

New materials: Where chemistry and materials science meet

Ulrich Schubert
Institute of Materials Chemistry

Stone Age Technology

needle (from bone)

burin

Draufsicht

scraper

Pottery Technology

Evolution of Materials

New technologies require new materials, e.g. no progress in microelectronics without new materials.

etc. for development of plastic solar cells.

New materials enable new technologies, e.g. polymers, molecular materials, polymers

What renders a material "new"

New forms (for a given chemical composition)

amorphous vs. crystalline

dense vs. porous (tailoring of porosity)

crystal size and shape

nanomaterials (nanoscale or nanostructured)

New chemical compositions

alloys (metals, semiconductors)

doping of crystalline solids

hybrid materials

Systems

separation of bulk and surface properties

hierachically structured materials

composites (and the role of interfaces)

"New Materials" – New Forms

- Amorphous materials
- Porous materials (aerogels, ordered mesoporous materials)
- Nanostructures

The Many Appearances (and Uses) of Silica (SiO₂)

Fumed silica

Fused silica

Stöber particles

Silica aerogel

Silica film

Amorphous Networks by Sol-Gel Processing

Gels are amorphous (= non-crystalline) solids
⇒ structures and properties are decisively influenced by
the reaction conditions (kinetic reaction control)

Network formation by stepwise condensation reactions

$$2 \equiv Si-OH \longrightarrow \equiv Si-O-Si \equiv + H_2O$$

Very similar for metal compounds

→ amorphous or microcrystalline gels

Sol-Gel Processing Chart

Solvent

Supercritical extraction

Dense glass or ceramic

Silica with Ordered Porosity

Self-assembled surfactant structures as template

Nanocasting: Mesoporous Silica as Template

Mesoporous carbon

Templated mesoporous Cr₂O₃:

Repetition of the nanocasting process with the mesoporous carbon as template results in a positive replica of the original template.

5 nm

K. Zhu et al., Chem. Comm. 2003

New Forms of Titania

Unusual forms of easily crystallizing metal compounds can be created by other methods as well: titania as an example

Titania nanotubes by anodic oxidation of titania I.V. S. Yashwanth, I. Gurrappa, 2004

Titania nanoheet by delamination of layered $K_{0.8}Ti_{1.73}Li_{0.27}O_4$

M. Ohwada et al, 2013

"New Materials" - New Chemical Compositions

- Alloys (metals, semiconductors)
- Metal-organic frameworks
- Hybrid materials by sol-gel processing

Alloys – the Case of Bulk Metallic Glasses

The glassmakers' traditional approach: rapid cooling

https://www.physik.unibas.ch

Bulk metallic glasses: confusion principle

http://thefutureofthings.com/

Example: Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10.0}Be_{22.5} (Vitreloy 1[®])

- Alloy with ≥ three elements.
- Significant difference in atomic size ratios (>12%) among the three main constituents (→ higher packing density).
- The three main elements should exhibit negative heats of mixing (→ retards local atomic rearrangements).

Semiconductor Alloys – the Case of Blue LEDs

Band gaps of some common semiconductors

Increasing the In proportion in $In_{1-x}Ga_xN$ shifts emission maximum to higher wavelengths (up to 0.57 μ m) \rightarrow blue and green LEDs (blue [0.440 μ m] at ca. 30% InN)

Chemical Vapor Deposition (CVD) $GaMe_3/InMe_3 + NH_3 \longrightarrow In_{1-x}Ga_xN + 3 CH_4$

Metal-organic Frameworks (MOF)

Zeolith A Topology

cube

Metal node (ions or clusters)

Linker

(Linkers can be functionalized)

Metal-organic Frameworks (MOF)

Xiang, et al. *Energy Environ. Sci.* (2010), **3**, 1469.

Metal-organic Frameworks (MOF)

$Cu_2(adip) \cdot 2 H_2O (PCN-14)$

Linker

Metal node (Cu₂⁴⁺)

S = 1753 m²/g Storage capacity for CH_4 at 125 K: 434 vol CH_4 / vol PCN-14 = 73.4% of the density of liquid CH_4

Inorganic-Organic Hybrid Materials – Molecular Lego

One of the advantages of amorphous materials (obtained by sol-gel processing): deliberate combination of (molecular or nanoscale) **building blocks**

- Combination of two or more inorganic building blocks → bi- and multimetallic oxides with any metal ratio
- Combination of organic and inorganic building blocks → inorganic-organic hybrid materials

Monomeric, oligomeric or polymeric organic building blocks

The goal is to create materials with specific combinations of properties by combining variable proportions of organic and inorganic building blocks. Molecular precursors play a decisive role since they become part of the final material. This requires their careful selection and chemical "design".

An Example: Corrosion-Protection Coating for Mg Alloys

Optimized composition / conditions *:

- Cleaning of the Mg substrate by pickling with an aqueous solution of 20% acetic acid and 5% NaNO₃.
- Coating sol from $MeSi(OEt)_3$, $Si(OEt)_4$, $(MeO)_3SiCH_2CH_2CH_2X$ (X = N-heterocyclic group), water, H₃PO₄, alcohol and a metal-organic compound as adhesion promotor

Corrosion test (WE34, 5% NaCl solution) after 24 h

untreated

only pickling

with sol-gel coating

^{*} DE 10 2009 005 105; PCT/EP2010/050090

From Molecular Building Blocks to Preformed Modules

and arrangement "by chance"

and arrangement according to a master plan

From Simple Molecular Building Blocks to Modules

Inorganic nano building blocks (NBB)

$$0-Si-0-Si$$
 $Si-0-Si-0$
 0
 $Si-0-Si-0$
 Me_2Si

Spherosilicates or POSS

ZnTiO₃ from Ti-Zn Mixed-Metal Precursor

J. Yang; SAXS: H. Peterlik, Univ. of Vienna

+ n CH₂=CH-COOH

$$Mn_{12}O_{12}(OOC-CH_3)_{16} \xrightarrow{- \text{n CH}_3COOH} Mn_{12}O_{12}(OOC-CH_3)_{16}$$

" Mn_{12} ": total cluster spin S = 10 (4 Mn^{IV} , S = $^{3}/_{2}$ + 8 Mn^{III} , S = 2)

Radical polymerization + CH₂=CMe-COOMe

PMMA crosslinked by Mn₁₂

Material combines the properties of organic polymers (processibility, flexibility, etc.) with that of the inorganic cluster (superparamagnetism)

"New Materials" - Systems

- Composite (and related materials) where the properties of the components are additive
- Composite (and related materials) where the properties of the components are synergetic
- Hierarchical structures

Functional Coating on a Substrate

Antireflective coating on glass

Glass: inexpensive, transparent, mechanically stable

Coating: antireflective

hydrolysis/ condensation

nanoporous SiO₂ layer (interparticle porosity)

Thermal annealing $(400-550^{\circ}C) \Rightarrow$ smear- and weather-proof porous SiO_2 layer

MERCK, FhG-ISE

Natural photosynthesis

Dye-sensitized solar cell (Grätzel Cell)

Hierarchical Structures

Hierarchical structures in nature

Spongy bone Bone marrow

Man-made hierarchical structures (silica)

N. Hüsing

diatoms

J. Wang et al., JACS, 2006

"During the past century, science developed a limited capability to design materials, but we are still too dependent on serendipity."

M.E.Eberhart, D.P.Clougherty, Nature 2004

More chemistry would possibly help!