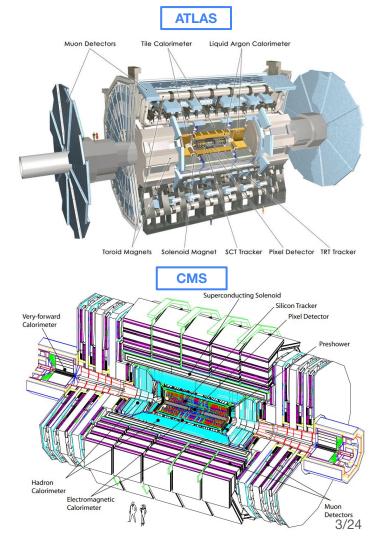


Recent results in heavy-flavour physics by ATLAS and CMS

Alberto Bragagnolo (Università & INFN, Padova) alberto.bragagnolo@pd.infn.it

107° Congresso Nazionale - Società Italiana di Fisica 12 September 2021, Virtual



Outline

- 1. Introduction
- 2. Observation of triple J/ ψ meson production [CMS]
- 3. Observation of B⁰ $\rightarrow \psi(2S) K_{s}^{0} \pi^{+}\pi^{-}$ and B_s $\rightarrow \psi(2S) K_{s}^{0}$ decays [CMS]
- 4. Measurement of b-quark fragmentation properties in jets [ATLAS]
- 5. CP violation in B_s decays [ATLAS, CMS]
- 6. Conclusions

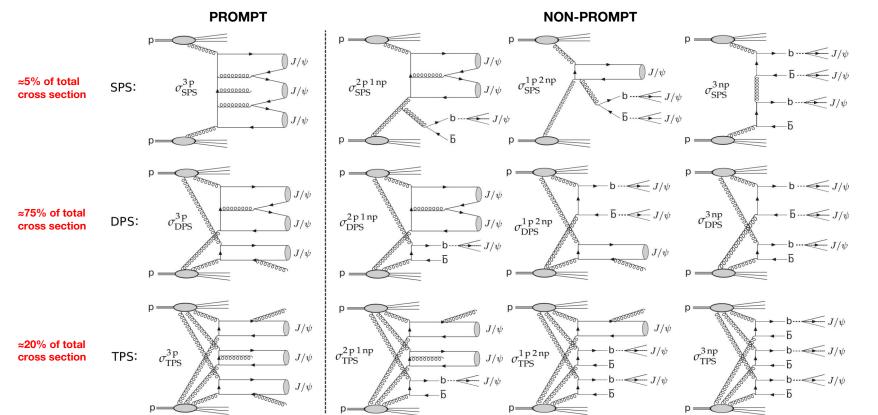
Introduction

- In the last decade heavy-flavour physics has revealed itself as one of the most promising sectors in the search for physics beyond the Standard Model
 - Several *anomalies* (slight discrepancies with SM predictions) have been observed in various types of measurements
 - Cross-validation between experiments/results is essential
- Flavour physics is studied both at dedicated experiments (e.g., LHCb at CERN and Belle II at KEK), but also at general-purpose ones
- ATLAS and CMS have demonstrated time after time to be capable to produce high-quality results
- At LHC, general-purpose detectors generally suffer from the lack of dedicated particle identification for light hadrons (kaons and pions)
- However they are not subjected to luminosity levelling
 - Greatly benefit from LHC upgrades
- Moreover their measurement is complementary to those obtained by LHCb, due to different kinematic acceptance
 - \circ LHCb: 2 < η < 5 "forward region"
 - \circ ~ ATLAS/CMS: 0 < η < 2.5 ~

Observation of triple J/ψ meson production

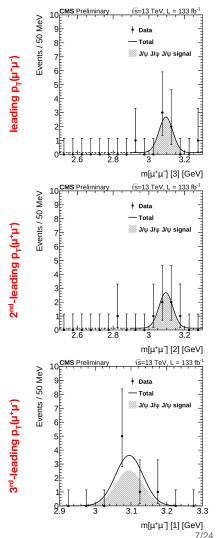
CMS-PAS-BPH-21-004 (preliminary)

Motivations


- Triple J/ψ production as a probe of double- and triple-parton scatterings (DPS, TPS)
 - Study unknown energy evolution of transverse (impact parameter b) proton shape
 - Probe generalized PDFs (x,Q²,b) of the proton
 - Control backgrounds for rare SM resonance decays and BSM searches for multiple heavy particles $m \rightarrow \psi_1 \psi_2 + X$ (b) $\sigma_{SPS}^{pp \rightarrow \psi_1 + X} \sigma_{SPS}^{pp \rightarrow \psi_2 + X}$ \leftarrow SPS cross sections
- "Pocket formula": $\sigma_{\text{DPS}}^{pp \to \psi_1 \psi_2 + X} = \left(\frac{k}{2}\right) \underbrace{\sigma_{\text{SPS}}^{pp \to \psi_1 + X} \sigma_{\text{SPS}}^{pp \to \psi_2 + X}}_{\text{combinatorial factor}}$ effective interaction area
 - \circ σ_{eff} is derivable from p-p transverse overlap (assuming no parton correlation)
 - $\sigma_{eff} \approx 20-30$ mb from proton form-factor implemented in MC event generator
 - But experiments show:
 - $\sigma_{\rm eff} \approx 5$ mb, from di-quarkonia f.s.
 - $\sigma_{eff} \approx 15$ mb, from jets, photons, EWK bosons
- Idea: study triple-parton scattering $\rightarrow \sigma_{\text{TPS}}^{pp \to \psi_1 \psi_2 \psi_3 + X} = \left(\frac{k}{3!}\right) \frac{\sigma_{\text{SPS}}^{pp \to \psi_1 + X} \sigma_{\text{SPS}}^{pp \to \psi_2 + X} \sigma_{\text{SPS}}^{pp \to \psi_3 + X}}{\sigma_1^2}$
 - Never observed so far
 - Closely related to DPS: $\sigma_{eff,TPS} = (0.82 \pm 0.11) \sigma_{eff,DPS}$ [PRL118(2017)122001]
 - Triple prompt- J/ψ: DPS and TPS dominate [PRL122(2019)192002]

CMS

6/24


Triple J/ ψ production diagrams

• $\sigma(pp \rightarrow J/\psi J/\psi X) = Mix \text{ of } pp \rightarrow J/\psi \text{ (prompt) and } pp \rightarrow b \rightarrow J/\psi \text{ (non-prompt) processes:}$

Analysis

- Data taking period: 2016+2017+2018
- Center-of-mass energy: 13 TeV
- Integrated luminosity: 133 fb⁻¹
- **Trigger**: $J/\psi \rightarrow \mu^+\mu^-$ candidate plus an additional muon
- Selection: 6 muons final state
 - $\circ~~p_{_{T}}\!>3.5~\text{GeV}$ for barrel and $p_{_{T}}\!>2.5~\text{GeV}$ for endcap
 - $\circ~$ Dimuon invariant mass between 2.9 and 3.3 GeV (± 6.5 times the J/ ψ mass resolution)
 - 6 selected events (4 in 2018 and 2 in 2017 data sets)
- Number of events extracted with a **3D unbinned extended ML fit** in the three $m_{J/\psi}$
 - Signal: Gaussian with resolution fixed from MC and mean fixed to PDG
 - Background: exponential
 - Fit variables: 8 yields accounting for all combinations each of the three J/ψ to either be signal or background
- Signal yield: 5.0 ± 2.0 events (6.7σ significance from likelihood ratio)
 - First observation of triple parton scattering
- Checks: toy pulls (no bias), fit in 2.5-3.3 GeV (N_{sig} = 5.0±2.2), with same-sign muon pairs (no events found)

8/24

Results Signal events • N_{sig} = 5.0±2.0 Fiducial cross section measurement **Branching ratio** • $B^3_{J/\psi \to uu} = (5.96\% \pm 0.03\%)^3$ $\sigma(pp \to J/\psi \, J/\psi \, J/\psi \, X) = \frac{1 \cdot s_{\rm ing}}{\epsilon \cdot \mathcal{L}_{\rm int} \cdot Br(J/\psi \to \mu\mu)^3}$ 133 fb⁻¹ (13 TeV) **CMS** Preliminary **Efficiency** • trigger \approx (84±3)% CMS, \sqrt{s} =13 TeV, $J/\psi + J/\psi + J/\psi$ • reconstruction $\approx (94.4 \pm 0.01)\%$ Luminositv • muon ID \approx (82.4±0.2)% CMS, vs=8 TeV, J/w+J/w • $L_{int} = 133 \text{ fb}^{-1}$ Phys.Rept. 889 (2020) 1-106 ATLAS, vs=8 TeV, J/u+J/u Eur.Phys.J.C 77 (2017) 2, 76

- **Result:** $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X) = 272 \pm 109(stat) \pm 17(syst)$ fb
- From which can be derived*:

 $\sigma_{\text{eff,DPS}} = 2.7 \pm 1.2(\text{exp}) \pm 1.5(\text{theo}) \text{ mb}$

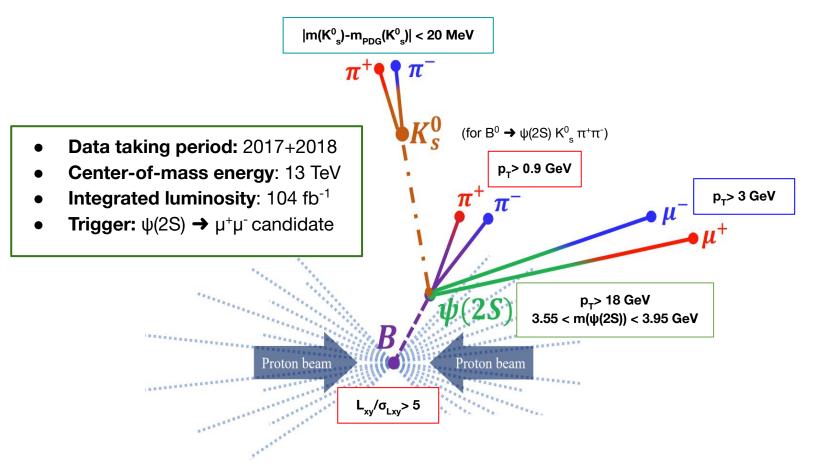
• σ_{eff,DPS} value is consistent with the world-data obtained previously from diquarkonium production measurements

LHCb, √s=13 TeV, J/ψ+J/ψ JHEP 10 (2017) 068 D0, √s=1.96 TeV, J/ψ+J/ψ Phys.Rev.D 90 (2014) 11 111101 D0. vs=1.96 TeV. J/w+Y Phys.Rev.Lett. 117 (2016) 6, 062001 ATLAS. vs=8 TeV. Z+b→J/w Nucl.Phys.B 916 (2017) 132-142 ATLAS. vs=8 TeV. Z+J/w Phys.Rept. 889 (2020) 1-106 ATLAS. VS=8 TeV. W+J/W Phys.Lett.B 781 (2018) 485-491 10 20 30 $\sigma_{\rm eff.DPS}$ [mb]

C

Observation of $B^0 \rightarrow \psi(2S)K_s^0\pi^+\pi^-$ and $B_s \rightarrow \psi(2S)K_s^0$ decays

CMS-PAS-BPH-18-004 (preliminary)



Motivations

- Decays with charmonium in final states are a good probe for time-dependent CP-violation measurement
 - Tests of the flavour sector of the SM
 - Search for signs of New Physics
- Many exotic states have been observed in the last 15 years, but the nature of most of them is still unclear
 - \circ Z_c(3900)[±] → J/ψ π[±] [Belle]
 - $Z_c(4200)^{\pm}$ → J/ψ π[±] [<u>BaBar</u>]
 - $\circ \quad Z_{c}(4430)^{\pm} \rightarrow \psi(2S) \ \pi^{\pm} [\underline{\text{Belle}}]$
 - X(3915) → J/ψ ω [<u>Belle</u>]
 - P_c(4457)⁺ → J/ψ p [<u>LHCb</u>]
 - Z_{cs}[−](4220)[±] → J/ψ K[±] [<u>LHCb</u>]
- This work present the search for the decays $B^0 \rightarrow \psi(2S) K_s^0 \pi^+\pi^-$ and $B_s \rightarrow \psi(2S) K_s^0$
 - Both can be used for CPV measurements
 - $B^0 \rightarrow \psi(2S) K_s^0 \pi^+\pi^-$ can be used to search for intermediate exotic resonance



Candidate selection

Results

• First observation of $B_s \rightarrow \psi(2S)K_s^0$ at 5.2 σ

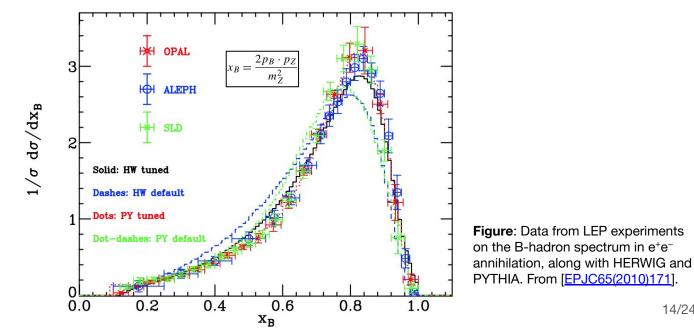
 $\frac{\mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \psi(2\mathrm{S})\mathrm{K}^{0}_{\mathrm{s}})}{\mathcal{B}(\mathrm{B}^{0} \to \psi(2\mathrm{S})\mathrm{K}^{0}_{\mathrm{s}})} \cdot \frac{f_{s}}{f_{d}} = (0.69 \pm 0.14 \,(\mathrm{stat}) \pm 0.02 \,(\mathrm{syst}))\%$

First observation of $B^0 \rightarrow \psi(2S)K_s^0 \pi^+\pi^-$ at >30 σ

 $\frac{\mathcal{B}(B^0 \to \psi(2S)K_s^0 \pi^+ \pi^-)}{\mathcal{B}(B^0 \to \psi(2S)K_s^0)} = (48.0 \pm 1.3 \,(\text{stat}) \pm 3.2 \,(\text{syst}))\%$

Measurement of b-quark fragmentation properties in jets

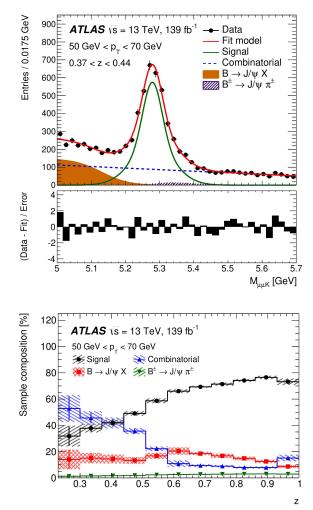
arXiv:2108.11650 [hep-ex]


(submitted to JHEP)

Introductions

14/24

- Heavy quark fragmentation is a crucial aspect of QCD •
- Reliable modelling of the fragmentation is of great importance for several measurements (e.g. . H**→**bb,tt, ...)
- Inputs to MC tuning still use LEP-era data

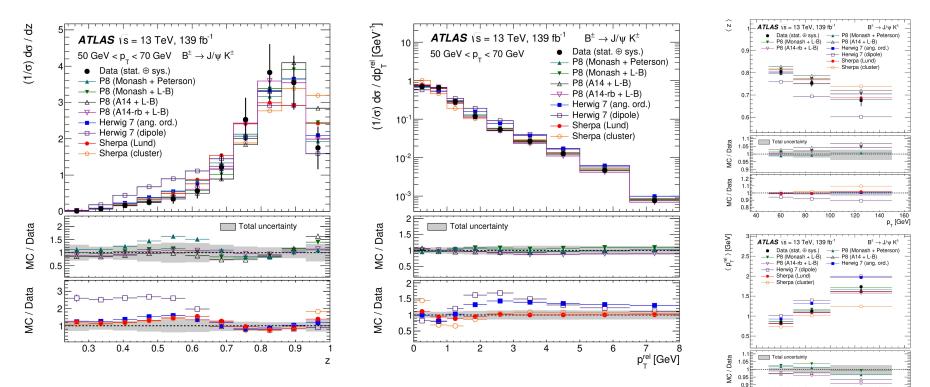


Analysis

- The b-fragmentation is measured with the decay chain
 B[±] → J/ψ K[±] → μ⁺μ⁻ K[±]
- Reconstructed B mesons are matched to jets and the longitudinal and transverse momentum profiles are defined as

$$z = \frac{\vec{p}_B \cdot \vec{p}_j}{|\vec{p}_j|^2} \qquad \qquad p_{\rm T}^{\rm rel} = \frac{|\vec{p}_B \times \vec{p}_j|}{|\vec{p}_j|}$$

- About 1.5M selected events
- Data are binned in three intervals of the jet p_T
 - [50, 70], [70, 100] and above 100 GeV
- A binned ML fit to the B[±] mass is performed in each of the (p_T , z) and (p_T , p_T ^{rel}) bins to extract the number of signal events



Results

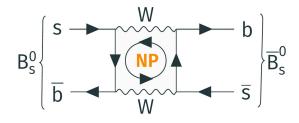
Average values as a function of jet p_{T}

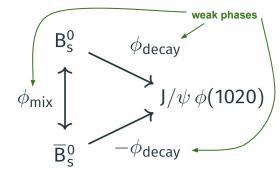
MC / Data 2000 - 111 - 112

- All PYTHIA fragmentation models give a decent description
- SHERPA (cluster) and HERWIG7 (dipole) show clear disagreement in different regions

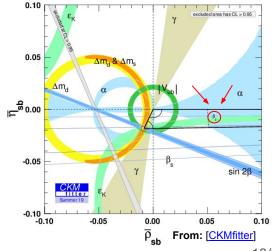
p, [GeV] 16/24

120 140

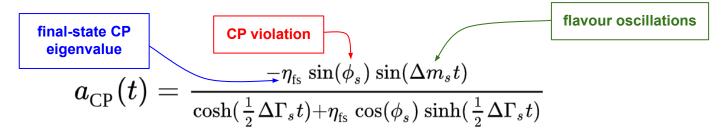

CP violation in \mathbf{B}_{s} decays


Eur. Phys. J. C 81 (2021) 342 [ATLAS]

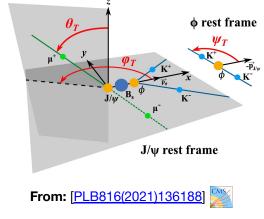

Phys. Lett. B 816 (2021) 136188 [CMS]


Motivations

- Decays of B_s mesons allow to study the time-dependent CP violation generated by the interference between direct decays and flavour mixing
 - CPV in the interference possible even if no CPV in decay and mixing
 - Golden channel: $B_s \rightarrow J/ψ φ(1020) \rightarrow μ^+μ^- K^+K^-$
- The weak phase ϕ_s is the main CPV observable
 - Precisely predicted by the SM to be $\phi_s \approx -2\beta_s \approx -37 \pm 1 \text{ mrad}$, where β_s is one of the angles of the B_s unitary triangle (determined very accurately by CKM global fits) [CKMfitter, UTfit]
- New physics can change the value of ϕ_s up to ~100% via new particles contributing to the flavour oscillations [RMP88(2016)045002]



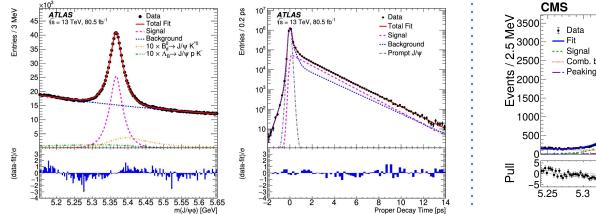
18/24


Measurement ingredients

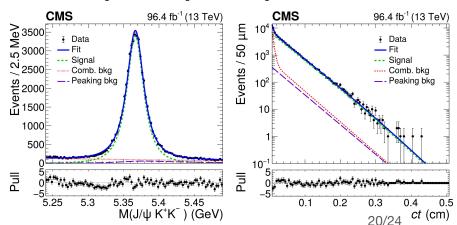
• Need to measure time-dependent flavour asymmetry

- Essential ingredients
 - a. Time-dependent **angular analysis** to separate the different CP eigenstate
 - b. Excellent **time resolution** to see the fast B_s flavour oscillations (T ~ 350 fs)
 - c. **Flavour tagging** to infer the initial B_s flavour

sensitivity
$$\propto \sqrt{rac{\epsilon_{
m tag} \mathcal{D}_{
m tag}^2 N_{
m sig}}{2}} \sqrt{rac{N_{
m sig}}{N_{
m sig} + N_{
m bkg}}} \, e^{-rac{\sigma_t^2 \Delta m_s^2}{2}}$$

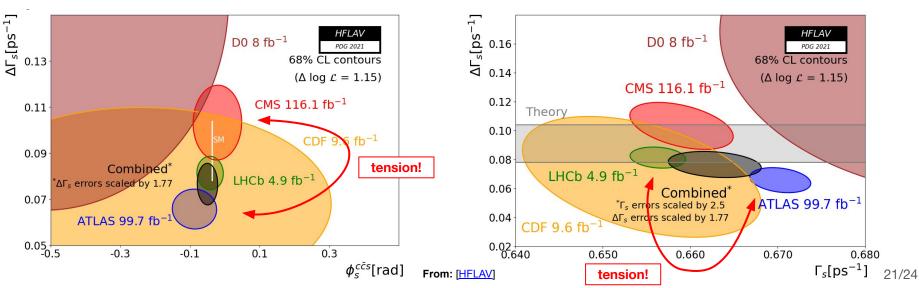


- **Dataset:** 2015-2017 (L_{int} = 80.5 fb⁻¹)
- **Trigger:** $J/\psi \rightarrow \mu^+\mu^-$ candidate
- Decay lenght cut: none
- m(K⁺K⁻) interval: [1008.5, 1030.5] MeV (w.a. ± 11 MeV)
- Number of signignal candidates: 453570 ± 740
- Flavour tagging: opposite-side muon, electron and jet



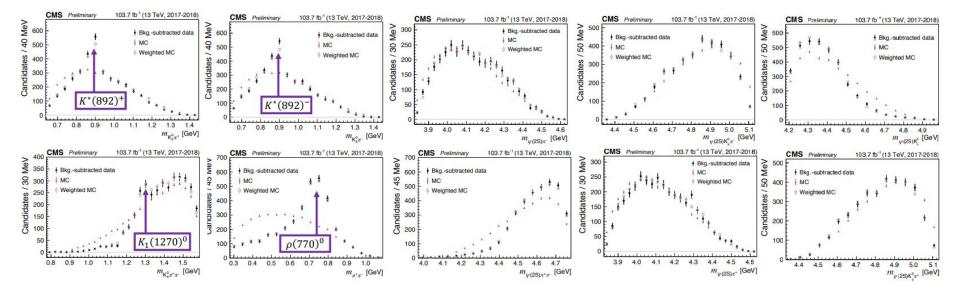
- Dataset: 2017-2018 (L_{int} = 96.4 fb⁻¹)
- Trigger: J/ψ → μ⁺μ⁻ candidate plus an additional muon (used for flavour tagging)
- Decay lenght cut: 70 µm (to reduce prompt bkg.)
- m(K⁺K⁻) interval: [1009.5, 1029.5] MeV (w.a. ± 10 MeV)

 $\varepsilon_{tag} \approx 50\%, \, \omega_{tag} \approx 27\%, \, \mathsf{P}_{tag} \approx 10\%$


- Number of signignal candidates: 48500 ± 250
- Flavour tagging: opposite-side muon

Ο

Results


- An unbinned extended ML fit is used to extract several physics parameters describing the B_s system and the CPV in B_s → J/ψ φ(1020)
- Both ATLAS and CMS measure ϕ_s , $\Delta \Gamma_s$, Γ_s , three decay amplitudes and respective strong phases
 - Additionally CMS measures Δm_s and the observable $|\lambda|$ related to the amount of direct CPV
- Both experiments combine the 13 TeV results with those obtained at 8 TeV
- $\Delta \Gamma_s$ and Γ_s show tensions between experiments
- Hopefully full Run-2 measurements will clarify the situation

BACKUP

$B^0 \rightarrow \psi(2S) K_s^0 \pi^+ \pi^-$ intermediate invariant masses

 The mass distributions of ψ(2S) and one or two light mesons do not present any significant narrow peaks that could indicate a contribution from an exotic charmonium state.