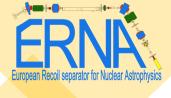


Direct Measurements in Nuclear Astrophysics

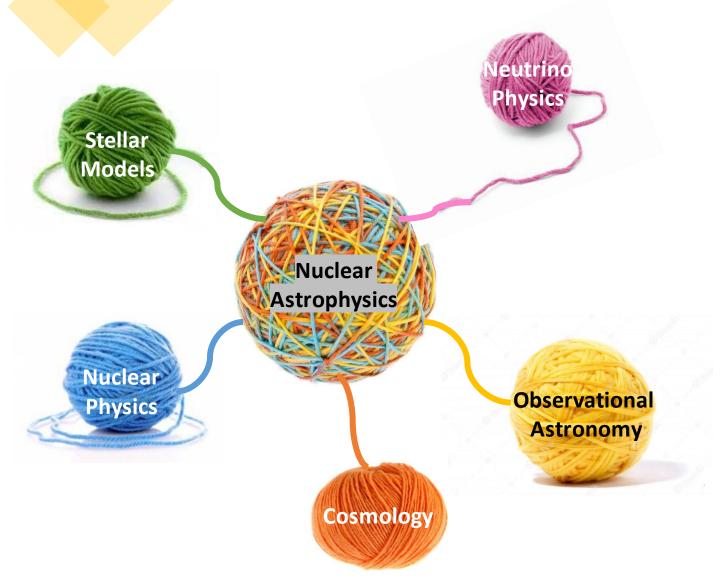
D.Piatti for LUNA (denise.piatti@pd.infn.it)

S. Amaducci for n_TOF


(simone.amaducci@Ins.infn.it)

R. Buompane for ERNA

(raffaele.buompane@na.infn.it)



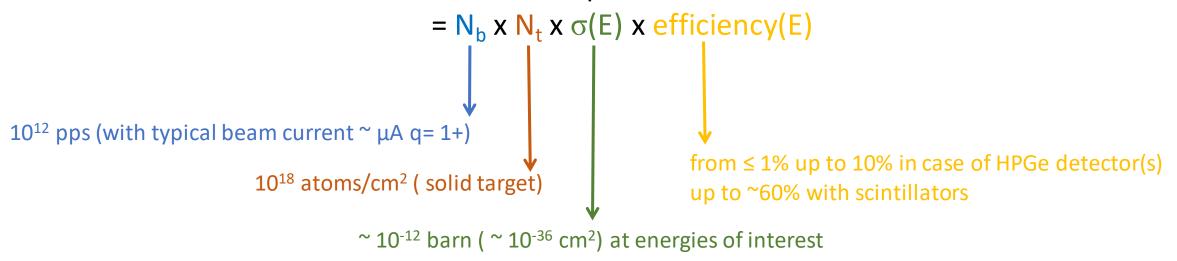
Nuclear Astrophysics

- Nuclear Astrophysics is a transversal science
- Three souls:
 - Theoretical
 - Experimental
- The experimental can be divide:
 - Direct Measurements
 - Indirect Measurements

Italian Facilities for Direct Measurements for Nuclear Astrophysics

n_TOF @ CERN

LUNA400kV at LNGS



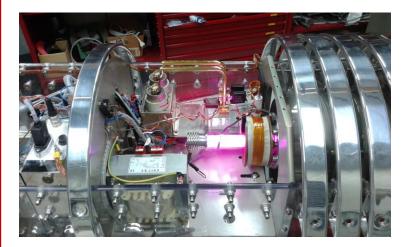
Direct Measurement in Nuclear Astrophysics

Reaction Rate = reactions per unit of volume and time

Observed Count Rate = 1-10 counts/day -> S/N ≤ 1

Laboratory for Underground Nuclear Ostrophysics

- LUNA is located at Laboratori Nazionali del Gran Sasso
- Shielded by 1400 m of rock (4000 m w.e.)
- Background reduction:
 - Muon 10⁻⁶
 - Neutron 10⁻³
 - by factor 15
- -> γ-spectrum
- -> particle spectra
- 30 years long story -> 3 accelerators:


TV =50 - 400 kV

 $H^+ = 1000 \mu A$

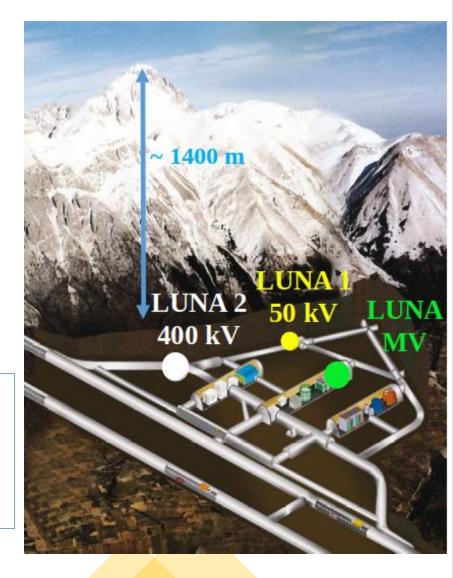
 $He^{+} = 500 \mu A$

High stability and collimated beam

2 Beamlines: solid and gas target

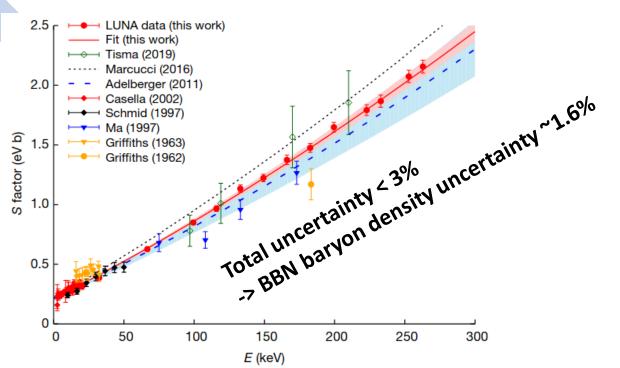
LUNA50kV(1991-2001)

LUNAMV (2022-...)


TV = 0.3 - 3.5 MV

 $H^{+} = 1000 \mu A$

 $He^{+} = 500 \mu A$


 $^{12}C^{+}/^{12}C^{++} = 150/100 \mu A$

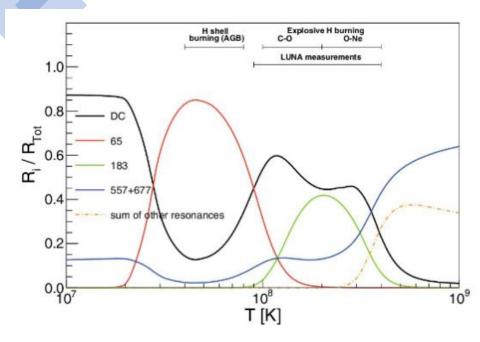
2 beamlines: solid and gas target

Latest News from/about LUNN

High precision study of the ${}^{2}H(p,\gamma){}^{3}He$ reaction

[V. Mossa et al., Nature (2020)]

Underground study of the 6 Li(p, γ) 7 Be reaction


[D. Piatti et al., PRC Rapid Communication (2020)] Recently confirmed by G. G. Kiss et al., PRC (2021)

Other Recent Results:

- G.Ciani et al., accepted PRL -> $^{13}C(\alpha,n)^{16}O$ cross section measurement into the s-process Gamow peak
- F.R.Pantaleo et al., PRC (2021) -> Low-energy resonances in the ¹⁸O(p,γ) ¹⁹F reaction-> H-shell burning in AGB
- Piatti et al., submitted to A&A -> New upper limit of 22 Ne(α ,g) 26 Mg resonance at 334 keV->s-process and AGB

In progress at LUNn: $^{17}O(p,\gamma)^{18}F$

Motivation:

- SoA: Only indirect measurements
 - $-> \omega \gamma = 1.6 \text{ x} 10^{-11} \text{ eV [C.Fox et al., PRC (2005)]}$
 - -> estimated count rate << 1 c/C!!!

 20 Ne(p, γ) 21 Na -> HAVE A LOOK AT ELIANA MASHA TALK

 $^{12/13}$ C(p, γ) $^{13/14}$ N -> HAVE A LOOK AT JAKUB SKOWRONSI

• Setup:

Double shielding: bPe+Pb

High Efficiency BGO 4πdetector

Al chamber + target holder

Fox et al. PRC 2015
LUNA detection limit lead shielding + bPE

10⁻¹²
20 40 60 80 100 120 $t \text{ [days] in } ^{17}O(p,\gamma)^{18}F$

Solid target by anodic oxidation

 7×10^{-14} 6×10^{-14} 5×10^{-14} 5×10^{-14} 1×10^{-14}

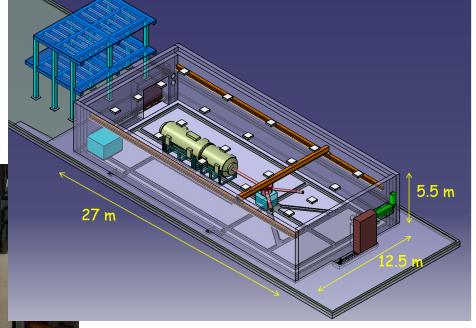
E_n [keV]

107° Congresso Nazionale SIF, 13-17 Settembre 2021

Next at **LUN**

New LUNA400kV proposal (2022-2025):

 $^{16}\text{O}(p,\gamma)^{17}\text{F}$

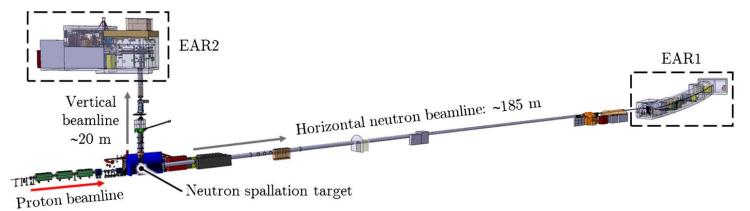

 21 Ne(p, γ) 22 Na

 23 Na(p, α) 20 Ne

• 27 Al(p, α) 24 Mg

H-shell burning in AGB

HERE IS LUNAMY!

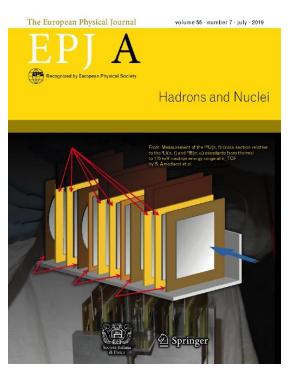

- Installation will start in October 2021
- Scientific Proposal:
 - $^{14}N(p,\gamma)^{15}O$ CNO cycle
 - ¹²C + ¹²C Carbon burning
 - $^{13}C(\alpha,n)^{16}O$
 - 22 Ne(α ,n) 25 Mg s-process

neutron _ Time Of Flight

Pulsed spallation **neutron source** located at **CERN**, n_TOF is a unique environment to perform high accurate measurements of neutron induced reactions cross sections.

Two experimental areas with different flight path (hence flux and resolution) are available.

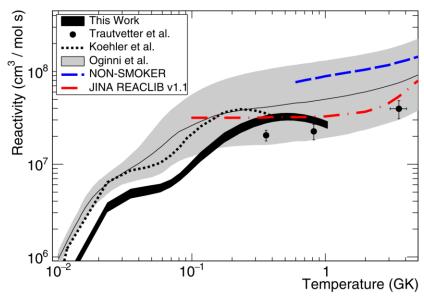
Quantity		EAR1	EAR2
Neutron flux(n/bunch)		10^{6}	108
Energy range	Minimum Maximum	Subthermal 1 GeV	Subthermal 100 MeV
Best resolution ($\Delta E/E$)		10^{-4}	10^{-3}


EAR2 is especially suited to measure **high active samples**, the destruction reactions of the ⁷Be [⁷Be(n,α) and ⁷Be(n,p)] have been investigated because of their interest for the **Big Bang Nucleosynthesis and the Cosmological Lithium Problem**M. Barbagallo et al. (The n TOF Collaboration), Phys. Rev. Lett. 117 (2016) 152701

L. A. Damone et al. (The n_TOF Collaboration), Phys. Rev. Lett. 121 (2018) 042701

Latest results from n_TOF

Measurement of the 235 U(n,f) cross section relative to the 6 Li(n,t) and 10 B(n, α) standards from thermal to 170 keV neutron energy range at n_TOF


S. Amaducci et al. (The n_TOF Collaboration),

Most used reference reaction for neutron induced fission cross section measurements, fundamental for fission recycling during r-process Study of the ²⁶Al (signature of nucleosynthesis in AGB) destruction reactions:

²⁶**Al(n,p)** published by C. Lederer-Woods et al. (The n_TOF Collaboration)

https://doi.org/10.1103/PhysRevC.104.L022803

²⁶**Al(n,α)** accepted for pubblication, C. Lederer-Woods et al. (The n_TOF Collaboration)

https://doi.org/10.1140/epja/i2019-12802-7

Heavy elements nucleosynthesis via s-process

n_TOF allow to perform **high accuracy neutron capture cross section** measurement, which are foundamental

for the s-process models. Nuclei recently studied are ¹⁷¹Tm, ¹⁵⁴Gd and ¹⁴⁰Ce

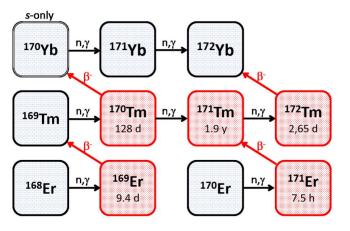
Physics Letters B

www.elsevier.com/locate/physletb

PHYSICAL REVIEW LETTERS 125, 142701 (2020)

Neutron Capture on the s-Process Branching Point ¹⁷¹Tm via Time-of-Flight and Activation

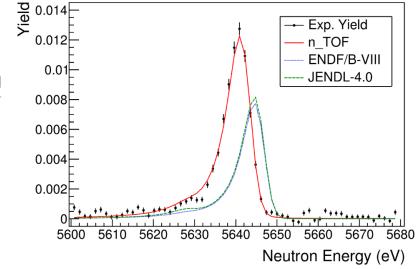
C. Guerrero et al. (The n_TOF Collaboration)


https://doi.org/10.1103/PhysRevLett.125.142701

Measurement of the $^{154}{\rm Gd}({\rm n},\gamma)$ cross section and its astrophysical implications

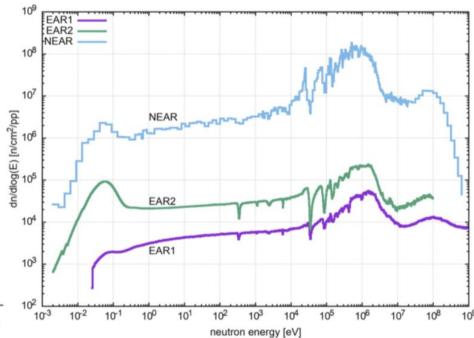
A. Mazzone et al. (The n_TOF Collaboration)

https://doi.org/10.1016/j.physletb.2020.135405



First Results of the 140 Ce(n, γ) 141 Ce Cross-Section Measurement at n TOF

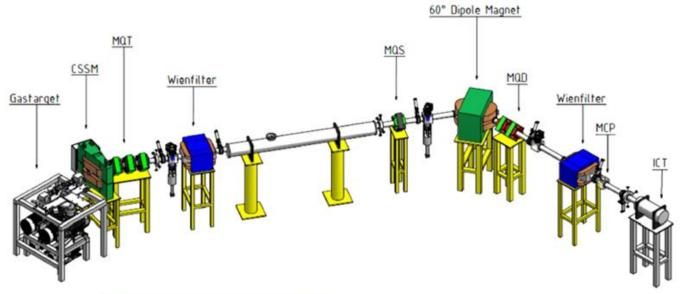
S. Amaducci et al. (The n_TOF Collaboration),


https://doi.org/10.3390/universe7060200

n_TOF Upgrade and future measurements

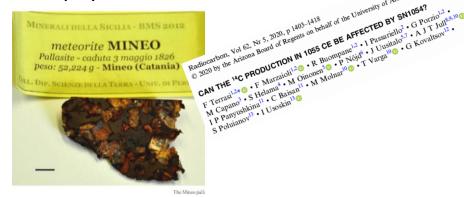
New spallation target and new experimental station NEAR

- 2-3 m from the target assembly
- a factor ~100 higher than EAR2 neutron fluence expected
- possibility to perform irradiation and activation measurements


Forthcoming measurements:

- 94,95,96 Mo(n, γ) for s-process
- 94 Nb(n, γ) for anomalies in solar grains
- 79 Se(n, γ) s-process thermometer
- ⁴⁰K(n,p) and ⁴⁰K(n,α) radiogenic heating in earth-like exoplanets

The European Recoil Separator for Nuclear Astrophysics (**ERNA**) is coupled with the Tandem Accelerator Laboratory at CIRCE, University of Campania, Caserta, Italy.


ERNA is one of few recoil separator in the world dedicated to the radiative capture reaction cross section measurements.

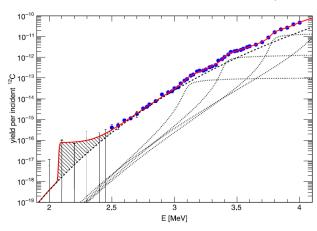
The γ array detector **GASTLY** has been developed and installed at CIRCE since 2018 to study nuclear reaction with charged particle in exit channel.

The program of the collaboration includes mass spectrometry measurements of extraterrestrial and terrestrial samples to search events of astrophysical interest.

F. Terrasi et al. CAN THE 14C PRODUCTION IN 1055 CE BE AFFECTED BY SN1054? *Radiocarbon, 62*(5), 1403-1418.

A. Zucchini et al. Chemical and mineralogical characterization of the Mineo (Sicily, Italy) pallasite: A unique sample. Meteorit Planet Sci, 53: 268-283.

THE EUROPEAN PHYSICAL JOURNAL A


Regular Article - Experimental Physics

Eur. Phys. J. A (2018) 54: 92

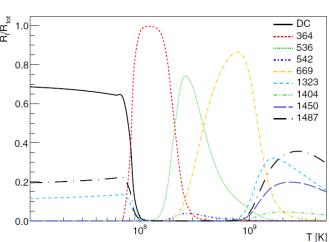
DOI 10.1140/epja/i2018-12522-6

Measurement of the ${}^{12}C({}^{12}C, p){}^{23}Na$ cross section near the Gamow energy

J. Zichefoose et al.

- Energy range of direct measurements extended up to Ecm = 2 MeV.
- The results are in fair agreement with previous results.
- New measurement campaign with GASTLY detector array. Data analysis in progress.

FIG. 4. Thick-target yields (blue circles) of the ${}^{12}C({}^{12}C, p)^{23}Na$

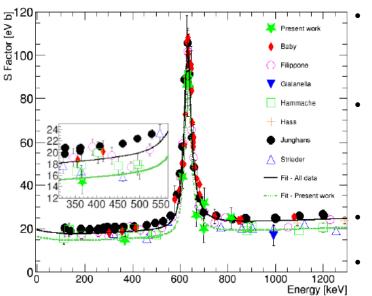

PHYSICAL REVIEW C 95, 045803 (2017)

Measurement of 1323 and 1487 keV resonances in $^{15}N(\alpha, \gamma)^{19}F$ with the recoil separator ERNA

A. Di Leva et al.

Direct measurement of the cross section successfully obtained with the recoil separator ERNA@CIRCE.

A significant difference is found for the 1323 keV resonance Γ_a .


Test measurement of ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ with the recoil mass separator ERNA R. Buompane et al.

- ⁷Be Radioactive beam intensity up to 10⁹pps.
- Windowless Gas Target.
- Invers kinematics
- Direct recoils detection.

Submitted

Determination of the ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ cross section at astrophysical energies using a radioactive ⁷Be ion beam

R. Buompane et al.

- Energy range of measurements in the range 367 e 812 keV.
- First measurements with significant statistics in inverse kinematics.
- 517(0)=16.1±2.0 eV b.
- New measurements ongoing at Ecm >1MeV.

From 12 C + 12 C to 16 O + 12 C reaction

From Devolution of a true stage detection error for low-energy lab diagnal particles in nuclear astrophysics applications (y. M. Ground et al. 2018). Springer

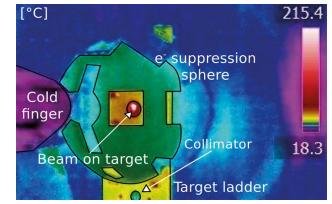
OOI 10.1140/epja/i2018-12564-8

legular Article - Experimental Physics

Regular Article - Experimental Physics

Reduction of deuterium content in carbon targets for $^{12}{\rm C}+^{12}{\rm C}$ reaction studies of astrophysical interest

L. Morale-Gallegos et al.


THE EUROPEAN
PHYSICAL JOURNAL A

Special Article - New Tools and Technique

Development of a two-stage detection array for low-energy light charged particles in nuclear astrophysics applications

M. Romoli et al.

- Carbon burning study still in progress, new measurements of reaction ¹⁶O+¹²C.
- ¹²C+¹²C developed setup, detector array and target, used for the ¹⁶O+¹²C reaction measurements.
- Charged particle detectors array GAs-Silicon Two-Layer system (GASTLY).
 - Target di (Hy Ordered Pyrolytic Graphite) HOPG.

THE EUROPEAN PHYSICAL JOURNAL A

Infrared picture of HOPG target during measurement.

$^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction

Details in section I contribution:

Werso la misura della sezione durto della 12 C(α , γ) 16 O a basse energie. Santonastaso C. (1)(2), Buompane R. (1)(2), De Cesare M. (1)(2)(4), Di Leva A. (2)(3), Garcia Duarte J. (5), Gialanella L. (1)(2), Formicola A. (6), Morales-Gallegos L. (2), Porzio G. (1)(2), Rapagnani D. (2)(3), Romoli M. (1)(2)

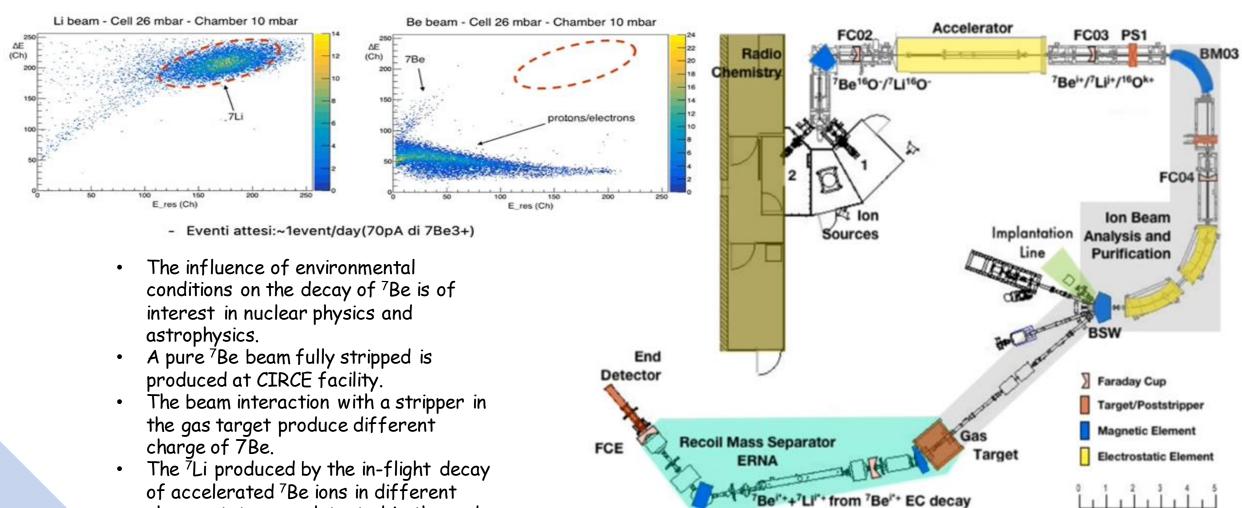
- The ¹²C(α,γ)¹⁶O is the reaction that was the main motivation behind the ERNA recoil mass separator construction.
- The direct measurements of total cross section in invers kinematics will be extended up to Ecm=1MeV.
- Angular distribution measurements, with new γdetector array, up to 25 NaI detectors.

Nuclear Instruments and Methods in Physics Research B 407 (2017) 217-221

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb



A supersonic jet target for the cross section measurement of the 12 C(α , γ) 16 O reaction with the recoil mass separator ERNA

D. Rapagnani et al.

Ionized ⁷Be half life measurement

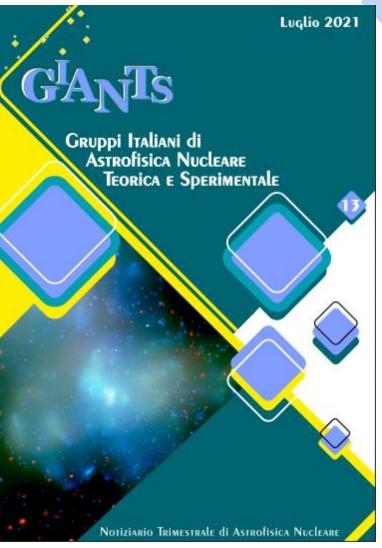
Layout of the Pelletron Tandem Accelerator facility at CIRCE.

843. Influenza dell'ambiente sulla vita media del \chem{^{7}Be}.

charge states are detected in the end

Claudio Santonastaso

O 14/09/2020, 00:00


detector.

Conclusion

- The efforts and the great results of the italian groups working on direct measurements for nuclear astrophysics were described
- Gruppi Italiani di Astrofisica Nucleare Teorica e Sperimentale = GIANTS gathered n_TOF, ERNA, LUNA, ASFIN and PANDORA
- Newsletter for updates: https://pandora.infn.it/public/giantsnews

