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The faulting mechanism in the 
Earth’s crust is extremely 

multifaceted 

some faults can be represented with a 
good approximation as planes

but in many cases this approximation is 
not sufficient as the fault surfaces may 
present bends and inflections and even 
bifurcations 

that generate complex geometries



  

The Anderson’s theory 

assumes that 

● normal and reverse  faults
(extensive and  compressive)

● optimally oriented fault planes where 
the modified Coulomb’s fracture 
criterion is first fulfilled

Shear stress Normal stress

Static friction coefficient Pore pressure

Most faults in the Earth’s crust are in 
rough accordance with the Anderson’s 
theory: normal and reverse faults have 
dip angles greater and smaller than 45°, 
respectively

even if a considerable number of faults 
have non-Andersonian geometries

Listric

Detachment

Low angle normal faults

High angle reverse fault



  

Open questions: 

● Can non-Andersonian fault 
geometries be favoured by the 
presence of rigidity contrasts within 
the crust?

● Is it possible to devise a method to 
predict the growth direction on the 
basis of elastic parameters?

Modeling approach

● 2-D crack model (plane strain) for 
quasi-static fault growth in a two 
layer medium following the  criterion 
of 

‘maximum energy release’ 
 (or minimum final energy)



  

Starting from a single 
dislocation model

Initial stress field

Anderson’s theory: fault slip occurs 
over a plane where |Δσ| is minimum

Energetic criterion: the best fault plane is the one 
maximizing the energy release.

Fault width

b = Burger’s vector

Initial shear stress Final shear stress



  

Energetic approach

● Creation of new fault surface. 
(No reactivation of pre-existing fault 
planes.)

● The dip angle depends on Δσ
 

● Dynamic friction coefficient fd.

Anderson’s theory

● Pre-existing faults with all possible 
orientations are present before failure  
     (fs is a property of the surfaces)

● The dip angle does not depend on Δσ

●  Static friction coefficient fs. 



  

Energy budget for a single dislocation

We assume that the energy release (per unit of length) ΔE must be greater than the 
sum of the work E

f
 done against friction and the fracture energy E

T

 ΔE > E
f
 + E

T

where

E
f
 = -f

d
(σ

n
+p)Wb                         (Released as thermal energy)

E
T
 =2(1-υ2)γ

s                
(Energy required to generate fault surface)

Specific fracture energyPoisson modulus
(Here assumed equal to 1 J/m2)

ΔE

 Fracture energy

Heat

Seismic waves



  

Fault depth = 5 km             W = 1 km                   f
s
=f

d
=0.3

Energy release ΔE

as a function of the dip angle. 

The vertical red lines represent the 
Anderson’s solution for the dip 
angle computed with a f

s
 = f

d

● The energetic criterion provides, respectively, greater and smaller dip angles for reverse and 
normal faults with respect to the Anderson’s condition.

● The same solution is obtained only if     ΔE → 0 with f
d
 replacing  f

s
 , but (!!!)

               If ΔE → 0 then E
f  
>ΔE 

Normal faultsReverse faults



  

Building the crack growth 
model

Step 1: Representing dislocations in two 
welded half-spaces

Step 2: Implementing the boundary 
element model (BEM) – crack model

Step 3: Let the crack grows



  

Model – Step 1
Representing dislocations in two welded 

half-spaces

● 2-D fault, arbitrarily placed in a 
medium consisting of two welded 
half-spaces.

● Galerkin components

(Bonafede & Rivalta, 1999; Rivalta 
et al., 2002)

.



  

Model – Step 2
Implementing the boundary element model 

(BEM) – crack model

σ
nm

, p
m
 (m = 1,..N)   : 

Environmental normal stress components and pore pressure on the m-th dislocation 

I
mk   

:  

Shear stresses computed at the midpoint of the mth dislocation due to the kth dislocation with 
unitary Burger’s vector

Y
mk

 :

Normal stresses computed at the midpoint of the mth dislocation element due to the kth 
dislocation element with unitary Burger’s vector
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N



  

Model – Step 3
Let the crack grows

The crack can grow only if the new configuration is energetically possible

The crack growth is simulated by:
 
● adding a dislocation element beyond the tip of the crack

● recomputing the new equilibrium using the boundary element 
technique with N+1 dislocation elements.

otherwise it stops 

1

2

3

N

N+1

d



  

Model – Step 3
Let the crack grows

Variable direction of crack growth: the dip 
angle of the additional dislocation element 
(δ

N+1
) is the one that maximizes the energy 

release
  

and it is chosen exploring different 
configurations with one degree dip-angle 
variations with respect to the dip, δ

N
 , of the 

adjacent dislocation element.
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2

3

N
?

N+1



  

Model – Flowchart



  

Results - SET1

● Homogeneous elastic medium
● No friction
● Different dip angles
● Δσ = 100 MPa is assumed uniform along depth.

Depth



  

● Heterogeneous elastic medium 
● No friction
● The tectonic stress Δσ = 100 MPa is assumed uniform over depth in SET2 (A) while in SET3 (B) 

it is rescaled according to the rigidity ratio r .  

Results – SET2 and SET3

r = μ
1
 / μ

2
 



  

● Heterogeneous elastic medium
● Friction
● Pore pressure
● The tectonic stress Δσ = 100 MPa is rescaled according to the rigidity ratio r . 

Results – SET4



  

Results – Listric fault

● Heterogeneous elastic medium

● The pore pressure is assumed as hydrostatic.

● The dynamic friction coefficient is f
d
 = 0.3 all over the fault surface apart from the starting low dip 

segment (enclosed within a black rectangle) that has lower friction coefficient (f
d
 = 0.05). 



  

Discussion and conclusions

● The maximum energy release criterion

● When faults cross a rigidity contrast 
interface, they are affected by a dip angle 
change that increases in magnitude for 
larger rigidity contrasts

lower dip-angle for normal faults

greater dip-angle for reverse faults

(with respect to the Anderson’s theory)

r > 1  dip-angle increases rising towards      
                                            the interface  

r < 1 dip-angle decreases rising towards      
                                            the interface  



  

Discussion and conclusions

● Listric Faults

According to our model, listric geometries can be obtained only if r > 1, that is when the fault meets 
an interface above which the medium is softer. 

The results of simulations are quite stable: the fault grows by increasing the dip angle in the shallow 
and less rigid layer.

An example of a r > 1 configuration is when shallow layers of recently formed sedimentary rocks, 
with low rigidity, are superimposed to stiffer layers whose rigidity increases with depth. This 
condition is very common as in the shallow and brittle crust, the rigidity generally increases with 
depth, as confirmed by depth-increasing S-wave speed, V s=√μ/ρ

Tung & Masterlak, 2018

Examples



  

Discussion and conclusions

● Detachment faults

According to our results, detachment faults can be realized only if r < 1. Beside this condition, a low 
dynamic friction coefficient in the deeper layer or a high pore pressure is necessary.

Only if r << 0.2 (Fig. 6a) the fault can propagate along the elastic discontinuity producing the 
horizontal detachment of the deeper layer with respect to the shallower one (i.e. a decollement 
fault), without penetrating the upper stiffer layer.

The interface above the much softer deeper layer might be identified with the brittle-ductile 
transition within the crust.

Reverse faults with friction

Jolivet et al., 2010

No friction

Examples



  

Discussion and conclusions

● Ramp-flat-ramp faults

According to our results, as for detachment faults, ramp-flat-ramp faults can be realized if r < 1. 

A ramp-flat-ramp fault growing almost horizontally in correspondence of the elastic discontinuity, 
and then allowed to rise in the stiffer layer after some iterations can be obtained for strong rigidity 
contrasts, low friction or high pore pressure, if a vertically uniform strain is assumed in elastic 
medium.

Vasquez et al. 2018

No friction (Normal faults with Friction)

Examples



  

Thanks for your attention !
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