

QCD measurements at the LHC

Francesco Giuli (ATLAS), Valentina Mariani (CMS) francesco.giuli@cern.ch, valentina.mariani@cern.ch
107° Congresso Nazionale - Società Italiana di Fisica 16/09/2021

Istituto Nazionale di Fisica Nucleare

Introduction

> Strong interactions are challenging at the LHC!
> Mainly observed as jets
> Important source of background for many searches
> Not well modelled in Monte Carlo (MC) simulation yet
> Can be probed by a multitude of measurements
> We will review several analyses both from ATLAS and CMS

> The impact of these new measurements on parton distribution functions (PDFs) will be shown as well

Event shape variables

> Sensitive to the details of the hadronisation process and useful to determine α_{S} and MC tune parameters and search for new physics phenomena
$>$ Transverse thrust: $T_{\perp} \equiv \max _{\hat{n}_{\mathrm{T}}} \frac{\sum_{i}\left|\vec{p}_{\mathrm{T}, i} \cdot \hat{n}_{\mathrm{T}}\right|}{\sum_{i} p_{\mathrm{T}, i}}$

where \hat{n}_{T} is the unit vector that defines the transverse thrust axis
> Used to define

$$
\tau_{\perp} \equiv 1-T_{\perp}
$$

= 0 for a perfectly balanced
two-jet event
> Jet broadening:

- $2 / \pi$ for an isotropic multijet

$$
B_{X} \equiv \frac{1}{2 P_{T}} \sum_{i \in X} p_{\mathrm{T}, i} \sqrt{\left(\eta_{i}-\eta_{X}\right)^{2}+\left(\phi_{i}-\phi_{X}\right)^{2}}
$$

$>$ Total jet mass: $\rho_{X} \equiv \frac{M_{X}^{2}}{P^{2}}$, with $\mathrm{X}=\mathrm{U}$ (upper) or L (lower) region

Event shape variables

where $H_{T, 2}=\left(p_{T, j e t 1}+p_{T, j e t 2}\right) / 2$ and Tot $=\mathrm{U}+\mathrm{L}$
> Monash and CUETP8M1 Pythia8 tunes model energy flow in plane transverse to the beam well (whereas the energy flow out of the transverse plane is not well described)
> Herwig++ performs well, better than Pythia8 for $B_{\text {Tot }}$ and $\rho_{\text {Tot }}$
> Madgraph much better than Pythia8 (transverse and longitudinal flows of energy better modelled by ME approach)

Event shape variables

JHEP 01 (2021) 188

> Six event-shape variables measured as a function of jet multiplicity in three interval of $H_{T, 2}$
> Thrust major/minor

$$
T_{\perp}=\frac{\sum_{i}\left|\vec{p}_{\mathrm{T}, i} \cdot \hat{n}_{\mathrm{T}}\right|}{\sum_{i}\left|\vec{p}_{\mathrm{T}, i}\right|} ; \quad T_{\mathrm{m}}=\frac{\sum_{i}\left|\vec{p}_{\mathrm{T}, i} \times \hat{n}_{\mathrm{T}}\right|}{\sum_{i}\left|\vec{p}_{\mathrm{T}, i}\right|}
$$

> Sphericity and aplanarity from linear combinations of the eigenvalues of
$\mathcal{M}_{x y z}=\frac{1}{\sum_{i}\left|\overrightarrow{p_{i}}\right|} \sum_{i} \frac{1}{\left|\overrightarrow{p_{i}}\right|}\left(\begin{array}{ccc}p_{\mathrm{x}, i}^{2} & p_{\mathrm{x}, i} p_{\mathrm{y}, i} & p_{\mathrm{x}, i} p_{\mathrm{z}, i} \\ p_{\mathrm{y}, i} p_{\mathrm{x}, i} & p_{\mathrm{y}, i}^{2} & p_{\mathrm{y}}, i p_{\mathrm{z}, i} \\ p_{\mathrm{z}, i} p_{\mathrm{x}, i} & p_{\mathrm{z}, i} p_{\mathrm{y}, i} & p_{\mathrm{z}, i}^{2}\end{array}\right)$

$$
S=\frac{3}{2}\left(\lambda_{2}+\lambda_{3}\right) ; \quad A=\frac{3}{2} \lambda_{3}
$$

> C and D from cubic and quartic combinations

$$
\begin{aligned}
& C=3\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right), \\
& D=27\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)
\end{aligned}
$$

>3-jets (5-jets) event with high (low) values of T_{\perp} and S

Event shape variables

$>M C$ normalised to data in each $H_{T, 2}$ bin (Pythia8 xsec +30\%, MG5-35\%)
> Sherpa overestimates high multiplicities
> Herwig dipole model underestimates high multiplicities (better when considering Herwig with angular ordered PS)
> Pythia8 (A14 tune) describes data well only for intermediate thrusts
> MG5_aMC gives the best overall description \rightarrow importance of including in ME beyond LO terms

None of the MC provide a good description of the data in all the regions

Inclusive jet cross section

> Double differential $\left(p_{T}, y\right)$ jet cross sections measured and compared to fixedorder calculations and MC predictions
> Sensitive to PDFs over a wide range of x and Q^{2}, in particular high- x gluon and valence quark
> Dependence on the jet anti k_{T} algorithm distance parameter R (jet size) is studied via ratios
$>84<$ jet $p_{T}<1588 \mathrm{GeV}$
$>$ Jet $|y|<2.0$
> Data well modelled at moderate values of jet size
> Deviation visible at low p_{T} for very large values of jet size

Inclusive jet cross section

- PS calculations agree well with data
> NLO corrections are needed
> Accurate modelling of NP effects is essential
$>R$ is sensitive to various components of the evolution of partons into jets
$>$ radiation \& parton shower (PS)
> hadronization, underlying event (UE)

Multi-jet correlation

> Two categories of events selected:
> 3-jet events (8 \& 13 TeV) \& Z+2-jet events (8 TeV)
> Two observables of sub-leading jets:
$>$ Transverse momentum ratio: $\boldsymbol{p}_{T 3} / p_{T 2}$
$>$ Angular separation: $\Delta R_{23}=\sqrt{\left(y_{3}-y_{2}\right)^{2}+\left(\varphi_{3}-\varphi_{2}\right)^{2}}$
$\boldsymbol{j}_{1}, \boldsymbol{j}_{2}$ and \boldsymbol{j}_{3} ordered in p_{T}
> Split events into categories of interest:

Multi-jet correlation

Collinear radiation

Large-angle radiation

Soft radiation

Hard radiation
> Large-angle and hard radiation well described by ME (LO 4j+PS and NLO 2j+PS - only for hard radiation region)
> Soft radiation well described by PS approach (LO 2j+PS)
> Collinear region not well described by either

Lund Jet Plane measurement

> The LJP is an abstract description of jet development, with each entry corresponding to the transverse momentum and angle of any given emission with respect to the emitter
> Regions of plane point to various physical processes
$>$ Dijet (anti- k_{t} algorithm, $\mathrm{R}=0.4$) events with $\mathrm{p}_{\mathrm{T}, 1} / \mathrm{p}_{\mathrm{T}, 2}<1.5$
> Reconstructed by reversing the C/A clustering algorithm
> Only charged tracks in jets with $p_{T}^{\text {jets }}>675 \mathrm{GeV}$

Lund Jet Plane measurement

> Probing PS (wide angle, left) to hadronization (collinear, right)
> Hard wide angle: differences in PS algorithms in Herwig7, as well as Pythia8 and Sherpa
> Soft collinear: different hadronization models in Sherpa
> Most MC good in describing jet core, but fail

Jet substructure

> Important to study the jet origin (quark or gluon) and constituents
> Two different subsets: $\mathbf{Z}+j e t s$ and di-jets (1 central + 1 forward)
\Rightarrow Five jet substructure observables studied: $\lambda_{\beta}^{\kappa}=\sum_{i \in j \mathrm{jet}} z_{\mathrm{i}}^{\kappa}\left(\frac{\Delta R_{\mathrm{i}}}{R}\right)^{\beta}$

$$
\begin{aligned}
& z=\frac{p_{\mathrm{T}}^{\text {emission }}}{p_{\mathrm{T}}^{\text {emission }}+p_{\mathrm{T}}^{\text {core }}} \quad \Delta R_{\mathrm{i}}=\sqrt{\left(\Delta y_{\mathrm{i}}\right)^{2}+\left(\Delta \phi_{\mathrm{i}}\right)^{2}} \\
& z=\frac{p_{\mathrm{T}}}{p_{\mathrm{T}}^{\text {emision }}+p_{\mathrm{T}}^{\text {core }}} \quad \Delta R_{\mathrm{i}}=\sqrt{\left(\Delta y_{\mathrm{i}}\right)^{2}+\left(\Delta \phi_{\mathrm{i}}\right)^{2}}
\end{aligned}
$$

> Different fractions of gluon jets observed, especially at low p_{T} values

Jet substructure

> All generators overestimate the difference between quark and gluon jets at low p_{T}
$>$ At high p_{T}, all generators give a reasonable description of the ratio

- Ratio of the mean of substructure observables in regions with gluonenriched and quark-enriched jets

> SPS processes exhibit strong kinematic correlations between all jets
> In DPS processes jets are often produced in two independent pairs in a back-toback configuration

$$
\Delta \mathrm{S}=\arccos \left(\frac{\left(\vec{p}_{\mathrm{T}, 1}+\vec{p}_{\mathrm{T}, 2}\right) \cdot\left(\vec{p}_{\mathrm{T}, 3}+\vec{p}_{\mathrm{T}, 4}\right)}{\left|\vec{p}_{\mathrm{T}, 1}+\vec{p}_{\mathrm{T}, 2}\right|\left|\vec{p}_{\mathrm{T}, 3}+\vec{p}_{\mathrm{T}, 4}\right|}\right)
$$

$>$ DPS needed in the models to describe data

Double parton scattering in 4 jets

$>$ The DPS contribution extracted with a template fit of distributions for SPS obtained from MC event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data

$$
\begin{aligned}
\sigma_{\mathrm{A}, \mathrm{~B}}^{\mathrm{DPS}} & =\frac{\epsilon_{4 \mathrm{j}}}{\sigma_{\mathrm{eff}}}\left(\frac{1}{2} \sigma_{\mathrm{A}}^{2}+\sigma_{\mathrm{A}} \cdot\left(\sigma_{\mathrm{B}}-\sigma_{\mathrm{A}}\right)\right) \\
& =\frac{\epsilon_{4 \mathrm{j}} \sigma_{\mathrm{A}} \sigma_{\mathrm{B}}}{\sigma_{\mathrm{eff}}}\left(1-\frac{1}{2} \frac{\sigma_{\mathrm{A}}}{\sigma_{\mathrm{B}}}\right)
\end{aligned}
$$

$>$ Model with NLO $2 \rightarrow 2$ or $2 \rightarrow 3$ matrix elements yield the smallest values of $\sigma_{\text {eff }}$
> Including 4 partons in the matrix element calculation of the SPS model yields higher values of $\sigma_{\text {eff }}$
> Clear need for further development of models
$\sigma_{\text {eff }}$ measurements (Preliminary)

$\sigma_{\text {eff }}$ shows a strong dependence on the model

Z+b-jets at 13 TeV

$>\boldsymbol{Z} \rightarrow \boldsymbol{l l}+$ jets selection:
$>$ Single lepton trigger of $p_{T}>25 \mathrm{GeV}, 2$ OS leptons (ee/ $\mu \mu$), with $p_{T}>27$ $\mathrm{GeV},|\eta|<2.5,76<m_{l l}<106 \mathrm{GeV}$
$>\geq 1$ or ≥ 2 jets reconstructed with Anti-kt algorithm ($\Delta \mathrm{R}=0.4$) with $p_{T}>20$ GeV and $|\eta|<2.5$
>b-jet candidate selection relies on long lifetime, secondary vertices, decay pattern, etc.

> Tracking \& jet information condensed using multivariate algorithms for separation of bjets vs different flavour jets (c- or lightflavour)
> Require 1 or 2 jets passing a "cut" on MV btagging algorithm corresponding of 70% efficiency for b-jets (vs mistag of $\sim 10 \%$ cjets and $\sim 0.4 \%$ for light-jets)

Z+b-jets at 13 TeV

Challenge for searches and test of other process in such phase space

epWZVjets20 PDF fit

> QCD fit to DIS data from HERA and the ATLAS Electroweak boson data: W,Z at 7 TeV (Eur. Phys. J. C 77 (2017) 367), W + jets (JHEP 05 (2018) 077) and Z + jets at 8 TeV (EPJC 79 (2019) 847)
> V +jets data sensitivity to PDFs up to $\mathrm{x} \sim 0.3$
> As soon as global fitters include ATLAS W,Z at 7 TeV data,

$$
R_{s}=\frac{s+\bar{s}}{\bar{u}+\bar{d}}
$$ they get in better agreement with ATLAS predictions

Fantastic improvement of R_{S} determination at high-x

Unsuppressed strange at low-x maintained

epWZVjets20 PDF fit

> QCD fit to DIS data from HERA and the ATLAS Electroweak boson data: W,Z at 7 TeV (Eur. Phys. J. C 77 (2017) 367), W + jets (JHEP 05 (2018) 077) and \mathbf{Z} + jets at 8 TeV (EPJC 79 (2019) 847)
> Nice agreement up to $x \simeq 0.1$ (negative $x(\bar{d}-\bar{u})$ without $\mathrm{V}+\mathrm{jets} 8 \mathrm{TeV}$ data)

Other distributions in better agreement with global fitters!

Conclusion and outlook

> QCD is an essential ingredient of SM, its apparent formal simplicity covers a very complex phenomenology
> Important to improve precision on other measurements, but a very interesting and intellectually challenging problem/process by itself
> Enormous theory effort to improve precision, now being matched by important measurements in specific regions of phase space
> Despite many improvements, still many divergences exist, and more corners of phase space need to be measured
> Many more clever measurements needed, I just presented some of them
> Stay tuned! More results coming soon!

AMNESTY
NTERKMONLL

Backup Slides

b-quark fragmentation properties

$>$ Identify B hadron from $B^{ \pm} \rightarrow J / \psi K^{ \pm} \rightarrow \mu^{+} \mu^{-} K^{ \pm}$
> Associate B meson to jet and compute

$$
z=\frac{\vec{p}_{B} \cdot \vec{p}_{j}}{\left|\vec{p}_{j}\right|^{2}} ; \quad p_{\mathrm{T}}^{\mathrm{rel}}=\frac{\left|\vec{p}_{B} \times \vec{p}_{j}\right|}{\left|\vec{p}_{j}\right|}
$$

> Unfold at particle level in different bins of $z, p_{T}^{r e l}$ and p_{T}^{j}
$>\boldsymbol{J} / \boldsymbol{\psi}: 2 \mathrm{OS} \mu$ with $p_{T}>6 \mathrm{GeV},|\eta|<2.5$ and $2.6<m_{\mu \mu}<3.6$ (displaced vertex)
> $\boldsymbol{K}^{ \pm}$: third track from the same vertex, $p_{T}>4 \mathrm{GeV},|\eta|<2.5$
> Main systematics:
> Jet Energy Scale and resolution
> B meson reconstruction
> Use of a specific MC model in the unfolding procedure

b-quark fragmentation properties

> Disagreement with Herwig7 dipole PS due to larger gluon splitting $g \rightarrow b \bar{b}$
> Sherpa cluster model disagrees at high z and low $p_{T}^{r e l}$
> Herwig7 angle-ordered PS and Sherpa Lund model give similar results for z (not true for $p_{T}^{\text {rel }}$)

Pythia8 Monash overestimates data at middle z and low $p_{T}^{\text {rel }}$
> Data well described by Pythia8 A14+ $r_{b}=1.05$ (value fitted from LEP data)
$r_{b}=$ Pythia8 tune parameter
controlling b-fragmentation

Pairs of isolated photons at 13 TeV

$>p_{T, \gamma}>40(30) \mathrm{GeV}$ and $\left|\eta_{\gamma}\right|<2.37$ (excluding $1.37<\left|\eta_{\gamma}\right|<2.37$)
> Dominant systematics: jets misidentification as photons, photon isolation and identification
> NNLOJET and Sherpa provide the best description of data in the regions expected to be modelled well by perturbative QCD
> Good data description by Sherpa where the effects of multiple collinear or soft QCD emissions are relevant

Fiducial cross section [pb]	$\sigma_{\gamma \gamma}$	\pm unc.
Sherpa MEPS@NLO	33.2	${ }_{-5.6}^{+7.7}$
Nnlojet NNLO	29.7	${ }_{-2.0}^{+2.4}$
NLO	19.6	${ }_{-1.6}^{+1.6}$
LO	5.3	${ }_{-0.5}^{+0.5}$
Diphox NLO	20.8	$\begin{array}{r}+3.2 \\ +3.9 \\ \hline\end{array}$
Data	31.4	2.4

