

UNIVERSITÀ DEGLI STUDI DI MILANO

A microscale approach to yield stress fluids: investigation of nonlinearity and yielding with an optofluidic micro-rheometer

Giuliano Zanchetta

Dipartimento di biotecnologie mediche e medicina traslazionale Complex fluids and molecular biophysics lab

Thanks to...

Andrea Corno

Giovanni Nava

Tommaso Bellini

Valerio Vitali Paolo Minzioni

Thanks to...

Andrea Corno

Giovanni Nava

Tommaso Bellini

Biomolecules

Soft materials

Optical techniques

DNA-based hydrogels

Microscopy tools to study phase behaviour & response to mechanical perturbation

Viscoelastic materials

Most interesting materials are neither (only) solid nor (only) liquid, but display multiple length and time scales dependent on microstructure

Yield stress materials

Solid-like

Liquid-like

Yield stress materials: creep test

$$\sigma = F/A$$

$$\gamma = d/h$$

$$\sigma < \sigma_y$$

solid regime

$$\gamma = \frac{\sigma}{G}$$

Balmforth et al., Annu.Rev. Fluid Mech. (2014) Bonn et al. Rev. Mod. Phys. (2017) Coussot, Rheol. Acta (2018)

Yield stress materials: creep test

Yield stress: what happens at the transition?

- Delayed yielding
- Are there structural/dynamic precursors of failure?
- Interplay with flow localization/aging/boundary conditions...

Yield stress at the local scale

Particle stress $< \sigma_v$

Trapping!

Particle stress > σ_y

Flow

Beris et al. J. Fluid Mech. (1985)

Putz, Phys. Fluids (2008) Holenberg et al., PRE (2012)

Yield stress at the local scale

N.Gnan

- Conditions for stable trapping?
- Comparison with macroscopic rheology?
- Extent of fluidized region?
- Transient vs. steady state
- Fine control over stress...

Beris et al. J. Fluid Mech. (1985)

Putz, Phys. Fluids (2008) Holenberg et al., PRE (2012)

Optical tweezers for microrheology

Ashkin et al. Optics Lett. 1986

Nobel prize Physics 2018

Oscillatory rheology

Forces are limited

Constant shear rate & recoil

Chapman & Robertson-Anderson, PRL (2014) Robertson-Anderson, ACS Macro Lett. (2018)

Before optical tweezers

Scattering forces:

- Stronger
- Less control

Ashkin PRL (1970)

Bragheri et al. J. Biophot. (2010) Yang et al. J. Micromech. Microeng. 27 (2017)

Optofluidic micro-rheometer

Optofluidic micro-rheometer

Calibration with Newtonian fluids

Glycerol-water mixtures

 $F \sim [1-1000] pN (10x optical tweezers)$

$$\gamma = \frac{\Delta x}{2r}$$

$$\sigma = \frac{F}{12\pi r^2}$$

Swollen microgels

Carbopol Aqua SF-2 **Lubrizol**

Cross-linked linear polyacrylic acid chains (≈ 1 µm)

Bulk rheology: creep & recovery

- Solid-creep-fluid
- Drop of recoverable strain

0.375%

Micro-rheometer

Creep & recovery

Low stress:

- Sub-micrometer displacement
- Almost elastic response
- Full recovery

Micro-rheometer

Creep & recovery

Increasing stress:

- Small, intermittent yielding events
- Progressive loss of recovery (plasticity)

Micro-rheometer

Creep & recovery

High stress:

- Transition to continuous (bumpy) flow
- Persistent recovery

Micro-rheometer: analysis

Creep & recovery

Two criteria for yield stress determination (for both bulk and micro):

- Transition to $\gamma \approx t$
- Fraction of recovered strain: crossover

Agreement: not obvious...

Rich et al., Soft Matter (2011)

Stress definition (extension of Stokes drag)

$$\sigma = \frac{F}{12\pi r^2} = \frac{F}{2\pi * 6r^2} = \frac{F}{2\pi r_{eff}^2}$$

$$r_{eff} \approx 2.5r$$

Threshold for particle trapping in yield stress materials

$$Y = \frac{2\pi r^2 \sigma_y}{\frac{4}{3}\pi r^3 (\rho_p - \rho_l)g} \approx 0.15$$

Beris et al. J. Fluid Mech. (1985) Tabuteau et al. J. of Rheol. (2007) Emady et al., J. of Rheol. (2013) Holenberg et al., PRE (2012)

Threshold for particle trapping in yield stress materials

$$Y = \frac{2\pi r^2 \sigma_y}{\frac{4}{3}\pi r^3 (\rho_p - \rho_l)g} \approx 0.15$$

$$r_{eff} \approx 2.5r$$

Beris et al. J. Fluid Mech. (1985) Tabuteau et al. J. of Rheol. (2007) Emady et al., J. of Rheol. (2013) Holenberg et al., PRE (2012)

Imaging

Sub-micron tracer particles

Deformation 'field'

Aqua 0.375%, σ = 0.5 Pa

Imaging

Deformation 'field'

At max deformation

After recovery

The moving microbead permanently displaces regions of the material at least 2r away

Fluid regime

Similar values and scaling to bulk creep and bulk teady shear

$$\dot{\gamma} = \frac{v}{2r}$$

(average strain rate around the particle)

Fluid regime

Intermittent jumps

Periodic bumps

Fluid regime

Temporal & spatial Fourier modes of velocity

- Increasing frequency with stress
- Regular steps (≈700 nm)
- Compatible with accumulation and rearrangement of microgels in front of the microbead

Conclusions

- An integrated optofluidic micro-rheometer is proposed for creep experiments, with forces up to 1 nN
- We report the first optical measurement of local yield stress values, in good agreement with bulk estimates
- We find agreement also in the fluid regime, but with distinct signatures of microscopic rearrangements
- We investigate the material around the microbead and find a plastically deformed/fluidized region consistent with previous observations with large spheres and with mean stress definition

What's next?

- Build-up of the fluidized region
- Oscillatory, nonlinear measurements

Optofluidic micro-rheometer

Convenient geometry for time modulation!

Optical modulator

Integrated Mach-Zehnder interferometer

Oscillatory micro-rheometer

Counter-propagating beams + integrated optical modulator

Surfactant wormlike micelles

Linear oscillatory rheology

100 mM CpyCl + NaSal

Beyond linear regime

Conclusions

- An integrated optofluidic micro-rheometer is proposed for creep experiments, with forces up to 1 nN
- We report the first optical measurement of local yield stress values, in good agreement with bulk estimates
- We find agreement also in the fluid regime, but with distinct signatures of microscopic rearrangements
- We investigate the material around the microbead and find a plastically deformed/fluidized region consistent with previous observations with large spheres and with mean stress definition

What's next?

- Build-up of the fluidized region
- Oscillatory, nonlinear measurements

