

Robotic technologies for image guidance in particle therapy

Prof. Guido Baroni, Ph.D. Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano

CartCasLab www.cartcas.polimi.it

High-precision radiotherapy A "computer assisted – robotic surgery" paradigm

✓ Planning stage:

- X-ray volumetric imaging (3D/4D-CT)
- Functional imaging (PET , fMRI)
- Contouring (semi-automatic)
- Definition of treatment physical and geometry parameters
- Dose distribution simulation / optimization / evaluation

Delivery/treatment stage:

- Patient set-up
- Geometry verification (Image Guidance)
- Compensation of inter-fractional patient deviations
- Dose delivery with compensation of intrafractional patient deviations

Gif - LINBEGISTEBEI

Prostate Treatment

3D Conformal RT

IMRT Boost treatment

Margin: 2 mm Beams: 8 IMRT fields

High-precision radiotherapy: New techniques Particle therapy

- ✓ Proton and heavy ions (C¹⁴)
- Higher biological effectiveness
- ✓ Higher geometrical selectivity
- Spot scanning delivery techniques for "dose– sculpting"
- Cyclotron (proton) or Synchrotron needed

fondazione

High-precision radiotherapy: IGRT in particle therapy in the CNAO facility

- ✓ Centro Nazionale di Adroterapia Oncologica (www.cnao.it)
 - first center in Italy (2nd in Europe; 5th worldwide) for active scanning proton and carbon-ion therapy
 - 3 treatment rooms with fixed beamline
- State of the art technologies for in-room image guidance
 - 6 dof patient positioning system
 - IR optical tracking for set-up and immobility verification
 - ✓ double X-ray projection systems for 2D-3D registration
 - ✓ under clinical exploitation since September 2011
 - Thousands of patient treated

Patient Positioning and Verification strategy at CNAO Cart Cas ab Integrated robotic, X-ray and IR localization system

High-precision radiotherapy: Robotics imaging in CNAO central room

- H and V beamlines hinder suspended in-room imaging device (as in lateral rooms)
- Clinical requirement of multiple projections (2D-3D registration) and volumetric imaging (CBCT) for 3D-3D registration with soft tissue visualization (peak error <1mm)
- Industry-derived serial kinematic manipulator for static and dynamic patient imaging
- C-arm with kV X-ray tube and flat panel mounted on a 6dofs robotic serial manipulator
- ✓ Dedicated SW for:

- ✓ multiple imaging and 2D-3D image registration
- ✓ cone-beam CT and 3D-3D registration
- ✓ Selected robot: Kawasaki ZX300-S:
 - ✓ 300 kg load capability
 - ✓ 0.3 mm repeatability
- Selected imaging componens:
 - ✓ Varian A277 X-ray tube with fluoroscopy capabilities
 - ✓ Varial 4030D flat panel (2048x1536 pixels)
 - ✓ Sample rate up to 30 Hz

High-precision radiotherapy: IGHT Robotic imaging in CNAO central room

- 2D-3D image registration between DRR from TPS and acquired multiple projections
- ✓ 3D-3D registration between in-room CBCT and planning CT
- ✓ Under clinical application since March 2013

High-precision radiotherapy: IGHT Localization technologies: Image-based

- ✓ 615 projections over 220° ROM acquisiton time <40 sec</p>
- Recostruction time (GPU parallelized FDK) < 20 sec (depends on desired resolution)
- ✓ 256x256x2.5 mm voxel dimension
- ✓ 3D-3D registration time <60 sec</p>
- ✓ Dose to patient <20 mGy</p>
- ✓ Clinical application ongoing since summer 2014

High-precision radiotherapy: IGRT Localization technologies: Image-based

Commissioning phase

		RL rotation	SI rotation	AP rotation	RL	SI	AP
		[°]	[°]	[°]	[m m]	[m m]	[m m]
Imposed	1	0	0	0	-1	-2	3
	2	-2	-2,5	1,5	0	0	0
error	3	-1	-1,5	0,5	3	2	5
	4	0,5	1,5	2	-2	-5	- 4

		RL rotation [°]	SI rotation [°]	AP rotation [°]	RL [mm]	SI [m m]	A P [m m]
Correction	1	-0,50	-0,26	-0,39	-1,25	-1,80	2,37
parameters	2	-1,86	-2,54	1,02	-0,06	0,54	-0,26
	3	-1,41	-1,29	0,35	3,00	2,24	4,45
	4	-0,17	1,59	1,56	-2,80	-4,64	-4,87

Robotic assisted eye treatment with protons

Ophtalmic tumours

- ENUCLEATION (before 1980s)
- RADIATION THERAPY (1980- present)
 - Brachytherapy

[Kacperek, Appl. Radiat. Isot., 2009]

Dose distribution of a ¹²⁵I plaque (left) and proton beam (right)

Proton Therapy 14 dedicated beam line in operation worldwide Over 20,000 treated patients

Clinical implementation @ CNAO

In August 2016 intraocular lesions treatments with proton beams started at CNAO

The requirement of a gaze stabilization and eye motion monitoring device during CT scans and irradiation was fulfilled by means of a compact and portable Eye Tracking System conceived for 3D real-time video oculography

fondazione

Requirements

- CT compatibility
- Clinically suited design
- In-room localization

Mirror configuration

- Removal of electronic components from the CT FOV
- o Miniaturization

Components

- o IDS UI-1241-LE-NIR camera.
- Präzisions Glas & Optik: SEA-NIR Front surface Mirror.
- o OSRAM LED SFH486 IR Led.
- ABS for device casing.

Additional features

fondazione

- Passive markers configuration (identifiable by the CNAO optical tracking system attached to outer case
- Marker configuration calibrated w.r.t. fixation point

[[]Via et al, Med Phys, 2015]

POLITECNICO DI MILANO

Robotic ETS positioning

Requirements

- Exploit high geometrical repeatability of mechanical serial manipulators for ETS positioning in CT room and treatment room
- Co-operative modality of robot activation (safety redundant PLC)

Technology

- MITSUBISHI Serie F; Model RV-4FL-D for Treatment Chair
- MITSUBISHI Serie F; Model RV-2F-D for CT Couch

Design

- Mechanical support
- Feasibility of common ETS position and orientations
- Robot singularities
- SW application (GUI)

Nobotic ETS positioning

ETS application in CNAO workflow

Irradiation

X-ray imaging

fondazione

Point-based registration on clips

Fiducials Markers Markers **Correction Vector** . From RTS 3D From RTS 3D ΊΕC[\] Define Show Show Define Translation [cm] Rotation [°] Error Error Name Name DBB 1 0.56 LDRR 1 4.36 0.00 +0.315DBB 0.63 LDBB 2 3.69 4.43 DBB 3 0.42 LDBB 3 0.37 LDRR 4 4.31 LDBB 4 3.69 3.78 4.43 0.56 0.63 0.42 XR 1 $\times R1$ -0.145 0.00 XR 2 XR 2 • XR 3 XB 3 XB 4 0.37 $\times B4$ +0.2140.00 Error: D = 0.49mm, Max = 0.63mm Error: D = 4.10mm, Max = 4.43mm Delete Delete All Delete Delete All

Dose delivery

POLITECNICO DI MILANO

Residuals ≤1mm

Robotic-assisted eye tracking

	Implanted		Set-up errors (mm)			
	markers		LL $_{M(\sigma)}$	SI _{M (σ)}	$AP_{M(\sigma)}$	
Patient 1	4	X-Ray	0.01 (0.26)	-0.17 (0.16)	3.47 (1.05)	
		ETS	0.11 (0.43)	-0.10 (0.23)	3.71 (1.50)	
Patient 2	6	X-Ray	0.28 (0.29)	0.12 (0.16)	1.15 (1.50)	
		ETS	0.11 (0.42)	0.36 (0.47)	0.94 (0.96)	

fondazione

