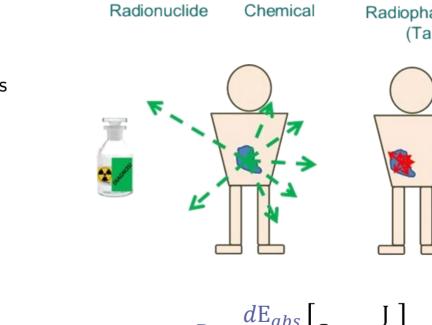


107[°] CONGRESSO NAZIONALE della SOCIETÀ ITALIANA DI FISICA

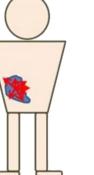
Advances in Monte Carlo patient-specific internal dosimetry for ⁹⁰Y-TARE treatments

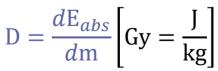
Pistone D.^{1,2}, Italiano A.^{1,2}, Auditore L.³, Campennì A.^{3,4}, Baldari S.^{3,4}, Amato E.^{2,3}

- 1) MIFT Department, University of Messina, Italy
- 2) INFN Section of Catania, Italy
- 3) BIOMORF Department, University of Messina, Italy
- 4) Nuclear Medicine Unit, University Hospital "G. Martino", Messina, Italy

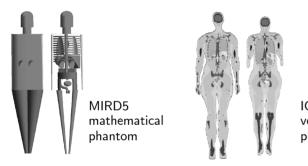

- Introduction
 - > Monte Carlo (MC) internal dosimetry in nuclear medicine
 - ⁹⁰Y TARE MC dosimetry via ^{99m}Tc-MAA SPECT/CT
- ◆ Topic 1
 - Optimization of computation times finding best combinations of simulation parameters
- ♦ Topic 2
 - Investigation and possible corrections of dose misevaluations caused by artefacts in input functional scans
- Conclusion and perspectives

Internal dosimetry in nuclear medicine


- Nuclear Medicine: employs radionuclides (radiopharmaceuticals) for diangostic and therapeutic purposes
- Internal dosimetry: quantification of absorbed dose to internally irradiated organs and tissues


Fundamental role:

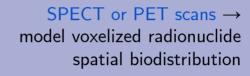
- > Damage to pathologic tissues
- > Risk for healthy tissues
- > Deduce dose-effect correlations \rightarrow
- \rightarrow Optimize activity administration

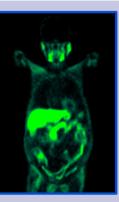


Monte Carlo dosimetry approach

Models needed for:

- 3D antropomorphic anatomy:
 - Mathematical models
 - Voxel level
 - Standard human models
 - Patient-specific




ICRP reference voxelized phantoms

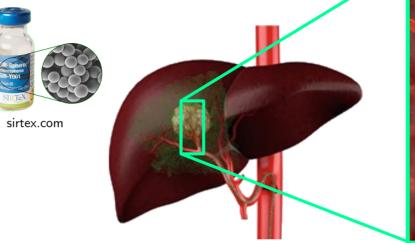
- Mathematical-physical calculation approach
 - Local energy deposition
 - > Dose point-kernels convolution
 - S-factors (MIRD)
 - > Direct Monte Carlo (MC) simulation

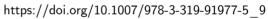
 $\begin{array}{l} \mathsf{CT} \text{ scans} \rightarrow \\ \mathsf{model} \text{ patient's body as} \\ \mathsf{voxelized} \text{ phantom} \end{array}$

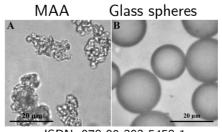
- MC simulation of radionuclide decays and interaction of daughters with matter
 - Score absorbed dose in each voxel
 - (codes exploting MC algorithms + e.m., weak and hadronic physics)

- MC + morphological and functional imaging
 - > Pro: most accurate and patient-specific method
 - \succ Cons: resources and longer computational time \rightarrow
 - \rightarrow not routinely used in clinics but excellent for research

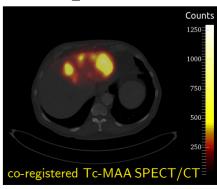
Dewaraja, Y. K. et al. *J. Nucl. Med.* 53(8) (2012) DOI: 10.2967/jnumed.111.100123.

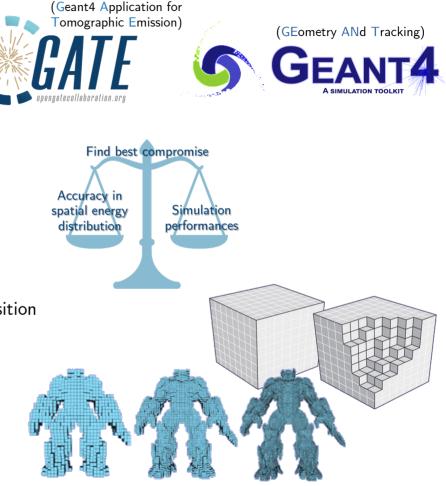

90Y TARE


Trans-Arterial Radio-Embolization (TARE) of HepatoCellular Carcinoma (HCC)


- Selective administration of ⁹⁰Y-labelled microspheres (glass or resin):
 - > 90 Y: high-energy β emitter:

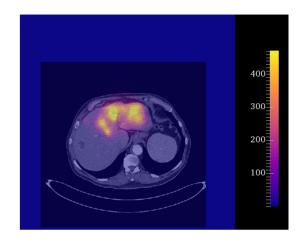
 $<\!E_{\beta_{-}}\!>=$ 932.4 keV, $E_{\beta_{-}\max}=$ 2278.5 keV, $t_{_{1\!\prime_{\!2}}}=$ 64.1 h

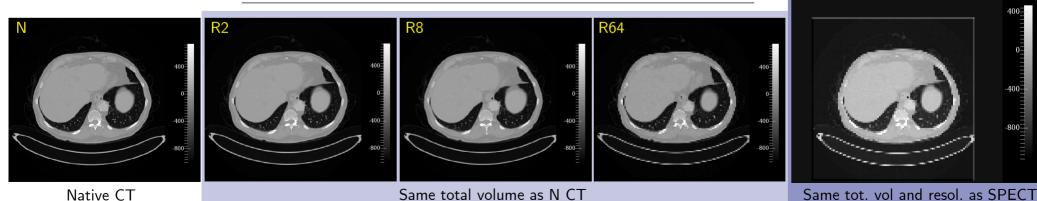

- Microspheres injected via catheter into hepatic hartery
- $\succ ~\rightarrow$ embolization of capillaires supplying lesion, permenent implant
- $\succ \quad \rightarrow \mbox{fixed distribution}$
- ♦ Eligibility → Pre-therapy ^{99m}Tc MacroAggregated Albumin (Tc-MAA) scintigraphy
 - \succ $~~^{99m}Tc:~\gamma$ emitter: $E_{_{\gamma}}=$ 0.1405 MeV, $t_{_{1\!\prime_{\!2}}}=$ 6.0 h
 - > MAA and microspheres: comparable biodistribution \rightarrow predict TARE
 - > Detect eventual shunts/leakages
 - > Quantitative Tc-MAA SPECT/CT \rightarrow dosimetry



ISBN: 978-90-393-5458-1

Topic 1: Optimization of simulation times


- Optimize simulation times acting on simulation parameters
- Investigate the behaviour of simulation time as a function of:
- Range cuts on production of secondary particles
- Avoid infrared divergence of low energy secondaries (e.g. delta-rays, bremsstrahlung) → poor CPU perfomance if tracking all until end
- > Stop secondaries below a threshold and energy dumped in last point
- \succ Balance to avoid imprecise stopping locations \rightarrow spatial energy deposition
- $_{\circ}$ $\,$ Resolution of the input CT scan
- > The higher the resolution, the greater the number of voxels
- → more sub-volumes in which particles are transported, and related quantities scored → larger matrices (→ larger files)


Input data and CT resamplings

- Starting data: co-registered ^{99m}Tc-MAA SPECT and CT for a patient suffering from HCC enrolled for TARE
- CT resamplings performed: 3D Slicer, *Resample Scalar Volume* and *Resample Image* (*BRAINS*) modules using Laczos interpolation

	CT name	v _R /v _N	Resolution	Voxel dimensions (mm ³)
	N		$512 \times 512 \times 146$	$0.89 \times 0.89 \times 2.00$
3DSlicer	R2	2.4	$384 \times 384 \times 110$	$1.19 \times 1.19 \times 2.65$
	R8	8.0	$256 \times 256 \times 73$	$1.79 \times 1.79 \times 4.00$
	R64	64.9	$128 \times 128 \times 36$	$3.58 \times 3.58 \times 8.11$
	RS	63.4	$128 \times 128 \times 105$	$4.66 \times 4.66 \times 4.66$

RS

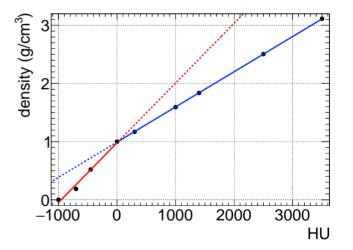
Range cuts and other simulations settings

For each CT resampling, multiple independent simulations with different

Voxel dimensions (mm³) CT name v_R/v_N Resolution Ν $512 \times 512 \times 146$ $0.89 \times 0.89 \times 2.00$ R2 $384 \times 384 \times 110$ $1.19 \times 1.19 \times 2.65$ 2.4 R8 8.0 $256 \times 256 \times 73$ $1.79 \times 1.79 \times 4.00$ R64 64.9 128×128×36 $3.58 \times 3.58 \times 8.11$ RS 63.4 $128 \times 128 \times 105$ $4.66 \times 4.66 \times 4.66$

All the examined combinations

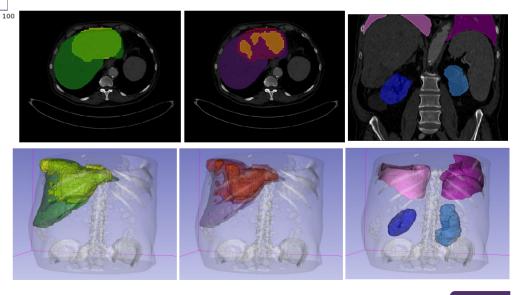
Production cut (mm)	СТ				
	Ν	R2	R8	R64	RS
0.01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.05	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
1.0	\checkmark				
1.5		\checkmark			
2.0			\checkmark		
4.0				\checkmark	\checkmark


=

Each simulation was run with the following settings:

production cuts on electrons, positrons and photons

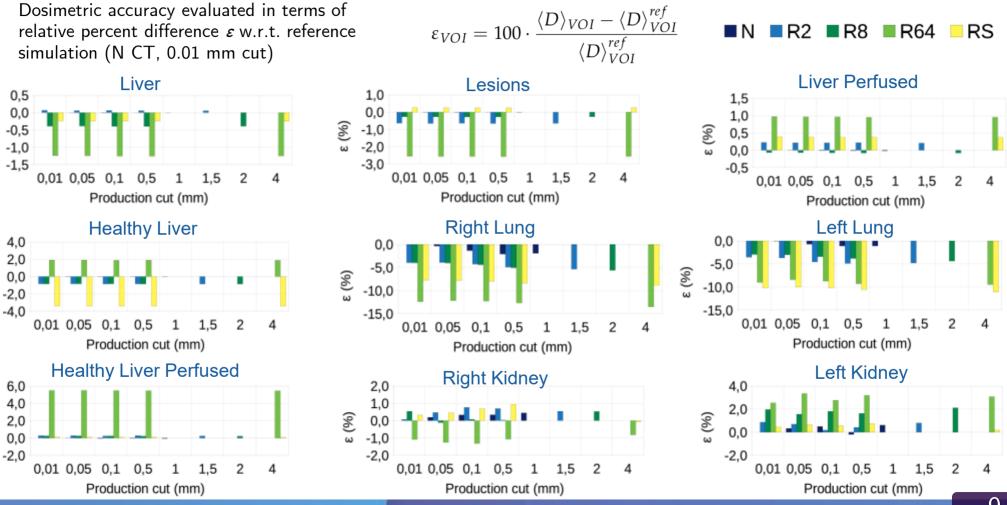
- GATE v9.0, relying on GEANT4 v10.05p01
- > Phantom definition: density intervals \rightarrow HU conversion with density tolerance 0.01 g/cm³, materials \rightarrow Table below
- > Source definition: Tc-MMA SPECT to simulate ⁹⁰Y-microspheres distribution
- > Physics: *G4EmStandard* opt3 + *G4RadioactiveDecay*
- \rightarrow Primaries: ⁹⁰Y ions at rest (2.10⁸ histories)

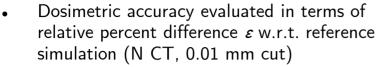

Material	HU intervals	ρ (g/cm ³)
G4_AIR	$HU \le -855.75$	$ ho \leq 0.10$
G4_LUNG_ICRP	$-855.75 < HU \le -126.50$	$0.10 < ho \leq 0.85$
G4_ADIPOSE_TISSUE_ICRP	$-126.50 < HU \le -38.98$	$0.85 < ho \leq 0.94$
G4_TISSUE_SOFT_ICRP	$-38.98 < HU \le 343.61$	$0.94 < ho \leq 1.2$
G4_BONE_CORTICAL_ICRP	HU > 343.61	ho > 1.2

Dose calculations

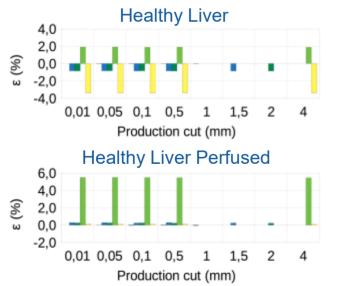
- For each simulations dose maps were scored, with same resolution as corresponding CT used
- Correct values in each voxel deduced as: $D^{ijk} = \frac{D_{out}^{ijk}}{N_{evts}} \cdot \tilde{A}$ Assuming (reasonable for TARE): monoexponential behaviour with Activity (GBq) 1 5 instantaneous uptake no biological clearance \rightarrow \rightarrow effective decay time = physical nuclide decay time $\tilde{A} = A(0) \int_0^\infty e^{-t/\tau_{90Y}} dt = A(0) \cdot \tau_{90Y}$ Total injected activity time (h **R**2 . . . 3 dose maps for range cut = 0.01 mm RS R64 R8
- Then, average doses calculated in Volumes Of Interest (VOIs):
 - Liver, lesions, liver perfused, healthy liver, healthy liver perfused, right lung, left lung, right kidney left kidney

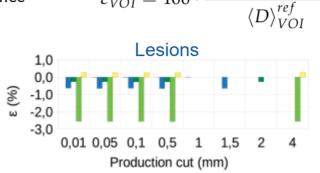
$$\langle D \rangle_{VOI} = \frac{1}{N_{VOI}^{vox}} \sum_{i,j,k \in VOI} D^{ijk}$$

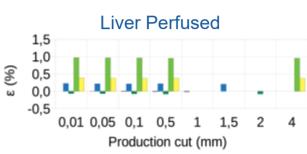



.

ε (%)


s (%)


ε (%)



 $\varepsilon_{VOI} = 100 \cdot \frac{\langle D \rangle_{VOI} - \langle D \rangle_{VOI}^{ref}}{VOI}$

■R2 ■R8 ■R64

N I

RS

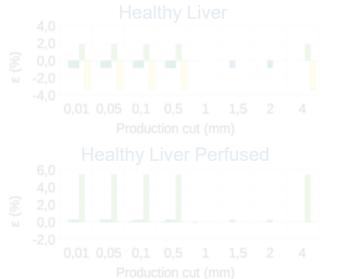
 Liver-related VOIs:
 eft Lung

 > For a fixed resampling no appreciable differences varying cuts
 eft Lung

 > |ε| < 1% for all resamplings except R64 (and RS only for healthy liver)</td>
 1 0,5 1 1,5 2

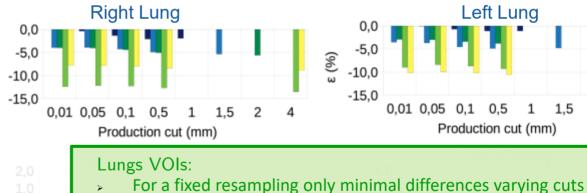
 Right Kidney
 4,0

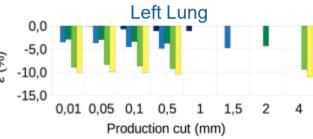
 2,0
 Right Kidney


 4,0
 2,0

 0,0
 0,0

 1,0
 0,0


Dosimetric accuracy evaluated in terms of . relative percent difference ε w.r.t. reference simulation (N CT, 0.01 mm cut)

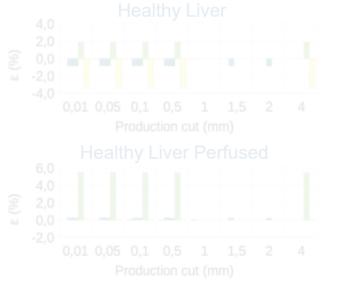


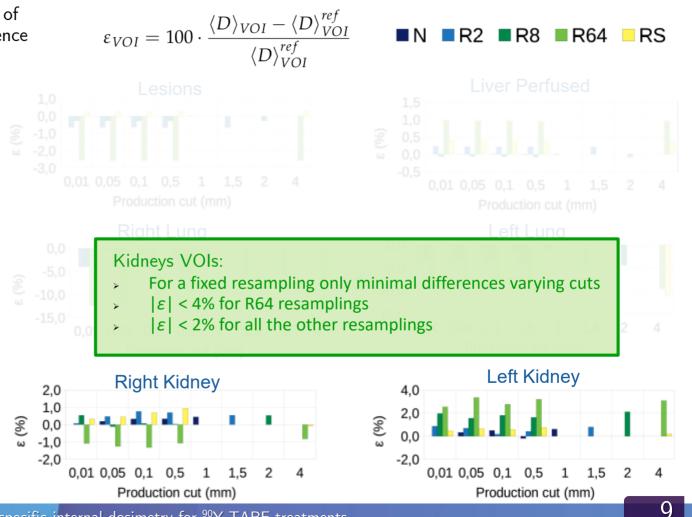
 $\varepsilon_{VOI} = 100 \cdot \frac{\langle D \rangle_{VOI} - \langle D \rangle_{VOI}^{ref}}{VOI}$

■N ■R2 ■R8 ■R64

- $|\varepsilon| < 5\%$ for R2 and R8 resamplings
- $|\varepsilon| < 10\%$ for RS resampling
- $|\varepsilon| < 13\%$ for R64 resampling

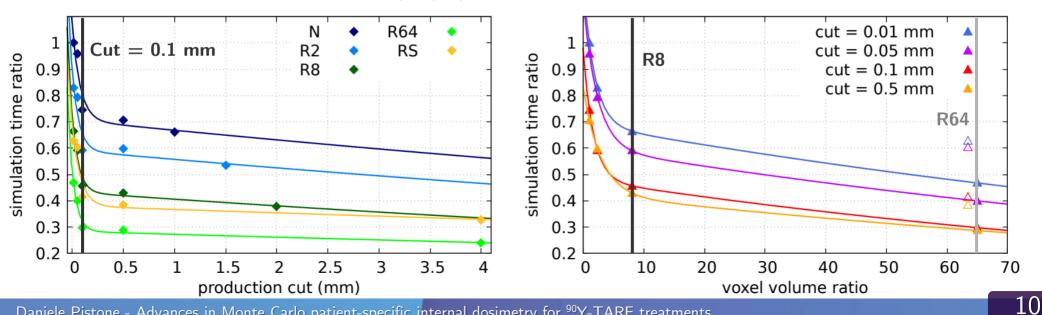
n fuund


Daniele Pistone - Advances in Monte Carlo patient-specific internal dosimetry for ⁹⁰Y-TARE treatments


ε (%)

RS

Dosimetric accuracy evaluated in terms of . relative percent difference ε w.r.t. reference simulation (N CT, 0.01 mm cut)

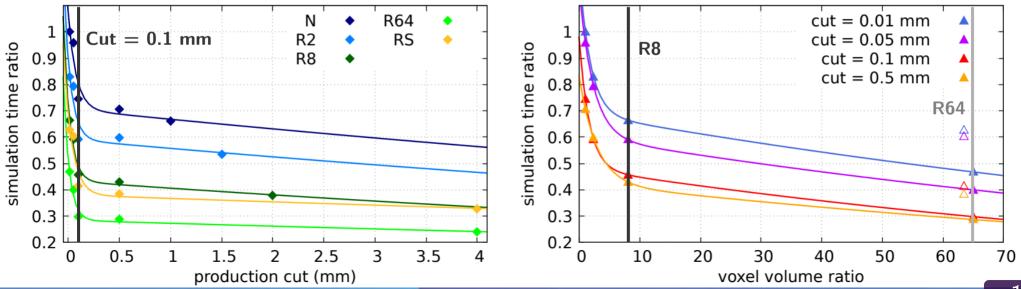


Simulation times vs parameters values

- All simulations run in single cores of a Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz processor
- Simulation times registered as GATE variable *ElapsedTimeWoInit*
- and compared in terms of ratio with reference simulation

Given a CT resol., cuts > 0.1 mm reduce only slightly time

- Increasing cut lenght and reducing CT resolution (voxel volume ratio w.r.t. reference, in plots): $f(x) = ae^{-bx} + ce^{-dx}$
 - Early rapid decrease + late slow decrease, well described by biexponential
 - But excluding RS results in right plot (open triangles) \rightarrow do not conserve N CT's total volume


Daniele Pistone - Advances in Monte Carlo patient-specific internal dosimetry for ⁹⁰Y-TARE treatments

Given a cut, R64 does not reduce much time w.r.t. R8

Simulation times vs parameters values

Taking into account both dosimetric accuracy and time saving

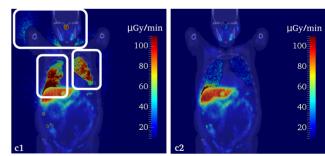
- Best combination of parameters:
 - ▶ R8 resampling (doubling voxel dimensions) + 0.1 mm cut \rightarrow
 - Simulation time reduced to 45-50% of reference
 - Ensures agreemenet ($|\epsilon|$) of 1% in liver-related VOIs, 4% in lungs, 2% in kidneys
- Fastest simulations:
 - R64 resampling, cuts 0.1-0.5 mm
 - Agreement of 6% in healthy liver perf., 3% in other liver sections, while reducing simulation time to 30% of reference
 - Acceptable for liver-related VOIs alone

Topic 2: Dose misevaluations due to artefacts in input scans

As already said

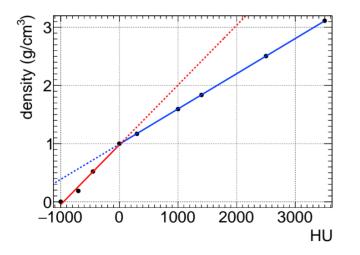
• Direct Monte Carlo + patient-specific input data = gold standard for internal dosimetry

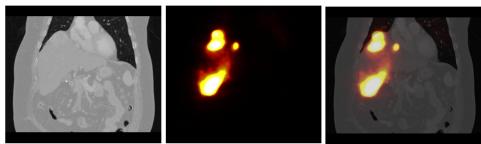
but


- **Provided that** simulated system reproduces precisely the real system
- Possible dose misevaluations in low-density regions (e.g. lungs) due to functional imaging artefacts (background noise, reconstruction noise, motion blurring)
 - Observed in our recent sudies on diagnostic dosimetry for ¹⁸F-choline PET

Aim

 Investigate such misevaluations and find corrections for ⁹⁰Y TARE dosimetry via SPECT filtering techniques

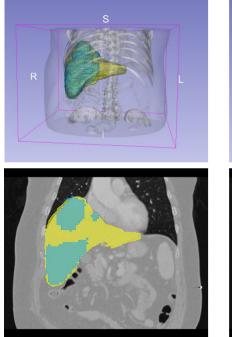

The map is not the territory

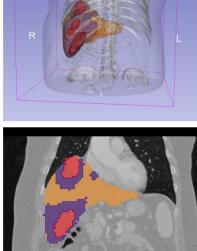

Pistone D. et al. 2020 AAPP https://doi.org/10.1478/AAPP.981A5

Data and simulations settings

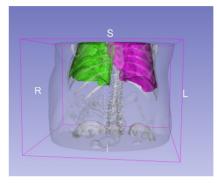
- Simulations run with the following settings:
- > Software: GATE v9.0 and indepentendly GAMOS v6.0.0
- > Input data: co-registered ^{99m}Tc-MAA SPECT and CT
- > Phantom definition: density intervals \rightarrow HU bilinear conversion, materials \rightarrow Table below
- Source definition: Tc-MMA SPECT to simulate ⁹⁰Y-microspheres distribution
- Physics: G4EmStandard_opt3 + G4RadioactiveDecay
- > Primaries: 90Y ions at rest (2.10⁸ histories)

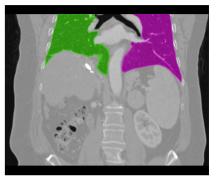
СТ

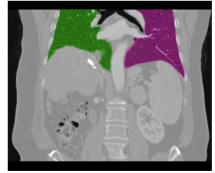

^{99m}Tc-MAA SPECT

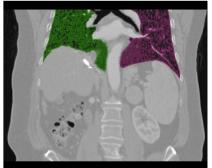

co-registered

Material	HU intervals	ρ (g/cm ³)
G4_AIR	$HU \le -855.75$	$ ho \leq 0.10$
G4_LUNG_ICRP	$-855.75 < HU \le -126.50$	$0.10 < ho \leq 0.85$
G4_ADIPOSE_TISSUE_ICRP	$-126.50 < HU \le -38.98$	$0.85 < ho \leq 0.94$
G4_TISSUE_SOFT_ICRP	$-38.98 < HU \le 343.61$	$0.94 < ho \leq 1.2$
G4_BONE_CORTICAL_ICRP	HU > 343.61	ho > 1.2

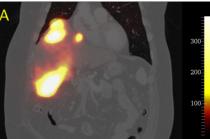

Volumes of interest (VOIs)


Liver, Lesion (segmented on CT, manual) Liver Perfused (segmented on SPECT, threshold based) Healthy Liver (= Liver – Lesion) Healthy Liver Perfused (= Liver Perfused – Lesion)

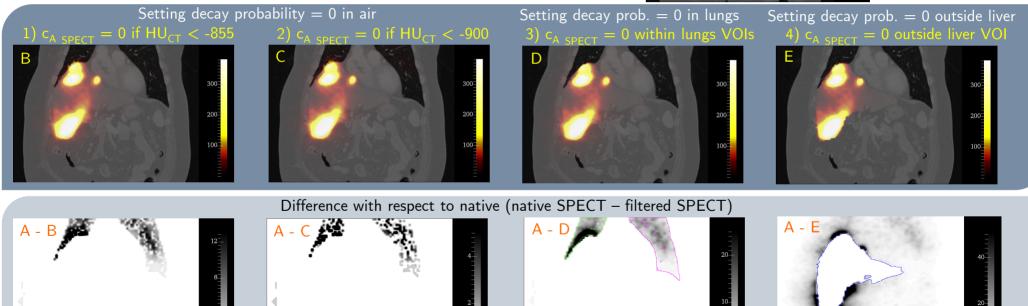



Visible sections of Right Lung and Left Lung in the FOV of the CT (segmented on CT, threshold based: HU < -150)

 $\begin{array}{l} \mbox{Alternative lungs segmentations: air removal} \\ \mbox{1) R. L., L. L. -air (HU < -900)} \\ \mbox{2) R. L., L. L. -air (HU < -855)} \end{array}$



Material	HU intervals	ρ (g/cm ³)
G4_AIR	$HU \leq -855.75$	$ ho \le 0.10$
G4_LUNG_ICRP	$-855.75 < HU \le -126.50$	$0.10 < ho \le 0.85$


SPECT filtering techniques

• To investigate the effect of SPECT artefacts

Starting from Native Tc-MAA SPECT

Filtered SPECTs

Dose calculations

Indepentent simulations run for native SPECT and each filtered SPECT described, both with GATE and GAMOS

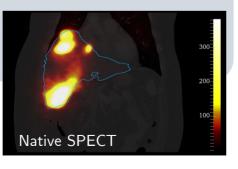
Л

For each simulation Dose in each voxel:

$$^{jk} = \frac{D_{MC output}^{ijk}}{N_{ents}}\tilde{A}$$

Assuming:

• instantaneous uptake


• no biological clearance \rightarrow effective decay time = physical nuclide decay time Total injected activity $\tilde{A} = \int_{0}^{\infty} A(t)dt = A(0) \int_{0}^{\infty} e^{-\lambda_{90Y}t} dt = \overline{A(0)} \cdot \tau_{90Y}$

Additional caclulation:

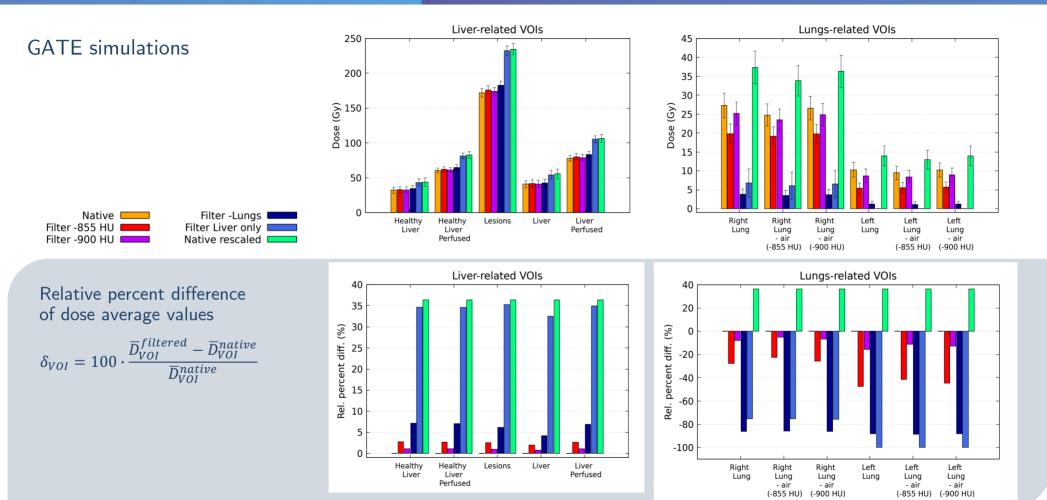
Native SPECT with post-simul. background correction factor

$$D_{bkg \ corr}^{ijk} = D_{native}^{ijk} \cdot b$$
$$b = \frac{A_{whole \ SPECT}}{A_{liver \ VOI}}$$
Average dose in a VOI:

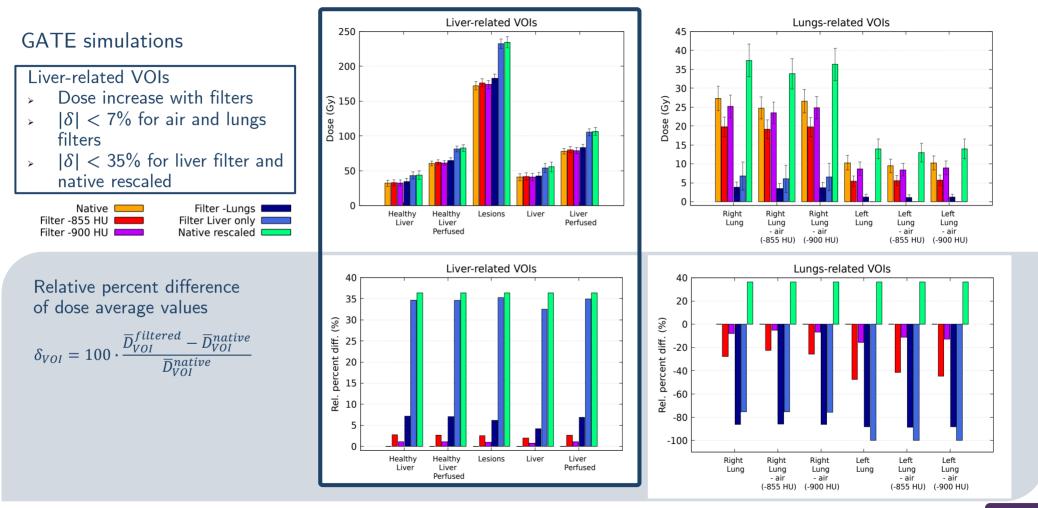
$$\overline{D}_{VOI} = \frac{1}{N_{voxels \in VOI}} \sum_{ijk \in VOI} D^{ijl}$$

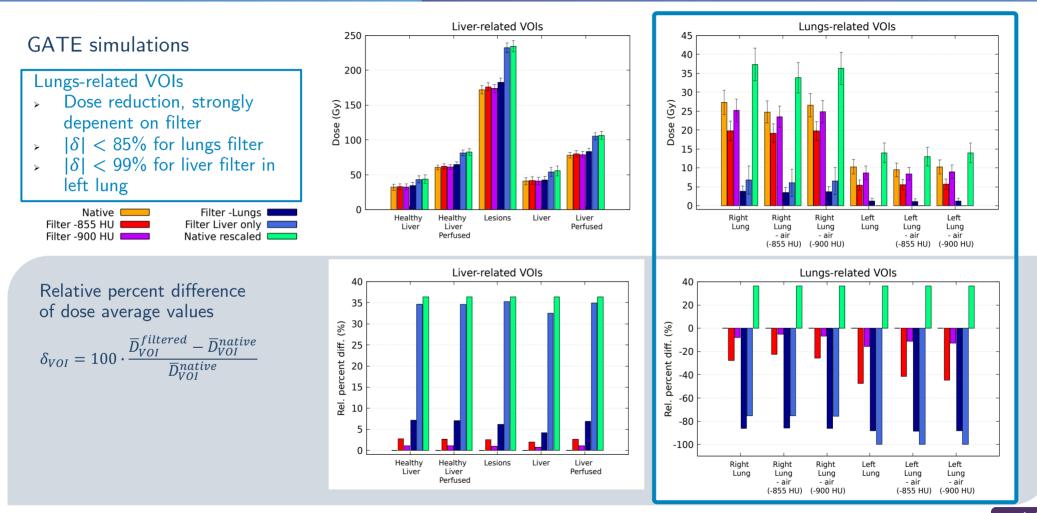
Single voxel dose stat. uncert.: standard deviation of the mean

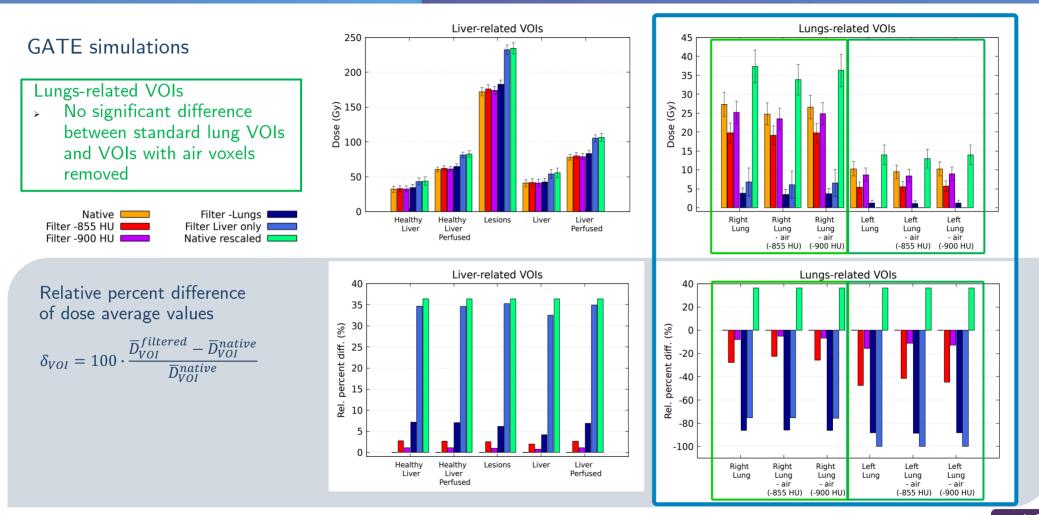
$$\sigma^{ijk} = \sqrt{\frac{1}{N_{evts} - 1} \left(\frac{\sum_{n=1}^{N_{evts}} (d_n^{ijk})^2}{N_{evts}} - \left(\frac{\sum_{n=1}^{N_{evts}} d_n^{ijk}}{N_{evts}}\right)^2\right)}$$
$$d_n^{ijk} = \text{deposited dose in a single primary event } n$$


• Quantity used for stat. unc. on average doses in VOIs: average value of σ^{ijk} within VOI

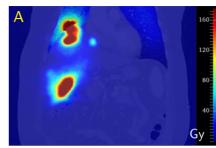
$$\bar{\sigma}_{VOI} = \frac{1}{N_{voxels \in VOI}} \sum_{ijk \in VOI} \sigma^{ijk}$$

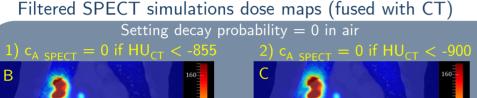

 Native-filtered SPECT simul. comparison: relative percent difference of dose average values

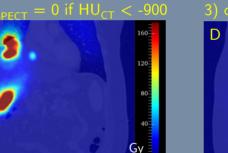

 $\delta_{VOI} = 100 \cdot \frac{\overline{D}_{VOI}^{filtered} - \overline{D}_{VOI}^{native}}{\overline{D}_{VOI}^{native}}$


GATE-GAMOS simul. comparison: relative percent difference of dose average values $\varepsilon_{VOI} = 100 \cdot \frac{\overline{D}_{VOI}^{GAMOS} - \overline{D}_{VOI}^{GATE}}{\overline{D}_{VOI}^{GATE}}$

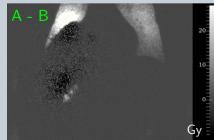
16

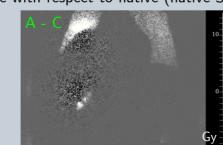


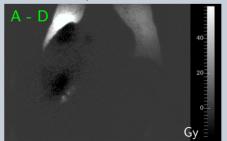

Dose maps comparison


Gv

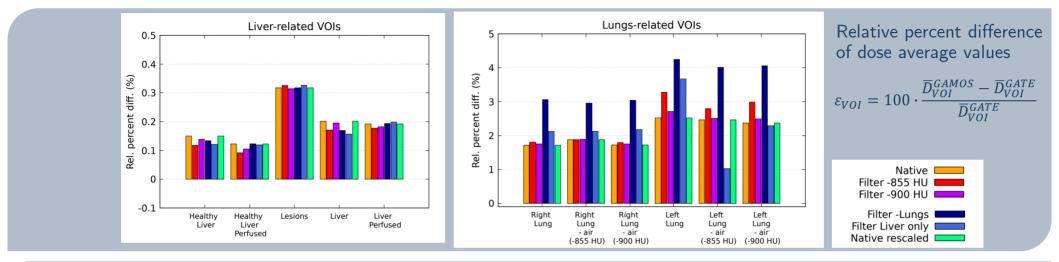
GATE simulations

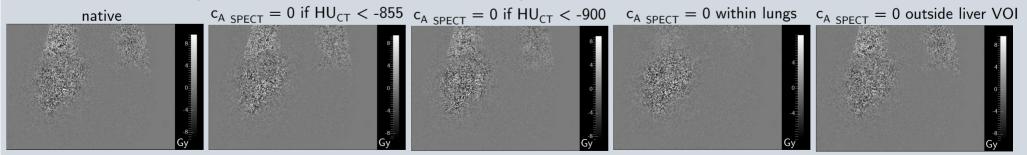

Native SPECT simulation dose map (fused with CT)

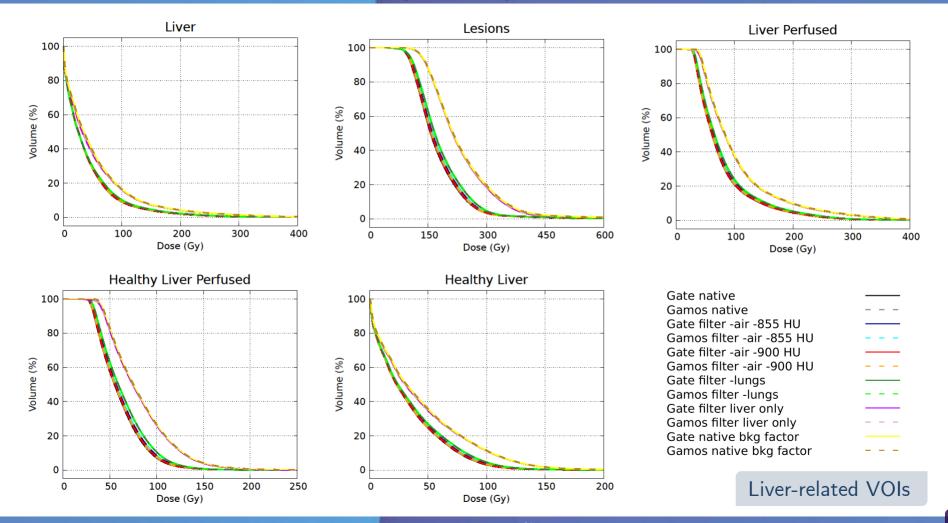


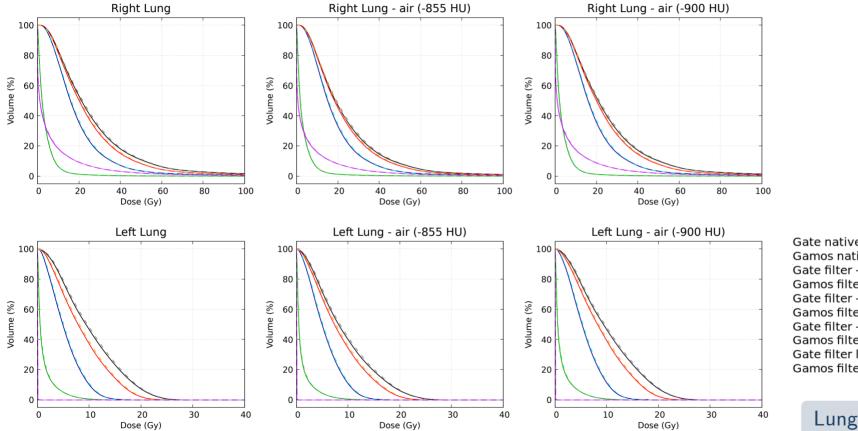


Difference with respect to native (native SPECT sim. dose map - filtered SPECT sim. dose map)






GATE-GAMOS comparison


GAMOS-GATE differences (GAMOS sim. dose map – GATE sim. dose map)

Dose-Volume Histograms (DVHs)

Dose-Volume Histograms (DVHs)

Gate native	
Gamos native	
Gate filter -855 HU	
Gamos filter -855 HU	
Gate filter -900 HU	
Gamos filter -900 HU	
Gate filter -lungs	
Gamos filter -lungs	
Gate filter liver only	
Gamos filter liver only	

Lungs-related VOIs

Conclusion

- Two main studies reported, aimed at optimizing voxel-level patient-specific MC internal dosimetry for ⁹⁰Y TARE treatments
- 1) Behaviour of simulation time vs CT resolution and production range cuts
 - > Best parameters combination: resampling giving CT voxels of the order of $2.0 \times 2.0 \times 4.0 \text{ mm}^3$ (dimensions $\approx 2 \times \text{ conventional CT voxels}$) + 0.1-0.5 mm cuts
- 2) Investigation and correction of dose misestimations due to artefacts in input functional scans (background noise, reconstruction noise, motion blurring)
 - > Even if MC is gold standard for internal dosimetry, must be used with criterion!
 - > Using merely native SPECTs as input can produce:
 - Overestimation of lungs doses
 - Underestimation of liver doses
 - > Appropriate filtering procedures (thresholds + logical operations) of functional scans could lead to more realistic simulations → more reliable results
- Perspectives:
 - > Extend the studies to further cases (ongoing)
 - > Possible experimental + MC studies on phantoms

SOCIETÀ ITALIANA DI FISICA

107° CONGRESSO NAZIONALE

13-17 settembre 2021

Thank you for your attention!

dpistone@unime.it daniele.pistone@hotmail.it

