

Robotic technologies for image guidance in particle therapy
Prof. Guido Baroni, Ph.D.
Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano

CartCasLab www.cartcas.polimi. it

High-precision radiotherapy
A "computer assisted - robotic surgery" paradigm
\checkmark Planning stage:

- X-ray volumetric imaging (3D/4D-CT)
- Functional imaging (PET, fMRI)
- Contouring (semi-automatic)
- Definition of treatment physical and geometry parameters
- Dose distribution simulation / optimization / evaluation

\checkmark Delivery/treatment stage:
- Patient set-up
- Geometry verification (Image Guidance)
- Compensation of inter-fractional patient deviations
- Dose delivery with compensation of intrafractional patient deviations

IMRT Boost treatment

High-precision radiotherapy: New techniques Particle therapy

\checkmark Proton and heavy ions (C^{14})
\checkmark Higher biological effectiveness
\checkmark Higher geometrical selectivity
\checkmark Spot scanning delivery techniques for "dosesculpting"
\checkmark Cyclotron (proton) or Synchrotron needed

IGRT in particle therapy in the CNAO facility

\checkmark Centro Nazionale di Adroterapia Oncologica (www.cnao.it)
\checkmark first center in Italy (2 ${ }^{\text {nd }}$ in Europe; $5^{\text {th }}$ worldwide) for active scanning proton and carbon-ion therapy
$\checkmark 3$ treatment rooms with fixed beamline
\checkmark State of the art technologies for in-room image guidance
$\checkmark 6$ dof patient positioning system
\checkmark IR optical tracking for set-up and immobility verification
\checkmark double X-ray projection systems for 2D-3D registration
\checkmark under clinical exploitation since September 2011
\checkmark Thousands of patient treated

POLITECNICO DI MILANO

Patient Positioning and Verification strategy at CNAO Integrated robotic, X-ray and IR localization system

3D Real-time IR Optical Tracking (ITS)

- Real time reconstruction of spherical markers
- Sub-millimeter accuracy : peak 3D errors $<0.5 \mathrm{~mm}$

X-ray Patient
 Verification System (RVS)

- 2 X-ray tubes (deployable),
- 2 flat panels (deployable)
- Supporting structure rotation: $\pm 180^{\circ}$
- Rotation and deployment accuracy: $\pm 0.15 \mathrm{~mm} \pm 0.1^{\circ}$ System (PPS)
- Automatic couch or chair docking
- Absolute accuracy: $\approx 0.3 \mathrm{~mm}$

High-precision radiotherapy: Robotics imaging in CNAO central room

$\checkmark \mathrm{H}$ and V beamlines hinder suspended in-room imaging device (as in lateral rooms)
\checkmark Clinical requirement of multiple projections (2D-3D registration) and volumetric imaging (CBCT) for 3D-3D registration with soft tissue visualization (peak error <1mm)
\checkmark Industry-derived serial kinematic manipulator for static and dynamic patient imaging
\checkmark C-arm with kV X-ray tube and flat panel mounted on a 6dofs robotic serial manipulator
\checkmark Dedicated SW for:
\checkmark multiple imaging and 2D-3D image registration
\checkmark cone-beam CT and 3D-3D registration
\checkmark Selected robot: Kawasaki ZX300-S:
$\checkmark 300$ kg load capability
$\checkmark 0.3 \mathrm{~mm}$ repeatability
\checkmark Selected imaging componens:
\checkmark Varian A277 X-ray tube with fluoroscopy capabilities
\checkmark Varial 4030D flat panel (2048x1536 pixels)

\checkmark Sample rate up to 30 Hz

High-precision radiotherapy: IGHT Robotic imaging in CNAO central room
\checkmark 2D-3D image registration between DRR from TPS and acquired multiple projections
\checkmark 3D-3D registration between in-room CBCT and planning CT
\checkmark Under clinical application since March 2013

High-precision radiotherapy: IGHT Localization technologies: Image-based

\checkmark 3D-3D registration between CBCT and planning CT
$\checkmark 615$ projections over 220° ROM acquisiton time $<40 \mathrm{sec}$
\checkmark Recostruction time (GPU parallelized FDK) < 20 sec (depends on desired resolution)
$\checkmark 256 \times 256 \times 2.5 \mathrm{~mm}$ voxel dimension
\checkmark 3D-3D registration time $<60 \mathrm{sec}$
\checkmark Dose to patient <20 mGy
\checkmark Clinical application ongoing since summer 2014

High-precision radiotherapy: IGRT Localization technologies: Image-based

Commissioning phase

Imposed		RL rotation [${ }^{\circ}$]	SIrotation $\left[{ }^{\circ}\right]$	$\begin{gathered} \text { AProtation } \\ {\left[{ }^{\circ}\right]} \end{gathered}$	$\begin{gathered} \mathrm{RL} \\ {[\mathrm{~m} \mathbf{m}]} \end{gathered}$	$\begin{gathered} \mathrm{SI} \\ {[\mathrm{~m} \mathbf{m}]} \end{gathered}$	$\begin{gathered} \mathbf{A P} \\ {[\mathbf{m} \mathbf{m}]} \end{gathered}$
	1	0	0	0	-1	-2	3
error	2	-2	-2,5	1,5	0	0	0
	3	-1	-1,5	0,5	3	2	5
	4	0,5	1,5	2	-2	-5	-4

Correction		RL rotation [${ }^{\circ}$]	$\begin{gathered} \text { SI rotation } \\ {\left[{ }^{\circ}\right]} \end{gathered}$	$\begin{gathered} \text { AProtation } \\ {\left[{ }^{\circ}\right]} \end{gathered}$	$\begin{gathered} \mathbf{R} \mathbf{L} \\ {[\mathbf{m} \mathbf{m}]} \end{gathered}$	$\underset{[\mathbf{m} \mathbf{m}]}{\mathbf{S I}}$	$\begin{gathered} \mathbf{A} \mathbf{P} \\ {[\mathbf{m} \mathbf{m}]} \end{gathered}$
	1	-0,50	-0,26	-0,39	-1,25	-1,80	2,37
parameters	2	-1,86	-2,54	1,02	-0,06	0,54	-0,26
	3	-1,41	-1,29	0,35	3,00	2,24	4,45
	4	-0,17	1,59	1,56	-2,80	-4,64	-4,87

Robotic assisted eye treatment with protons

Ophtalmic tumours

- ENUCLEATION (before 1980s)
- RADIATION THERAPY (1980- present)
* Brachytherapy
[Kacperek, Appl. Radiat. Isot., 2009]

Dose distribution of a ${ }^{125}$ I plaque (left) and proton beam (right)

* Proton Therapy 14 dedicated beam line in operation worldwide Over 20,000 treated patients

Radiopaque fiducials
markers implantation

Treatment simulation

In-room orthogonal X -
ray imaging system

Clinical implementation @ CNAO

In August 2016 intraocular lesions treatments with proton beams started at CNAO
N.B: Non-dedicated beam line

- Active scanning
- Non orthogonal in-room imaging system

The requirement of a gaze stabilization and eye motion monitoring device during CT scans and irradiation was fulfilled by means of a compact and portable Eye Tracking System conceived for 3D realtime video oculography

CNAO-EyeTrackingSystem (ETS)

Requirements

- CT compatibility
- Clinically suited design
- In-room localization

Mirror configuration

- Removal of electronic components from the CT FOV
- Miniaturization

Components

- IDS UI-1241-LE-NIR camera.
- Präzisions Glas \& Optik: SEA-NIR Front surface Mirror.
- OSRAM LED SFH486 IR Led.
- ABS for device casing.

Additional features

- Passive markers configuration (identifiable by the CNAO optical tracking system attached to

[Via et al, Med Phys, 2015]
- Marker configuration calibrated w.r.t. fixation point

Requirements

- Exploit high geometrical repeatability of mechanical serial manipulators for ETS positioning in CT room and treatment room
- Co-operative modality of robot activation (safety redundant PLC)

Technology

- MITSUBISHI Serie F; Model RV-4FL-D for Treatment Chair
- MITSUBISHI Serie F; Model RV-2F-D for CT Couch

Design

- Mechanical support
- Feasibility of common ETS position and orientations
- Robot singularities
- SW application (GUI)

Robotic ETS positioning

ETS application in CNAO workflow

Irradiation

X-ray imaging

Point-based registration on clips
Residuals $\leq 1 \mathrm{~mm}$

Dose delivery

Robotic-assisted eye tracking

	Implanted markers		Set-up errors (mm)		
		X-Ray	$\mathbf{L L}_{\mathbf{M}(\sigma)}$	$\mathbf{S I}_{\mathbf{M}(\boldsymbol{\sigma})}$	$\mathbf{A P}_{\mathbf{M}(\boldsymbol{\sigma})}$
Patient 1	$\mathbf{4}(0.26)$	$-0.17(0.16)$	$3.47(1.05)$		
		ETS	$0.11(0.43)$	$-0.10(0.23)$	$3.71(1.50)$
Patient 2	$\mathbf{6}$	X-Ray	$0.28(0.29)$	$0.12(0.16)$	$1.15(1.50)$
		ETS	$0.11(0.42)$	$0.36(0.47)$	$0.94(0.96)$

Thank you for the attention

