

QCD measurements at the LHC

Francesco Giuli (ATLAS), Valentina Mariani (CMS)

francesco.giuli@cern.ch, valentina.mariani@cern.ch

107° Congresso Nazionale - Società Italiana di Fisica

16/09/2021

Istituto Nazionale di Fisica Nucleare

Introduction

- Strong interactions are challenging at the LHC!
- Mainly observed as jets
- Important source of background for many searches
- Not well modelled in Monte Carlo (MC) simulation yet
- Can be probed by a multitude of measurements
- We will review several analyses both from ATLAS and CMS
- The impact of these new measurements on parton distribution functions (PDFs) will be shown as well

Event shape variables

> Sensitive to the details of the hadronisation process and useful to determine α_s and MC tune parameters and search for new physics phenomena

> Transverse thrust:
$$T_{\perp} \equiv \max_{\hat{n}_{T}} \frac{\sum_{i} |\vec{p}_{T,i} \cdot \hat{n}_{T}|}{\sum_{i} p_{T,i}}$$
 JHEP 12 (2018) 1

where \hat{n}_T is the unit vector that defines the transverse thrust axis

Used to define = 0 for a perfectly balanced Sensitive to hard two-jet event $\tau_{\perp} \equiv 1 - T_{\perp}$ scattering $* = 1 - 2/\pi$ for an isotropic multijet event Jet broadening: $B_X \equiv \frac{1}{2 P_T} \sum_{i \in Y} p_{\mathrm{T},i} \sqrt{(\eta_i - \eta_X)^2 + (\phi_i - \phi_X)^2}$ hadronization and NP effects > Total jet mass: $\rho_X \equiv \frac{M_X^2}{P^2}$, with X = U (upper) or L (lower) region

17

Event shape variables

16/09/21

Ενε

- Six event-shape variables measured as a function of jet multiplicity in three interval of $H_{T,2}$
- Thrust major/minor

$$T_{\perp} = \frac{\sum_{i} |\vec{p}_{\mathrm{T},i} \cdot \hat{n}_{\mathrm{T}}|}{\sum_{i} |\vec{p}_{\mathrm{T},i}|}; \qquad T_{\mathrm{m}} = \frac{\sum_{i} |\vec{p}_{\mathrm{T},i} \times \hat{n}_{\mathrm{T}}|}{\sum_{i} |\vec{p}_{\mathrm{T},i}|}$$

Sphericity and aplanarity from linear combinations of the eigenvalues of

$$\mathcal{M}_{xyz} = \frac{1}{\sum_{i} |\vec{p_{i}}|} \sum_{i} \frac{1}{|\vec{p_{i}}|} \begin{pmatrix} p_{x,i}^{2} & p_{x,i}p_{y,i} & p_{x,i}p_{z,i} \\ p_{y,i}p_{x,i} & p_{y,i}^{2} & p_{y,i}p_{z,i} \\ p_{z,i}p_{x,i} & p_{z,i}p_{y,i} & p_{z,i}^{2} \end{pmatrix}$$

$$S = \frac{3}{2}(\lambda_2 + \lambda_3); \quad A = \frac{3}{2}\lambda_3$$

C and D from cubic and quartic combinations

$$C = 3(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3),$$

$$D = 27(\lambda_1\lambda_2\lambda_3)$$

> 3-jets (5-jets) event with high (low) values of T_{\perp} and S

16/09/21

Francesco Giuli & Valentina Mariani

Event¹⁰ shape, variables 0.05 0.1 0.15 0.2 0.25

- MC normalised to data in each H_{T,2} bin (Pythia8 xsec +30%, MG5 -35%)
- Sherpa overestimates high multiplicities
- Herwig dipole model underestimates high multiplicities (better when considering Herwig with angular ordered PS)
- Pythia8 (A14 tune) describes data well only for intermediate thrusts
- MG5_aMC gives the best overall description -> importance of including in ME beyond LO terms

Inclusive jet cross section JHEP 12 (2020) 082

- > Double differential (p_T , y) jet cross sections measured and compared to fixedorder calculations and MC predictions
- > Sensitive to PDFs over a wide range of x and Q^2 , in particular high-x gluon and valence quark
- Dependence on the jet anti k_T algorithm distance parameter R (jet size) is studied via ratios
- ▶ 84 < jet p_T < 1588 GeV</p>
- ➢ Jet |y| < 2.0</p>
- Data well modelled at moderate values of jet size
- Deviation visible at low p_T for very large values of jet size

Multi-jet correlation

 j_1, j_2 and j_3 ordered in p_T

9

- Two categories of events selected:
 - 3-jet events (8 & 13 TeV) & Z+2-jet events (8 TeV)
- Two observables of sub-leading jets:
 - > Transverse momentum ratio: p_{T3}/p_{T2}
 - > Angular separation: $\Delta R_{23} = \sqrt{(y_3 y_2)^2 + (\varphi_3 \varphi_2)^2}$
- Split events into categories of interest:

Multi-jet correlation

- Large-angle and hard radiation well described by ME (LO 4j+PS and NLO 2j+PS only for hard radiation region)
- Soft radiation well described by PS approach (LO 2j+PS)
- Collinear region not well described by either

Lund Jet Plane measurement

Phys. Rev. Lett. 124 (2020) 2 22002

- The LJP is an abstract description of jet development, with each entry corresponding to the transverse momentum and angle of any given emission with respect to the emitter
- Regions of plane point to various physical processes
- Dijet (anti-k_t algorithm, R = 0.4) events with p_{T,1} / p_{T,2} < 1.5</p>
- Reconstructed by reversing the C/A clustering algorithm
- Only charged tracks in jets with *p_T^{jets}* > 675 GeV

16/09/21

Francesco Giuli & Valentina Mariani

12

Jet substructure

- Important to study the jet origin (quark or gluon) and constituents
- Two different subsets: Z+jets and di-jets (1 central + 1 forward)

Five jet substructure observables studied: $\lambda_{\beta}^{\kappa} = \sum_{i \in jet} z_{i}^{\kappa} \left(\frac{\Delta R_{i}}{R}\right)^{\beta}$

Different fractions of gluon jets observed, especially at low p_T values

CMS-SMP-20-010

Jet substructure

CMS-SMP-20-010

- Ratio of the mean of substructure observables in regions with gluonenriched and quark-enriched jets
- All generators overestimate the difference between quark and gluon jets at low p_T
- At high p_T, all generators give a reasonable description of the ratio

 $\Delta S = \arccos$

Double parton scattering in 4 jets CMS-SMP-20-007

- SPS processes exhibit strong kinematic correlations between all jets
- In DPS processes jets are often produced in two independent pairs in a back-toback configuration
- DPS needed in the models to describe data

Double parton scattering in 4 jets CMS-SMP-20-007

The DPS contribution extracted with a template fit of distributions for SPS obtained from MC event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data

$$\begin{split} \sigma_{\mathrm{A},\mathrm{B}}^{\mathrm{DPS}} &= \frac{\epsilon_{\mathrm{4j}}}{\sigma_{\mathrm{eff}}} \left(\frac{1}{2} \sigma_{\mathrm{A}}^{2} + \sigma_{\mathrm{A}} \cdot (\sigma_{\mathrm{B}} - \sigma_{\mathrm{A}}) \right) \\ &= \frac{\epsilon_{\mathrm{4j}} \sigma_{\mathrm{A}} \sigma_{\mathrm{B}}}{\sigma_{\mathrm{eff}}} \left(1 - \frac{1}{2} \frac{\sigma_{\mathrm{A}}}{\sigma_{\mathrm{B}}} \right) \end{split}$$

- > Model with NLO 2 \rightarrow 2 or 2 \rightarrow 3 matrix elements yield the smallest values of σ_{eff}
- > Including 4 partons in the matrix element calculation of the SPS model yields higher values of $\sigma_{\rm eff}$
- Clear need for further development of models

 $\sigma_{
m eff}$ shows a strong dependence on the model

Z+b-jets at 13 TeV

JHEP 07 (2020) 044

\succ Z \rightarrow ll + jets selection:

- > Single lepton trigger of p_T > 25 GeV, 2 OS leptons (ee/ $\mu\mu$), with p_T > 27 GeV, $|\eta| < 2.5$, 76 < $m_{ll} < 1.06$ GeV
- > ≥ 1 or ≥ 2 jets reconstructed with Anti-kt algorithm ($\Delta R = 0.4$) with $p_T > 20$ GeV and $|\eta| < 2.5$
- b-jet candidate selection relies on long lifetime, secondary vertices, decay pattern, etc.

Z+b-jets at 13 TeV

JHEP 07 (2020) 044

Z+≥1 b-jet & Z+≥2 b-jets phase space (mostly) well described by 5FS, while 4FS shows deficits in Z+≥1 b-jet

Some tensions with data at high m_{bb} (and high jet- p_T) but large errors in both theory and measurement

Challenge for searches and test of other process in such phase space

epWZVjets20 PDF fit JHEP 07 (2021) 223

- QCD fit to DIS data from HERA and the ATLAS Electroweak boson data: W,Z at 7 TeV (Eur. Phys. J. C 77 (2017) 367), W + jets (JHEP 05 (2018) 077) and Z + jets at 8 TeV (EPJC 79 (2019) 847)
- > V+jets data sensitivity to PDFs up to $x \sim 0.3$

19

As soon as global fitters include ATLAS W,Z at 7 TeV data, they get in better agreement with ATLAS predictions

> Nice agreement up to $x \simeq 0.1$ (negative x(a - u) without v+jets δ iev data)

Other distributions in better agreement with global fitters!

Conclusion and outlook

- QCD is an essential ingredient of SM, its apparent formal simplicity covers a very complex phenomenology
- Important to improve precision on other measurements, but a very interesting and intellectually challenging problem/process by itself
- Enormous theory effort to improve precision, now being matched by important measurements in specific regions of phase space
- Despite many improvements, still many divergences exist, and more corners of phase space need to be measured
- > Many more clever measurements needed, I just presented some of them
- > Stay tuned! More results coming soon!

21

Backup Slides

16/09/21

b-quark fragmentation properties

- > Identify B hadron from $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm}$
- Associate B meson to jet and compute

$$z = \frac{\vec{p}_B \cdot \vec{p}_j}{|\vec{p}_j|^2}; \quad p_{\mathrm{T}}^{\mathrm{rel}} = \frac{|\vec{p}_B \times \vec{p}_j|}{|\vec{p}_j|}$$

- > Unfold at particle level in different bins of z, p_T^{rel} and p_T^j
- > J/ψ : 2 OS μ with p_T > 6 GeV, $|\eta| < 2.5$ and 2.6 < $m_{\mu\mu} < 3.6$ (displaced vertex)
- > K^{\pm} : third track from the same vertex, $p_T > 4 \text{ GeV}$, $|\eta| < 2.5$
- Main systematics:
 - Jet Energy Scale and resolution
 - B meson reconstruction
 - Use of a specific MC model in the unfolding procedure

2108.11650

Francesco Giuli & Valentina Mariani

b-quark fragmentation properties

1/o) do / d:

MC / Data

Data

١Ċ

1/0) do / dz

MC / Data

Data

ŷ

- Disagreement with Herwig7 dipole PS due to larger gluon splitting $g \rightarrow b\overline{b}$
- Sherpa cluster model disagrees at high z and low p_T^{rel}
- Herwig7 angle-ordered PS and Sherpa Lund model give similar results for z (not true for p_T^{rel})
- Pythia8 Monash overestimates data at middle z and low p_T^{rel}
- > Data well described by Pythia8 A14+ r_b = 1.05 (value fitted from LEP data)

 r_b = Pythia8 tune parameter controlling b-fragmentation

2108.11650

16/09/21

Pairs of isolated photons at 13 TeV 2107.09330

> $p_{T,\gamma}$ > 40 (30) GeV and $|\eta_{\gamma}|$ < 2.37 (excluding 1.37 < $|\eta_{\gamma}|$ < 2.37)

16/09/21

- Dominant systematics: jets misidentification as photons, photon isolation and identification
- NNLOJET and Sherpa provide the best description of data in the regions expected to be modelled well by perturbative QCD
- Good data description by Sherpa where the effects of multiple collinear or soft QCD emissions are relevant

Fiducial cross section [pb]	$\sigma_{\gamma\gamma}$	± unc.
Sherpa MEPS@NLO	33.2	+7.7 -5.6
Nnlojet NNLO	29.7	$^{+2.4}_{-2.0}$
NLO	19.6	+1.6 -1.3
LO	5.3	+0.5 -0.5
Diphox NLO	20.8	+3.2 -2.9
Data	31.4	2.4

