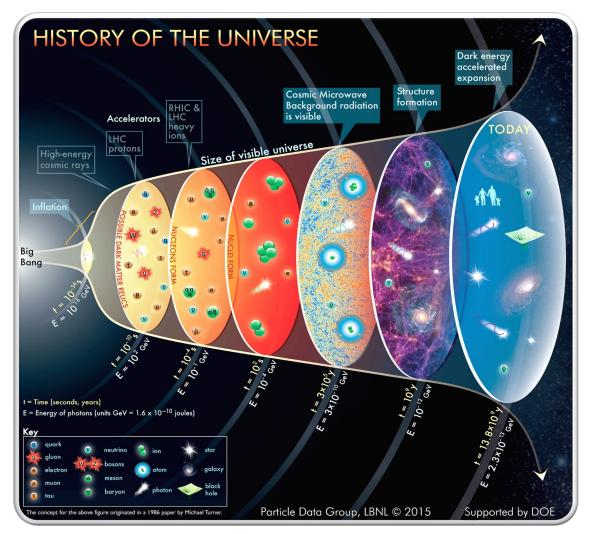
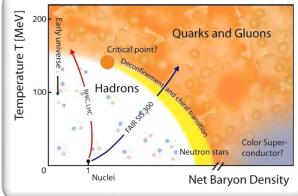
OVERVIEW OF RECENT HEAVY-FLAVOUR RESULTS FROM THE ALICE EXPERIMENT

Fabio Colamaria, for the ALICE Collaboration fabio.colamaria@ba.infn.it




INFN

Istituto Nazionale di Fisica Nucleare

WHAT DOES ALICE STUDY? THE QGP

Goal: study the properties of nuclear matter at extreme conditions of temperature and energy density

 Deconfined state of matter: quark-gluon plasma (QGP)

From lattice QCD: *T*_c ~ 150 MeV and *ε*_c ~ 0.5 GeV/fm³

A QGP state can be produced (for few fm/c) in ultrarelativistic heavy-ion collisions

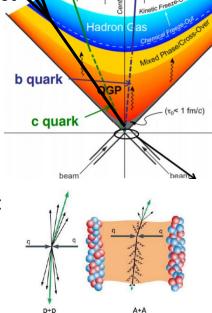
F. Colamaria – 107° Congresso SIF

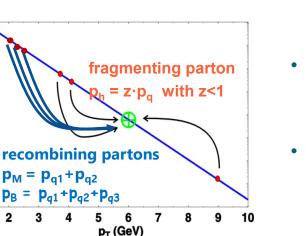
1

F. Colamaria – 107° Congresso SIF

THE IMPORTANCE OF HEAVY-FLAVOURS

In Pb-Pb collisions


10


All 10⁻² 10⁻³ 10⁻³ 10⁻⁴

- **Charm** and **beauty**: produced before the QGP formation due to large mass + their number is roughly conserved
 - > Experience the **whole evolution** of the collision
 - QGP tomography by studying its final-state particles

Open heavy flavour: microscopic picture of QGP

- Interactions of the hard-scattered parton with QGP constituents while traversing the medium, resulting in **partonic energy loss** from:
 - ▶ Elastic collisions → dominate at lower p_{T}
 - ▶ Gluon radiation → dominate at higher p_{T}
 - QGP constituents subject to **collective motion** described by hydrodynamics: do heavy quarks participate to it?
 - Coalescence vs fragmentation from hadron
 production measurements

THE IMPORTANCE OF HEAVY-FLAVOURS

In pp collisions

- In general, heavy quarks produced in **hard-parton scatterings** with large Q^2
 - Perturbative approach can be applied for the hard-scattering cross section
- Final-state heavy-flavour particle production cross section obtained via factorisation theorem

QCD Factorization:

$$E_{C} \frac{d^{3}\sigma}{dp_{C}^{3}} (AB \to CX) \propto \sum_{abcd} \int_{0}^{1} dx_{a} \int_{0}^{1} dx_{b} f_{A}^{a}(x_{a}, Q^{2}) f_{B}^{b}(x_{b}, Q^{2}) \frac{d\sigma}{dt} (ab \to cd) D_{C}^{C}(z_{c}, Q^{2})$$
PDF
PDF
Partonic Fragmentation function

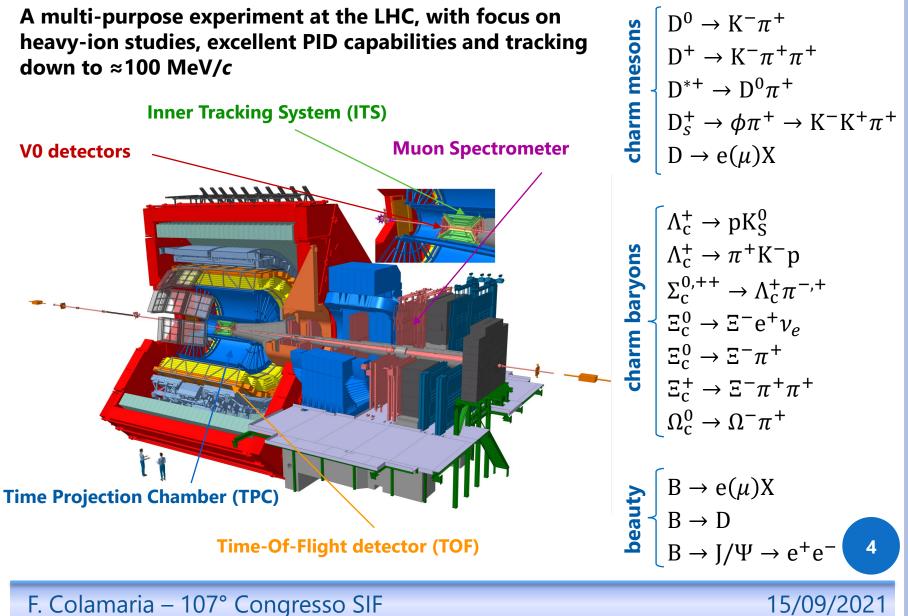
- Heavy-flavour measurements allow us to:
 - Probe perturbative QCD calculations for heavy-quark production
 - Study heavy-quark hadronisation mechanisms
- Reference for Pb-Pb measurements

In p-Pb collisions

- Investigate impact of cold-nuclear-matter effects on observables studied in Pb-Pb
- Possible modification of heavy-quark hadronization
- Study possible final-state energy loss and formation of QGP in high-multiplicity events

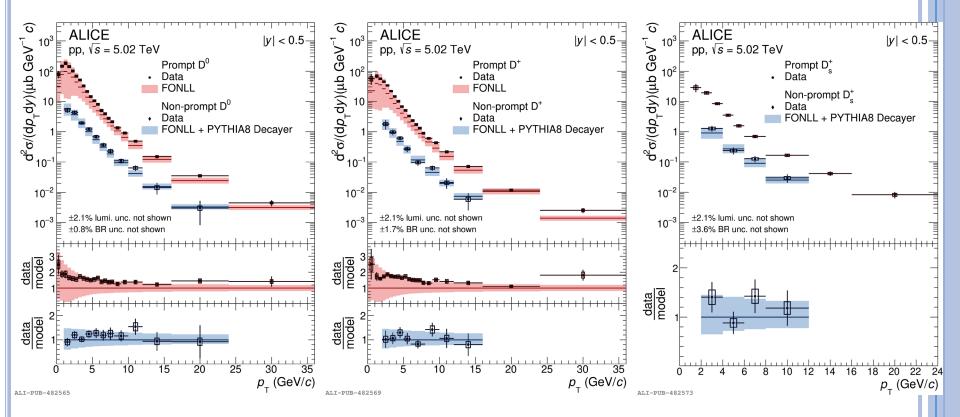
F. Colamaria – 107° Congresso SIF

15/09/2021


Also in high-

multiplicity pp!

3

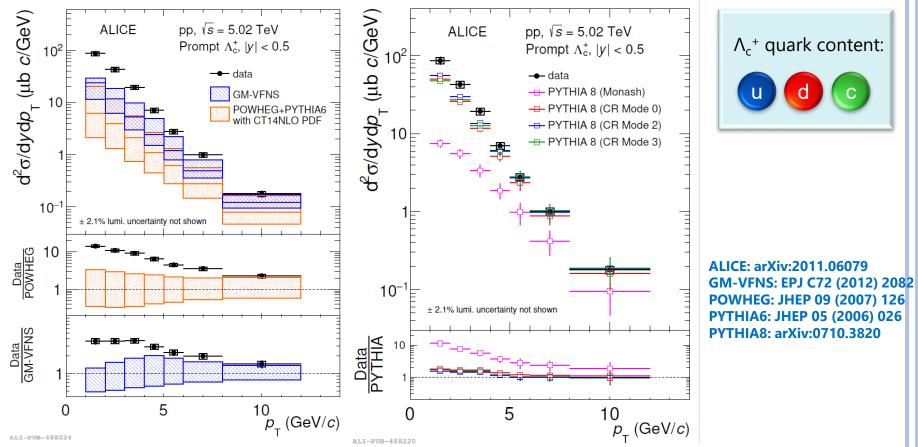

THE ALICE EXPERIMENT

pp collisions

D MESON PRODUCTION IN pp COLLISIONS

- Cross section of prompt and non-prompt D mesons measured with excellent precision down to $p_T = 0$ (for D⁰, D⁺)
- Comparison with perturbative QCD calculations (FONLL and GM-VFNS) based on universal fragmentation functions, measured in e⁺e⁻ collisions
 - Good description of the measurement for D mesons

ALICE, JHEP 05 (2021) 220 FONLL: JHEP 1210 (2012) 137


5

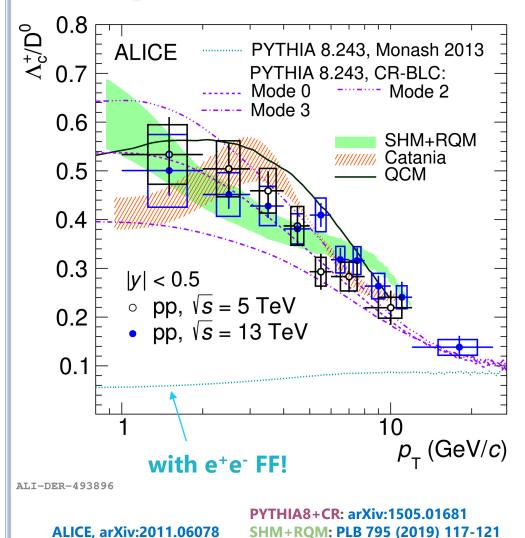
15/09/2021

F. Colamaria – 107° Congresso SIF

Λ_c⁺ PRODUCTION IN pp COLLISIONS

Very different picture for charm baryons!

- Severe underestimation of Λ_c⁺ production cross section by pQCD calculations (GM-VFNS), and models/generators based on standard fragmentation (POWHEG+PYTHIA6, PYTHIA8 Monash)
- Proper description needs specific mechanisms to enhance baryon production in pp collisions


F. Colamaria – 107° Congresso SIF

15/09/2021

6

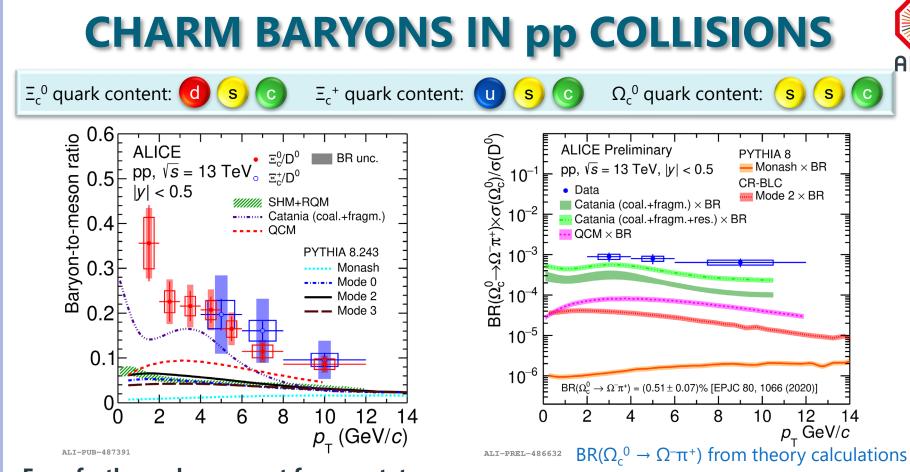
Λ_c⁺ PRODUCTION IN pp COLLISIONS

Catania: arXiv:2012.12001

QCM: EPJ C78 no. 4 (2018) 344

Large disagreement of Λ_c^+/D^0 ratios in pp collisions w.r.t. PYTHIA8 Monash

- Enhanced Λ_c production, in particular at low p_T
- PYTHIA8 Monash FF based on data from e⁺e⁻ collisions


Better description by models with baryon production enhancement mechanisms:

- Color reconnection beyond leadingcolour approximation → PYTHIA8 CR-BLC
- Statistical hadronisation with enlarged set of excited charm baryons → SHM+RQM
- Λ_c⁺ hadronisation via recombination mechanism → Catania (w/ fragmentation), QCM

F. Colamaria – 107° Congresso SIF

ALICE, arXiv:2011.06079

ALICE, arXiv:2106.08278

Even further enhancement for s+c states

For $\Xi_c^{0,+}/D^0$ ratios, only Catania gets close to data

Both coalescence and fragmentation mechanisms in pp?

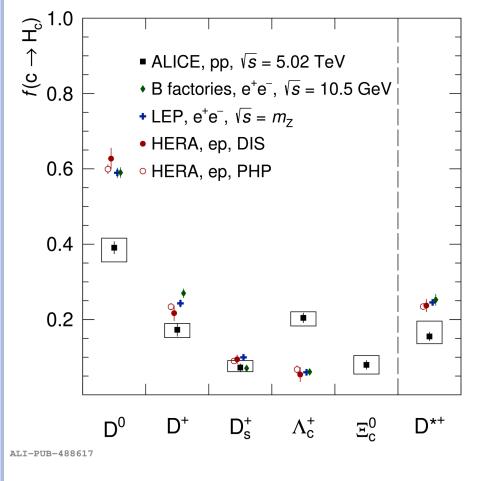
ALICE, arXiv:2105.05187

entation > PYTHIA8 Monash off by orders of magnitude

cross section ratios

 Catania gives again the closest description, though still below data

All models underestimate Ω_c^0/D^0 production


F. Colamaria – 107° Congresso SIF

15/09/2021

8

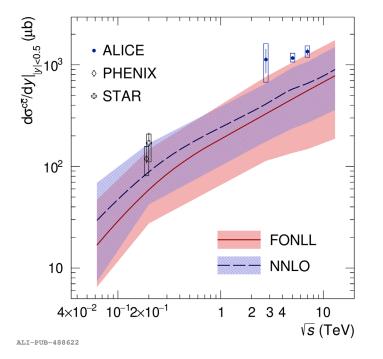
CHARM FRAGMENTATION FRACTIONS

Compared to e^+e^- / e^-p collisions;

- Increased contribution of \approx x3 for Λ_c
- Decreased production by $\approx x1.4$ for D mesons First measurement of Ξ_c^0 FF

H _c	$f(c \rightarrow H_c)$ [%]
D^0	$39.1 \pm 1.7(\text{stat})^{+2.5}_{-3.7}(\text{syst})$
\mathbf{D}^+	$17.3 \pm 1.8(\text{stat})^{+1.7}_{-2.1}(\text{syst})$
D^+_s	$7.3 \pm 1.0(\text{stat})^{+1.9}_{-1.1}(\text{syst})$
$\Lambda_{\rm c}^+$	$20.4 \pm 1.3(\text{stat})^{+1.6}_{-2.2}(\text{syst})$
$\Xi_{\rm c}^0$	$8.0 \pm 1.2(\text{stat})^{+2.5}_{-2.4}(\text{syst})$ ×2 (Ξ_c^0)
D^{*+}	$15.5 \pm 1.2(\text{stat})^{+4.1}_{-1.9}(\text{syst})$ Into D ^{0,+}

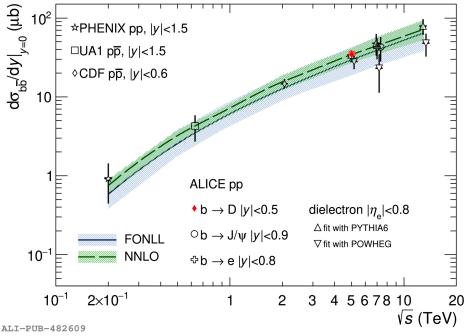
ALICE, arXiv:2105.06335 HERA: EPJC 76 no. 7 (2016) 397 √s=5.02 TeV LEP: EPJC 76 no. 7 (2016) 397 B factories: EPJC 76 no. 7 (2016) 397


- For pp collisions, important contribution of charm baryons to total charm cross section
- Charm fragmentation is not universal!

F. Colamaria – 107° Congresso SIF

9

CHARM AND BEAUTY PRODUCTION CROSS SECTION



 Total *cc̄* production cross section at midrapidity at √s = 5.02 TeV:

 $(d\sigma^{c\bar{c}}/dy)_{|y|<0.5} = 1165 \pm 44(\text{stat.})^{+134}_{-101} \text{ (syst) } \mu\text{b}$

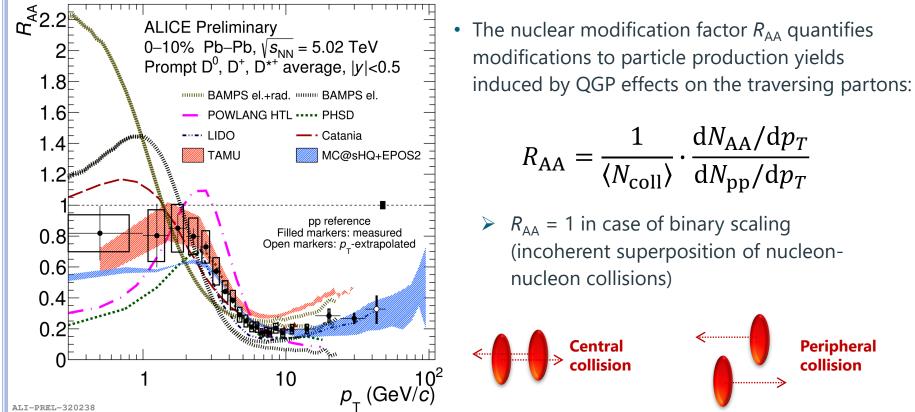
- Re-evaluation of cross section at √s = 7 and 2.76 TeV (≈+40%)
- Data on upper edge of FONLL and NNLO calculation

 Total bb̄ production cross section at midrapidity at √s = 5.02 TeV:

 $(d\sigma^{b\bar{b}}/dy)_{|y|<0.5} = 34.5 \pm 2.4 \text{ (stat.)}_{-2.9}^{+4.6} \text{ (tot. syst.)} \ \mu b$

- From non-prompt D-meson measurements
- Good description by FONLL and NNLO calculations over a wide range of energy

ALICE: arXiv:2105.06335, JHEP 05 (2021) 220, JHEP 11 (2015) 065, PLB 721 (2013) 13-23, PRC 102 (2020) 5, 055204; PHENIX: PRC 84 044905 (2011), PRL 103 082002 (2009); STAR: PRD 86 (2012) 072013; CDF: PRD 71 032001 (2005); UA1: PLB 256 (1991) 121

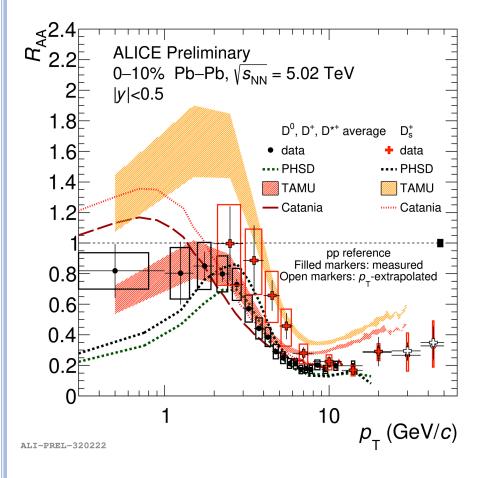

F. Colamaria – 107° Congresso SIF

10

Pb-Pb COLLISIONS

PROMPT D-MESON R_{AA}

Peripheral collision


ALI-PREL-320238

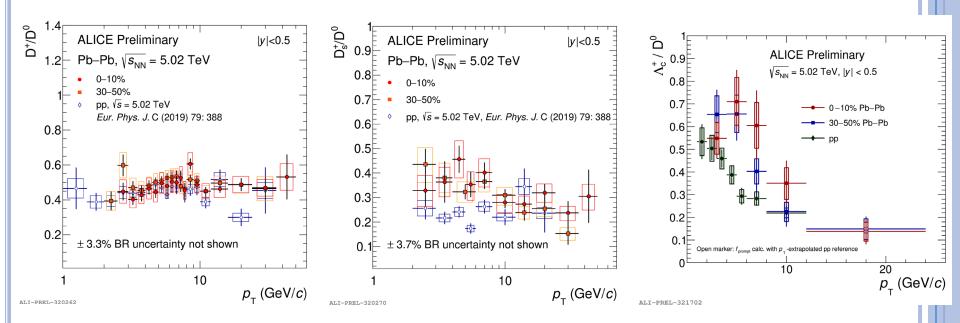
- Prompt D mesons strongly suppressed in central Pb-Pb collisions (factor 5.5 at 6-10 GeV/c)
- Best description by models with radiative and collisional energy loss + quark recombination
 - Set constraints on models describing in-medium interactions of heavy quarks

F. Colamaria – 107° Congresso SIF

11

PROMPT D-MESON R_{AA}

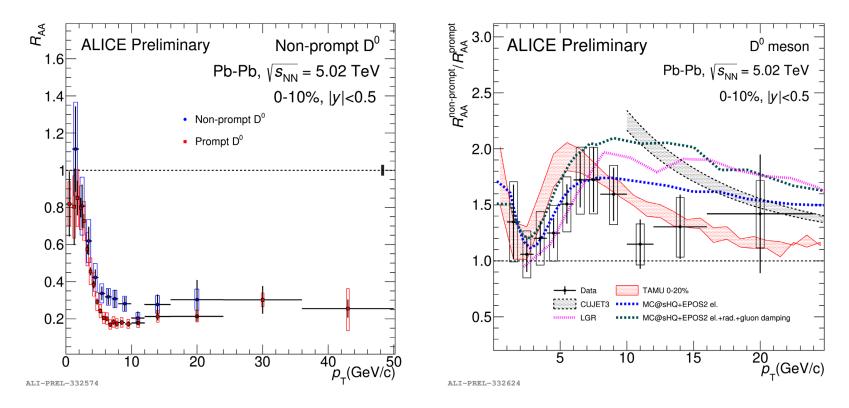
PHSD: T. Song et al. PRC 92 014910 (2015) TAMU: M. He et al. PLB 735 445-450 (2014) Catania: S. Plumari et al. EPJC 78 348 (2018)



- Hint of smaller suppression for D_s⁺ compared to non-strange D mesons for p_T < 8 GeV/c
- Explained due to strangeness enhancement in QGP + hadronization via recombination
- Hierarchy is well described by models including hadron formation via recombination

F. Colamaria – 107° Congresso SIF

CHARM-SPECIE RATIOS IN Pb-Pb

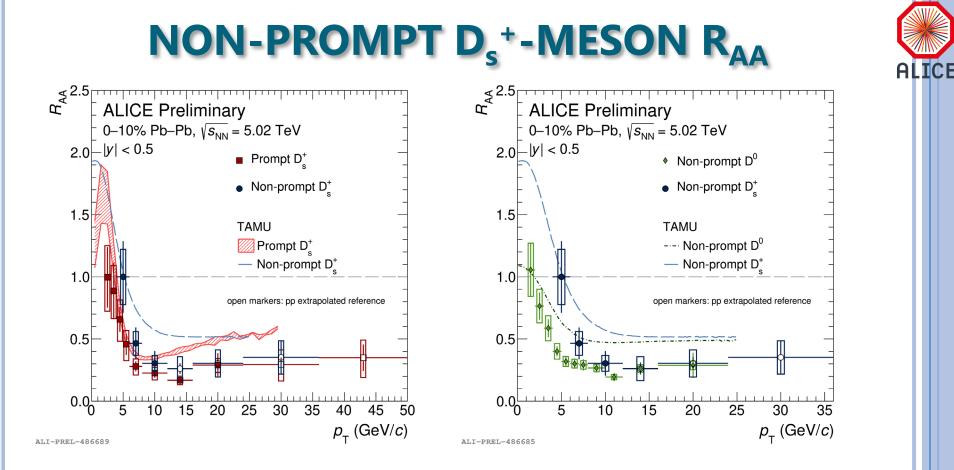

- D+/D⁰: relative production in Pb-Pb not modified w.r.t pp
- D_s⁺/D⁰: seemingly larger in Pb-Pb collisions compared to pp
 - > As for larger $R_{AA}(D_s^+) > R_{AA}(D^0)$, related to strangeness enhancement + recombination
- Λ_c^+/D^0 : hint of enhanced Λ_c^+ in Pb-Pb collisions compared to pp
 - Baryon enhancement from quark recombination + radial flow push

F. Colamaria – 107° Congresso SIF

13

NON-PROMPT D-MESON R_{AA}



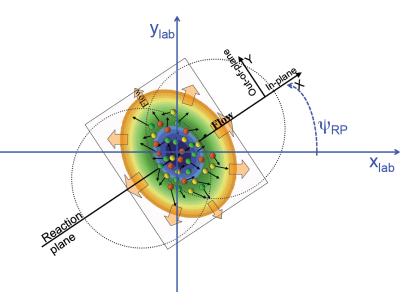

Decreased suppression for non-prompt D⁰ compared to prompt D⁰

- → $\Delta E(b) < \Delta E(c)$ from dead-cone effect → Translates into $R_{AA}(H_b \rightarrow D^0) > R_{AA}(c \rightarrow D^0)$
- Low- p_T structure in double ratio due to prompt D⁰ formation via recombination
- Double ratio of non-prompt/prompt $D^0 R_{AA}$ well described by most of the transport models

F. Colamaria – 107° Congresso SIF

- First measurement of non-prompt D_s^+ mesons in central Pb-Pb collisions
- At low p_{T} , hint of reduced suppression w.r.t. prompt D_{s^+} and non-prompt D^0 mesons
- TAMU model (collisional energy loss + recombination) describes well the difference of *R*_{AA}, though generally overestimating their absolute values

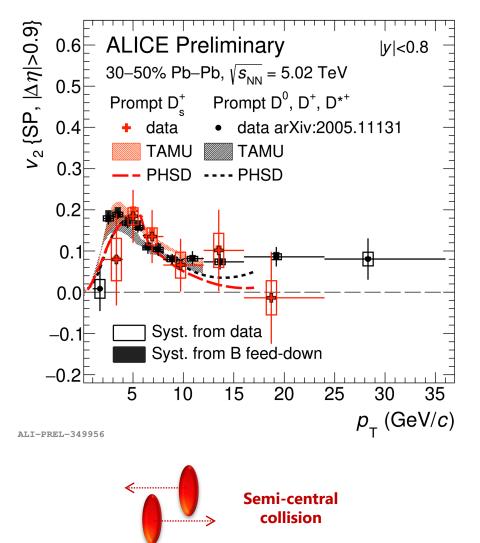
Further details and results: **S. Politano**, 14/9, - 10:00 (sezione 1)


F. Colamaria – 107° Congresso SIF

COLLECTIVE MOTION IN Pb-Pb

- Hydrodynamic treatment describes well QGP medium evolution
- Non-central collisions: initial spatial anisotropy of the overlap region becomes a momentum anisotropy:
 - Larger pressure gradients imply more particles emitted in that direction
- Anisotropy quantified by a Fourier decomposition of the azimuthal distribution, w.r.t. reaction plane
 - \succ $v_{\rm n}$ coefficients

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} = \frac{N_0}{2\pi} \left\{ 1 + 2\sum_{n=1}^{\infty} v_n \left(p_{\mathrm{T}} \right) \cos \left[n \left(\varphi - \Psi_{\mathrm{RP}} \right) \right] \right\}$$
$$v_n = \left\langle \cos \left[n \left(\varphi - \Psi_{\mathrm{RP}} \right) \right] \right\rangle$$


- **v**₂: sensitive to collision initial geometry
- v_{3} , $v_{4'}$...: sensitive to event-by-event fluctuations

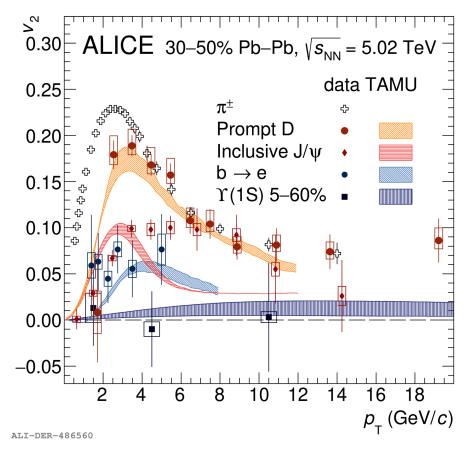
16

F. Colamaria – 107° Congresso SIF

HF ELLIPTIC FLOW COEFFICIENTS

- Positive v_2 of prompt D mesons
 - Participation of charm quarks to collective motion of QGP medium
- Similar strength of elliptic flow for strange and non-strange D mesons
- TAMU and PHSD transport models describe well the measurements
 - Both models include charm + strange quark coalescence for D_s⁺ formation

ALICE, Phys. Lett. B 813 (2021) 136054 PHSD: T. Song et al. PRC 92 014910 (2015) TAMU: M. He et al. PLB 735 445-450 (2014)


F. Colamaria – 107° Congresso SIF

15/09/2021

17

HF ELLIPTIC FLOW COEFFICIENTS

[•] v_2 coefficient ordering: $v_2(\pi^{+/-}) > v_2(D) > v_2(J/\psi)$, points toward larger flow for light quarks rather than for charm

 \succ 1.5 < 2π*T*_c*D*_s < 7 for *T*_c = 155 MeV

15/09/2021

F. Colamaria – 107° Congresso SIF

Beauty sector: smaller v₂ for beautyhadron decay electrons, and no flow for Y(1S) state

TAMU model describes well the data, except for J/ψ above 4 GeV/c

High-precision measurements allow for setting constraints to models for charm diffusion coefficient:

CONCLUSIONS

pp collisions

- Precise measurements of production cross section for several charm hadrons, total charm cross section and charm fragmentation fractions
- Measurements of charm baryon/meson ratios point toward **non-universality** of the FF

Pb-Pb collisions

- Strong **suppression** of open heavy-flavour particles in central Pb–Pb collisions
- Comparison of specie-by-specie measurements support color charge and mass dependence of in-medium energy loss + hadronisation via quark recombination
- Charm and beauty quarks participate to QGP collective motion, though possibly with less strength than light quarks
- Just a selection of results shown here! Many other HF ALICE measurements available
 - p-Pb system, differential studies as HF correlation and jets, multiplicity-dependent observables, ...
- ALICE upgrade expected to dramatically improve the precision of heavy-flavour studies and allow for further, unexplored measurements