CENTRE LE CANCER LEON BERARD


Dosimetric impact of intra-fraction motion during moderate hypo-fractionated prostate radiotherapy treatment: populationbased anisotropic margin for CTV-prostate

<u>**F. di Franco^{1,2}**</u>, T. Baudier^{1,2}, F. Gassa¹, D. Sarrut^{1,2}, M.C. Biston^{1,2}

¹ Léon Bérard Cancer Center, Université de Lyon, Lyon F-69373, France
 ² CREATIS, INSA, Université de Lyon, CNRS UMR5220, Inserm U1044, Lyon F-69622, France

CREATE

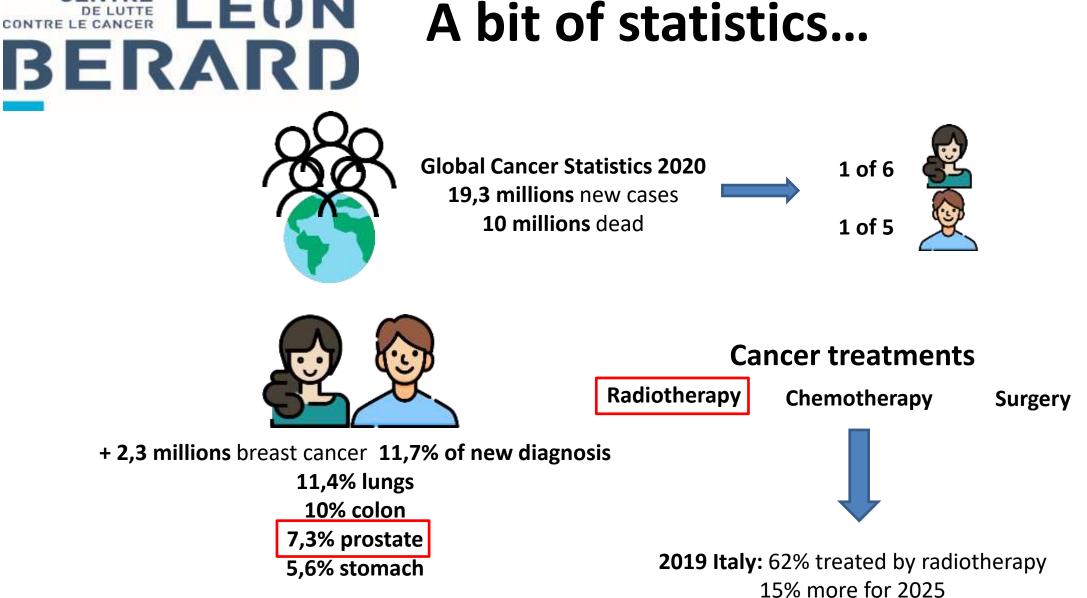
Located in Lyon, France

León Bérard Cancer Center (CLB)

- 1700 employees
- +11 500 patients/year
- 37 050 followed patients
- 2000 patient/year in clinical trials

Our group (~15 persons) is located at CLB

CREATIS lab


- Medical Imaging research lab
 - ~ 200 persons
 - 4 teams:
 - MYRIAD Modeling & Analysis for Medical Imaging and Diagnosis
 - ULTIM Ultrasound Imaging
 - TOMORADIO Tomographic Imaging and Radiation therapy
 - MAGICS NMR and Optics: from Measure to Biomarker
- Institutions
 - CNRS: French National Centre for Scientific Research
 - Lyon university

DE LUTTE E LE CANCER

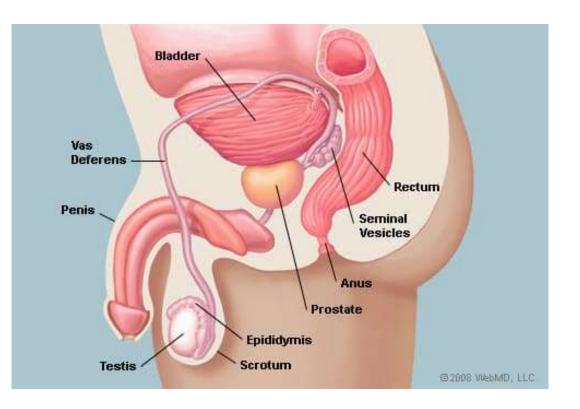
LEON

The process of radiation therapy will be customized for patients, depending on which form of radiation therapy patients and their physicians choose as their options.

- 1) Initial consultation
 - 2) Simulation
- 3) Treatment planning
- 4) Treatment Delivery
- 5) Post Treatment Follow-up

Prostate cancer (1)

Epidemiology:


In Italy 1 on 8 men is likely to develop prostate cancer during lifetime 2017: 34.800 new cases 2020: 36.074 new cases (19% of male cancers).

Treatment:

Surgery: prostatectomy Radiotherapy (also post surgery) Cryotherapy Hormone Therapy Chemotherapy Immunotherapy

Treatment protocols:

Total dose of 66 Gy (prostatectomy) 74-80 Gy (prostate)
2 Gy per fraction (> 30 fractions) Conventional radiotherapy
> 2 Gy per fractions Hypofractionation

CENTRE LEON DE LUTTE DE LUTTE LE CANCER BERARD

Prostate cancer (2)

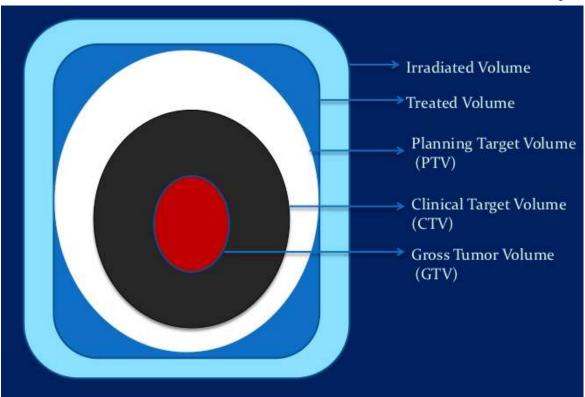
Treatment protocols:

2 Gy per fraction (> 30 fractions) Conventional radiotherapy3 or 5 Gy per fraction Hypofractionation

Why more fractions?

PROSTATE: very sensitive to the dose administered for each fraction $\alpha/\beta = 1,4$ **LINEAR QUADRATIC MODEL**

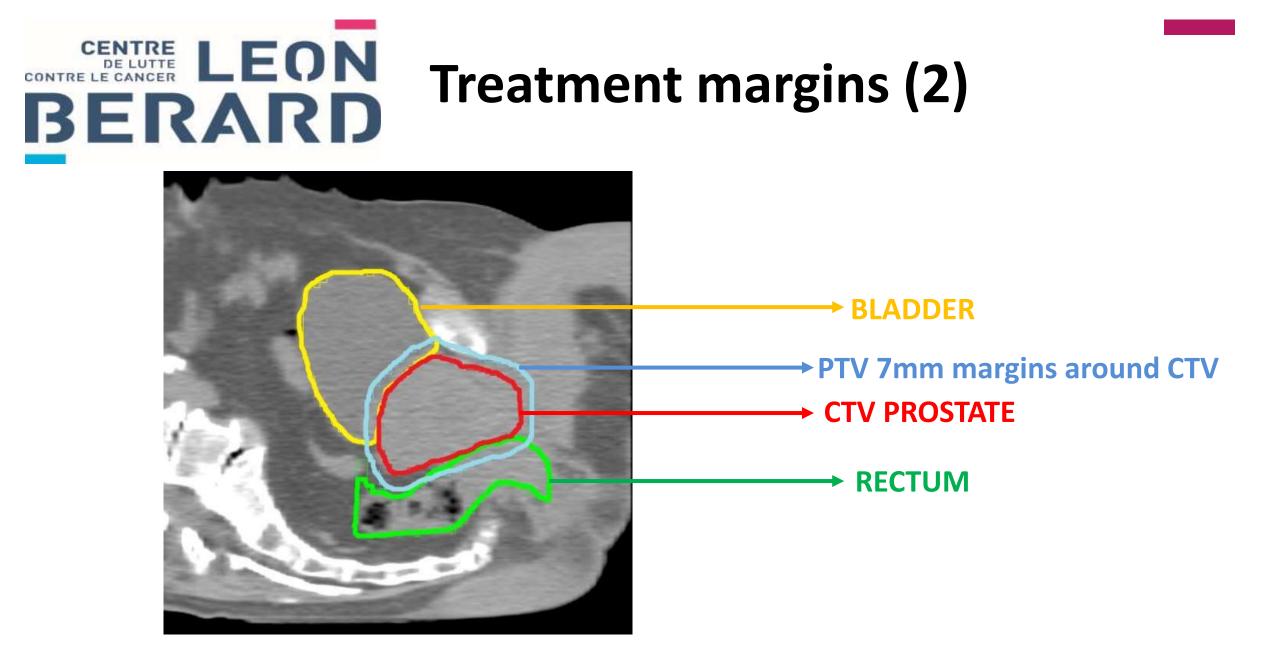
Reducing the number of fractions by increasing the dose of each could improve local tumor control


Hypofractionated radiation therapy: effective in treating prostate cancer at high risk of recurrence

Higher dose per fraction = 3 to 5 Gy per fraction \rightarrow shorter treatments

Need to increase accuracy in dose delivery while reducing treatment margins, which is inconsistent with increased session time.

CONTRE LE CANCER LE CANCE


International Commission on Radiation Units and Measurements (ICRU)

GTV = the gross demonstrable location and extent of tumor. It is what can be seen, palpated or imaged

CTV = contains the GTV, plus a margin for subclinical disease spread which therefore cannot be fully imaged

PTV = allows for uncertainties in planning or treatment delivery. It is a geometric concept designed to ensure that the radiotherapy dose is actually delivered to the CTV

Prostate movements

Inter-fraction motion = due to patient positioning \rightarrow target position is not the same position between simulation and delivery days

Intra-fraction motion = due to anatomical movements during the treatment \rightarrow target position is not the same between the beginning and the end of the session

Patient & session's dependent Anatomical variations: bladder & rectum Directions dependent How to monitor those movements?

EXAMPLE LEGANCER LEGAN BERARD How to monitor movements? (1)

Various techniques have been developed to enable real-time online prostate localization and monitoring:

- implanted electromagnetic transponders
- fiducial markers (FMs)
- real-time X-ray imaging
- MRI-linac imaging

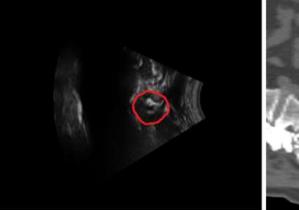
Radiofrequency systems - need to implant transponders inside the target volume:

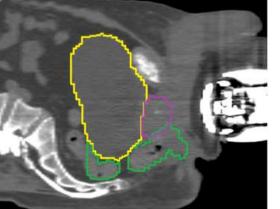
- Calypso (Varian Medical Systems, Palo Alto, CA)
- RayPilot (Micropos Medical AB)

Ultrasound systems - don't need to implant transponders inside the target volume:

• Clarity (Elekta Inc., Stockholm, Sweden)

BERARD How to monitor movements? (2)


Clarity® TPUS


- TransperiNeal (TP) ultrasound (US) probe allowing the pelvic area to be viewed during treatment without interfering with the beam
- Real-time reconstruction of 3D prostate's images
- A reference US image is acquired during the treatment simulation stage, with the patient in the same position as the CT image. During the treatment sessions, a US acquisition is performed and then re-aligned to the reference US image

Elekta

Our objective (1)

2000

THE PROBABILITY OF CORRECT TARGET DOSAGE: DOSE-POPULATION HISTOGRAMS FOR DERIVING TREATMENT MARGINS IN RADIOTHERAPY

> Marcel van Herk, Ph.D., Peter Remejer, Ph.D., Coen Rasch, M.D., and Joos V. Lebesque, M.D., Ph.D.

<u>2018</u>

Determination of Intrafraction Prostate Motion During External Beam Radiation Therapy With a Transperineal 4-Dimensional Ultrasound Real-Time Tracking System

Dwi Seno Kuncoro Sihono ¹, Michael Ehmann ², Sigrun Heitmann ², Sandra von Swietochowski ², Mario Grimm ², Judit Boda-Heggemann ², Frank Lohr ³, Frederik Wenz ², Hansjörg Wertz ²

2020

Duration-dependent margins for prostate radiotherapy—a practical motion mitigation strategy

Eric Pei Ping Pang^{1,2} • Kellie Knight² · Sung Yong Park¹ · Weixiang Lian¹ · Zubin Master¹ · Marilyn Baird² · Jason Wei Xiang Chan¹ · Michael Lian Chek Wang^{1,3} · Terence Wee Kiat Tan^{1,3} · Melvin L. K. Chua^{1,3,4} · Eu Tiong Chua^{1,3} · Wen Shen Looi^{1,3} · Wen Long Nei^{1,3} · Jeffrey Kit Loong Tuan^{1,3}

According to the literature, large displacements (>1cm) can occur during the treatment session.

Prostatic movements are generally more important in AP and SI directions

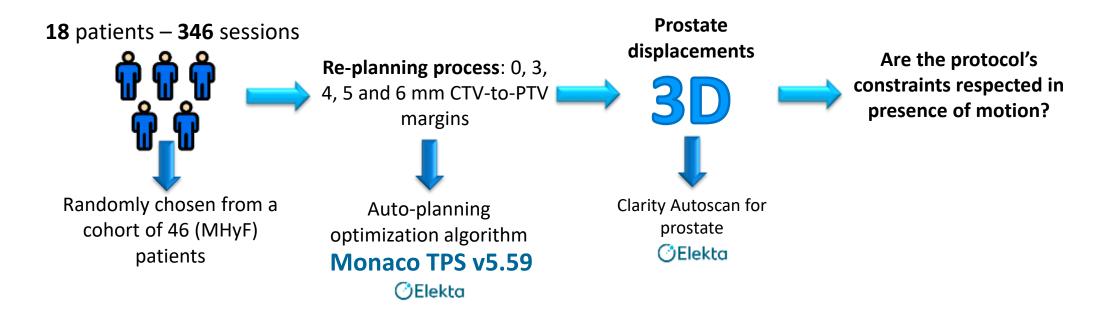
Numerous "margin recipes" for the correction of inter-fraction movement have been proposed in the literature but these do not always consider intra-fraction movement.

We want to propose

Population-based study

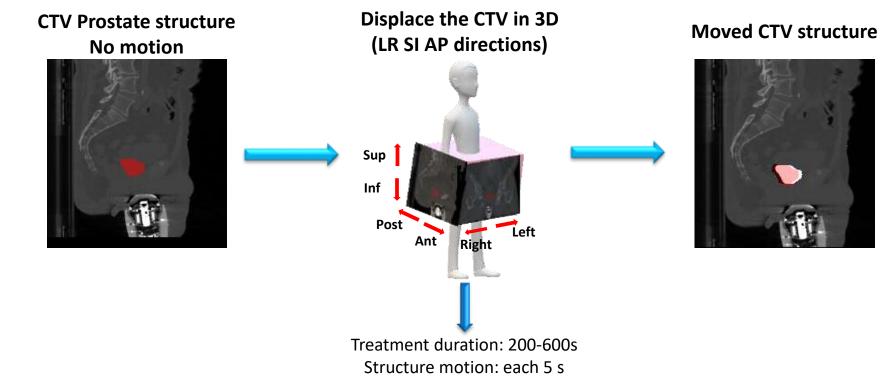
To retrieve

Non-isotropic margins


Using

A real-time intrafraction monitoring device

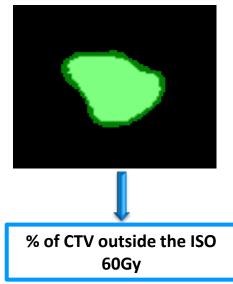
Mat & Met (1)


Moderate hypo-fractionated radiation treatment: 60 Gy in 20 fractions to the CTV

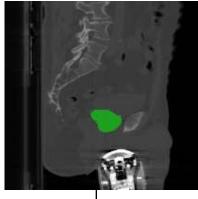
Treatment goal: 100% of the prescribed dose must cover 99% of the CTV-target (prostate) **PROFIT clinical trial**

Mat & Met (2)

Voxel shifting method: evaluate the robustness of the treatment plan moving the structures with the shifts observed during the treatment process.

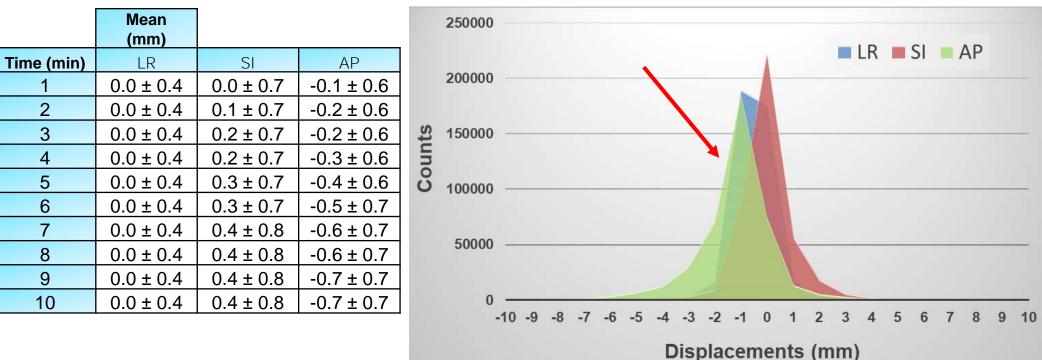


Mat & Met (3)


Moved CTV structure

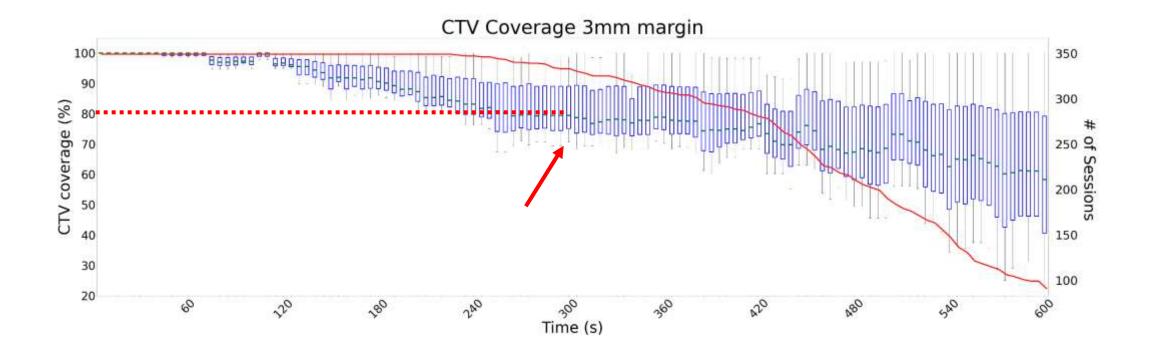
Superimpose the two structures to study CTV's coverage

Isodose 60 Gy



Results (1)

Cumulative intra-fractional prostate displacements


Tot # of patient = **46** Tot # of sessions = **876**

Greater displacements in INFERIOR and POSTERIOR directions

Results (2)

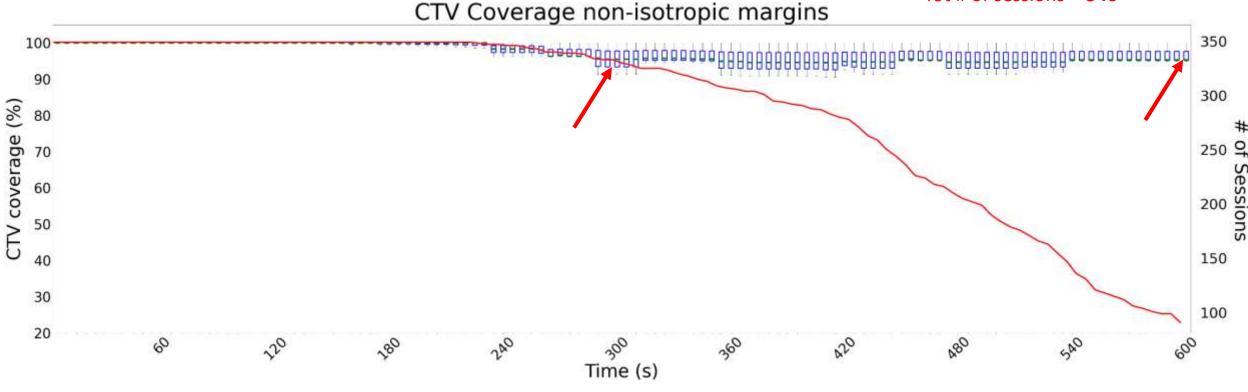
Results (3)

% of fractions well-covered by ISO100 for different isotropic margins, at different time

Time (min)	0 mm	3 mm	4 mm	5 mm	6 mm
1	97	99	100	100	100
2	93	97	99	99	100
3	83	91	95	98	100
4	76	83	89	96	98
5	70	79	84	91	97
6	71	79	84	92	96
7	69	77	81	91	95
8	60	67	74	81	95
9	58	63	72	81	92
10	58	58	69	78	90

Results (4)

Necessary non-isotropic margins (mm) for meeting 95%/99% coverage criteria


	95% PP - 99% D					
Time (min)	Left	Right	Superior	Inferior	Anterior	Posterior
1	0	0	0	0	0	0
2	0	0	0	0	0	2
3	0	0	0	0	0	3
4	0	0	0	2	2	4
5	0	0	0	3	2	5
6	0	0	2	3	3	5
7	0	0	2	3	3	5
8	0	1	2	3	3	6
9	0	1	3	4	4	7
10	0	1	3	4	4	8

Tot # of patient = **46** Tot # of sessions = **876**

Results (5)

Tot # of patient = **18** Tot # of sessions = **346**

Constraints on CTV prostate were achieved in 95% of fractions after 5 minutes treatment. We obtain the same mean target coverage as a homogeneous margin of 5 mm but by drastically reducing margins in LR, SI and anterior directions.

Same situation after 10 minutes treatment.

CENTRE LEON CONTRE LE CANCER BERARD

Results (6)

Non Isotropic Margins						
Authors	# of patients	Observation time (min)	Margins LR (mm)	Margins SI (mm)	Margins AP (mm)	Notes
Pang et al. (17)	55	8 15	1.02 1.84	2.41 4.29	2.65 4.63	Prostate monitoring: Clarity 4D TPUS Margins calculation: Van Herk's formula
Sihono et al. (8)	38	4	1.25	1.10	1.33	Prostate monitoring: Clarity 4D TPUS Margins calculation: Van Herk's formula
Steiner et al. (23)	17	15	2.3	3.9	6.2	Prostate monitoring: Fiducials Margins calculation: Van Herk's formula
di Franco et al.	46	4 8 10	0.6 1.2 1.5	1.3 2.7 3.2	2.4 5.2 6.2	Prostate monitoring: Clarity 4D TPUS Margins calculation: Van Herk's formula
Asymmetric Margins						
Pang et al. (13)	60	8	0.8 left 0.8 right	1.7 sup 2.7 inf	1.7 ant 2.9 post	Prostate monitoring: Clarity 4D TPUS Margins calculation: Van Herk's formula 90PP – 95D
di Franco et al.	46	8	0.4 left 0.5 right	0.7 sup 1.5 inf	0.9 ant 3.2 post	Prostate monitoring: Clarity 4D TPUS Margins calculation: Van Herk's formula 90PP – 95D
di Franco et al.	46	8	0 left 1 right	3 sup 3 inf	3 ant 6 post	Prostate monitoring: Clarity 4D TPUS Margins calculation: voxel shifting
		10	0 left 1 right	3 sup 4 inf	4 ant 8 post	95PP – 99D

Our results are in line with recent literature.

The greatest differences are in AP directions:

- patients' diet
- dosimetric criterion
- treatment protocol

Conclusions

Prostate movements impact dose distribution and target coverage

- Prostate shifts are not isotropic: larger shifts in posterior & inferior directions
- Increasing treatment time, larger prostate displacements could be observed
- Anisotropic and non-symmetric margins would be required to optimally take into account intra-fraction motion especially during hypofractionated treatments

Ongoing studies

WHAT'S NEXT?

- Influence of patient anatomical changes (bladder and rectal filling) on the dose delivered during HF radiotherapy treatments
- Influence of patient anatomical changes (bladder and rectal filling) on prostate displacements
- Exploring the dose delivered to the OARs using asymmetric margins

CONTRE LE CANCER LEON CREATIS

SOCIETÀ ITALIANA DI FISICA

Grazie per l'attenzione

Francesca.Di-Franco@creatis.insa-lyon.fr