

From LISA Pathfinder to LISA

Stefano.Vitale@unitn.it
Università di Trento, Istituto Nazionale di Fisica

LISA: the quest for low-frequency GW

Low frequency GW astronomy

- Binaries are nearly Keplerian, frequency of wave twice frequency of revolution

$$
f_{G W}=\frac{1}{\pi} \sqrt{\frac{G\left(M_{1}+M_{2}\right)}{r^{3}}}
$$

0

- Separation normalized to Schwarzschild 10^{2} radii:

$$
\begin{aligned}
& \mathcal{R}=\frac{r}{\left(\frac{2 G\left(M_{1}+M_{2}\right)}{c^{2}}\right)} \\
& (\mathcal{R} \rightarrow 1 \simeq \text { final merger })
\end{aligned}
$$

- Frequency decreases with both mass and
 Quit

agenzio spaziale
itoliono

Supermassive BH: the brightest sourcés

- Wave amplitude scales with $M_{1} \times M_{2}$
- Detectable "everywhere" in the universe
- Sooner or later frequency crosses LISA band : cosmological stratigraphy

Detecting SMBH mergers with LISA and Atherấ

Extreme Mass Ratio Inspirals

Classes of EMRIs

1. Relaxation to high-eccentricity orbits ("loss cone")
2. Binary detachment (Hills mechanism)

(Mihaylov \& Gair 17)

Hydrodynamic inspiral in AGN disk

- COs embedded in gas disk can inspiral hydrodynamically (Levin 07)
- Enters LISA band with $\mathrm{e} \sim 0$ (i~0?)
+ Gas torques visible in waveform for some disk models (Kocsis+11)
- Possible electromagnetic counterparts
+ AGN variability
+ Statistical EM counterpart (Bartos+17)
- Unusually large EMRIs possible (even "IMRIs")

XMM-Newton GSN 069

Non-transient GW astronomy

- GW-binary astronomy of local group
-. BH multi-band astronomy

frequency (Hz)
Final merger

The high \mathcal{R} end: the GW Milky Way

- Tens of thousand of discernible sources
- Plus a stochastic foreground

The shape of the Milky Way's components

The spatial distribution of DWDs with measured distances (several thousand) constrains:

- Bulge scale radius to 2%
- Disc scale radius to 3%
- Disc scale height to 16%

Korol et al 2019
See also Adams et al. 2012

Expectations
Structural parameters of the central bar
Fourier transformation of the DWD spatial distribution can reveals shape of the bar.

Specifically, It will constrain:

- axis ratio to 10%
- length to $<1 \%$
- orientation angle to $<1^{\circ}$ (Wilhelm, Korol et al. 2020)

Discovering Milky Way satellites in gravitational waves

- Satellites with stellar mass $>10^{6} \mathrm{M}$ host detectable LISA sources
- LISA detections can inform us about the total stellar mass and star formation history of the satellites

Discovery of satellites invisible to electromagnetic observatories

See talk by Riccardo Buscicchio
Korot et at. 2020; Roebber et al. (inct.Korol) 2020 See also Lamberts et al. 2019

The detection of circumbinary exoplanets
Camilla DANIELSKI

Weighing Milky Way satellites

By exploiting our models we can recover the satellite's total stellar mass: to within a factor two if SFH is known and to an order of magnitude when marginalising over different SFH models. If no detections are identified with the satellite we can still place an upper limit on its stellar mass.

The LISA link

- Laser beam propagates through GW curvature
- Beam frequency v shifts along propagation

Metric
tensor
perturbation

$$
\frac{\Delta v}{v_{o}}=\frac{1}{2}\left(h\left(t_{e m}\right)-h\left(t_{r e c}\right)\right)
$$

Emitter (em)
L

- Shift is also modulated in time: time derivative directly proportional to curvature

$$
\frac{\Delta \dot{v}}{v_{o}}=\frac{1}{2}\left(\dot{h}\left(t_{e m}\right)-\dot{h}\left(t_{r e c}\right)\right) \simeq \frac{1}{2} \ddot{h} \frac{L}{c} \longleftarrow \begin{aligned}
& \text { Riemann } \\
& \text { tensor }
\end{aligned}
$$

Spacecraft acceleration and Doppler effect

- Standard Doppler effect in flat space-time also shifts frequency and mimics GW
- Time varying shift caused by acceleration along beam of emitter and receiver relative to inertial frame

$$
\frac{\Delta \dot{v}}{v_{o}}=\frac{1}{2} \ddot{h} \frac{L}{c}+\frac{a_{r e c}-a_{e m}}{\mathrm{c}}
$$

- Spacecraft (S/C) accelerate too much because of solar radiation pressure

Coping with S / C acceleration

- Free-floating test-masses (TM) are carried inside S/C
- No contact between TM and S/C, "drag-free" along the beam
- Measure S/C-to-TM acceleration and correct signal for Dopplen
- Residual noise due to acceleration of $T M$ relative to local inertial frame

$$
\frac{\Delta \dot{v}}{v_{o}}=\frac{1}{2} \ddot{h} \frac{L}{c}+\frac{a_{T M, r e c}-a_{T M, e m}}{\text { s.vitale }}
$$

Noise in a LISA link

- Frequency measurements are noisy: interferometer readout noise

- Total noise

LISA: Sub-femto-g force suppression required

- Cannot be tested on ground \lesssim 0.1 Hz
- LISA L3 Requirements

Frequency[Hz]

LISA: Sub-femto-g force suppression required

- Cannot be tested on ground \lesssim 0.1 Hz
- Not even in low Earth orbit: orders (>3) of magnitude better than any other space mission

LISA Pathfinder

- Force disturbance is local. Test does not
 require million km size
- One LISA link inside a single spacecraft (no million km arm)
- 2 TMs ,
- 2 Interferometers (Ifo)
- Satellite chasemetestmass
- Contrary to LISA, second test-mass forced to follow the first at very low frequency by electrostatics
- Test masses gold-platinum, highly non-magnetic, very dense
- Electrode housing: electrodes are used to exert very weak electrostatic force
- UV light, neutralize the charging due to cosmic rays
- Caging mechanism: hold天 the test-masses and avoid them damaging the satellite at launch
- Vacuum enclosure to handle vacuum on ground
- Ultra high mechanical stability optical bench for the laser interferometer

The real H/W

Instrument integration

From instrument integration to orbit

LISA acceleration requirements

Relaxed LISA Pathfinder requirements

- Electrostatic actuation noise:
- For a given voltage source noise, the larger the needed force you set, the larger the force noise.
- Brownian noise from residual gas:
- The larger the pressure surrounding the test-mass the larger the noise
- Interferometer readout noise: \simeq $10 \mathrm{pm} / \sqrt{\mathrm{Hz}}$ as for LISA

Expected performance

First day of operations：March $1^{\text {st }} 2016$
－Better than requirement．
－Close to prediction
－Except for interferometer noise at 35 $\mathrm{fm} / \sqrt{ } \mathrm{Hz}$ instead of $10 \mathrm{pm} / \sqrt{ } \mathrm{Hz}$

Gravitational control and actuation

- Electrostatic force mostly compensates gravitational force
- Gravitational force canceled in dead reckoning with $\sim 1.8 \mathrm{~kg}$ balance mass
- Specification $\mathrm{g}_{\max }<650 \mathrm{pm} \mathrm{s}^{-2}(3 \sigma+$ margin)

Authority $650 \mathrm{pm} \mathrm{s}^{-2}$

Pressure and Brownian decay

Authority $50 \mathrm{pm} \mathrm{s}^{-2}$

The ultimate performance

LPF: a full menu of experiments

[1] M. Armano, et al. Sub-femto-g free fall for space-based gravitational wave observatories: Lisa pathfinder results. Phys. Rev. Lett., 116:231101, Jun 2016.
[2] D. Vetrugno et al. Lisa pathfinder first results. International Journal of Modern Physics D, 26(05):1741023, 2017.
[3] M. Armano, et al. Charge-induced force noise on free-falling test masses: Results from lisa pathfinder. Phys. Rev. Lett., 118:171101, Apr 2017.
[4] M. Armano, et al. Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors. Phys. Rev. D, 96:062004, Sep 2017.
[5] M. Armano, et al. Characteristics and energy dependence of recurrent galactic cosmic-ray flux depressions and of a forbush decrease with LISA pathfinder. The Astrophysical Journal, 854(2):113, Feb 2018.
[6] M. Armano, et al. Beyond the required lisa free-fall performance: New lisa pathfinder results down to $20 \mu \mathrm{~Hz}$. Phys. Rev. Lett., 120:061101, Feb 2018.
[7] M. Armano, et al. Calibrating the system dynamics of lisa pathfinder. Phys. Rev. D, 97:122002, Jun 2018.
[8] M. Armano, et al. Precision charge control for isolated free-falling test masses: Lisa pathfinder results. Phys. Rev. D, 98:062001, Sep 2018.
[9] G. Anderson, et al. Experimental results from the st7 mission on lisa pathfinder. Phys. Rev. D, 98:102005, Nov 2018.
[10] M. Armano, et al. Forbush decreases and <2 day GCR flux non-recurrent variations studied with LISA pathfinder. The Astrophysical Journal, 874(2):167, apr 2019.
[11] M. Armano, et al. Lisa pathfinder platform stability and drag-free performance. Phys. Rev. D, 99:082001, Apr 2019.
[12] M Armano, et al. Temperature stability in the sub-milliHertz band with LISA Pathfinder. Monthly Notices of the Royal Astronomical Society, 486(3):33683379, 042019.
[13] M. Armano, et al. Lisa pathfinder micronewton cold gas thrusters: In-flight characterization. Phys. Rev. D, 99:122003, Jun 2019.
[14] M. Armano, et al. Lisa pathfinder performance confirmed in an open-loop configuration: Results from the free-fall actuation mode. Phys. Rev. Lett., 123:111101, Sep 2019.
[15] J. I. Thorpe, et al. Micrometeoroid events in LISA pathfinder. The Astrophysical Journal, 883(1):53, sep 2019.
[16] M. Armano, et al. Novel methods to measure the gravitational constant in space. Phys. Rev. D, 100:062003, Sep 2019.
$[17]$ M. Armano, et al. Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder. Review of Scientific Instruments, 91(4):045003, 2020.
[18] M Armano, et al. Spacecraft and interplanetary contributions to the magnetic environment on-board LISA Pathfinder. Monthly Notices of the Royal Astronomical Society, 494(2):3014-3027, 042020.

LISA marching ahead

Timeline

October 2013:
Selection of "The Gravitational Universe" as science theme for the $3^{\text {rd }}$ ESA flagship mission (L3)
October 2016: \quad Call for mission proposals for L3
June 2017:
May 2018:
Selection of LISA as L3 with an anticipated 2034 launch date

2018-2021: Mission Phase A
Oct '20-Oct '21: Mission Phase A Extension
<end 2021: Formulation Review (end Phase A)
>2021: Mission Phase B1
<2024: Mission Adoption
>Adoption: Mission Implementation (Phase B2/C/D)
<2034: Launch

ESA UNCLASSIFIED - For Official Use
6.5 years operations (+6 years potential extension)

Watchlist of Issues

- Mission:
- Schedule: Lengthy instrument integration and testing schedules, as much industrialization as possible required.
- Cost/Schedule: streamlined model philosophy might incur delays due to problems encountered late
- Confirmation of baseline TDI performances and requirements (WG in place)
- Platform:
- Mechanisms for assembly tracking and antenna (requirements identified, remaining development risk)
- Constellation Acquisition (sequence, straylight)
- Launch mass currently within updated target.
- Instrument:
- Mounting and alignment scheme of optical elements and GRS
- Backlink confirmation
- Impact of harness
- Thermal stability at low frequencies

Technology
developments

MOSA Support Optical bench

Structure (MSS)

Bipod supports (3x)

