[\bar{J} = J \langle e^{i \xi_0 \sin(\Omega t + \phi)} \rangle = J J_0(\xi_0) \]

Bessel function

| \bar{J} | / J

Allows one to change the sign of the tunnel coefficient, but not its phase
Changing the phase of the coefficient tunnel (version 1)

\[
\bar{J} = J \langle e^{iMa\hat{x}_0(t)/\hbar} \rangle
\]

Take a non-symmetric temporal modulation

\[
\frac{\bar{J}}{J} = \frac{T_1}{T} e^{iMav_1/\hbar} + \frac{T_2}{T} e^{iMav_2/\hbar}
\]

\[
v_1 T_1 + v_2 T_2 = 0
\]

Equivalent of a constant vector potential: shift of the minimum of the dispersion relation that can be measured in a time of flight experiment

Struck et al, Hamburg 2012
Changing the phase of the tunnel coefficient (version 2)

Back to a sine modulation
\[
\frac{Ma}{\hbar} \dot{x}_0(t) = \xi_0 \sin(\Omega t + \phi)
\]

Try to print the phase ϕ of the modulation on the tunnel coefficient

• Until now we saw $\bar{J} = J \mathcal{J}_0(\xi_0)$, which does not work.

• But one can also produce $\bar{J} = J \mathcal{J}_1(\xi_0) e^{i\phi}$ using a resonance!

Step one: superimpose a uniform force F to the lattice.

Energy offset of two adjacent sites $\hbar\Omega_0$

Step two: modulate at $\Omega \sim \Omega_0$

Kolovsky (2011)
Use a resonance (continued)

Look for the state vector as

\[|\Psi(t)\rangle = \sum_j \alpha_j(t) e^{i j \Omega_0 t} |w_j\rangle \]

Schrödinger equation

\[i\hbar \dot{\alpha}_j = - J \left(\alpha_{j+1} e^{-i (M \dot{x}_0(t)/\hbar - \Omega_0 t)} + \alpha_{j-1} e^{i (M \dot{x}_0(t)/\hbar - \Omega_0 t)} \right) \]

For \(\frac{M a}{\hbar} \dot{x}_0(t) = \xi_0 \sin(\Omega t + \phi) \) and \(\Omega = \Omega_0 \), the average tunnel coefficient is:

\[\bar{J} = J \langle e^{i[\xi_0 \sin(\Omega t + \phi) - \Omega_0 t]} \rangle = J \left\langle \sum_n J_n(\xi_0) e^{in(\Omega t + \phi)} e^{-i\Omega_0 t} \right\rangle \]

\[\bar{J} = J J_1(\xi_0) e^{i\phi} \]

OK for this 1D model (mere gauge transform)
Going to two dimensions

Non-symmetric modulation

Can be used for a triangular lattice (does not work if the sides of the unit cell are parallel)

Staggered flux

Hamburg 2013

Resonant modulation

Can be adapted to a square lattice to produce a uniform flux, with some subtleties...

Munich 2013, MIT 2013