L'esperimento KLOE-2 ai LNF

Dario Moricciani on behalf of the KLOE-2 collaboration dario.moricciani@lnf.infn.it

INFN - Laboratori Nazionali di Frascati

SIF - Congresso Nazionale 2020

L'esperimento KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory

Kaon Physics

 $K_S \rightarrow \pi \mu \nu$

Hadron Physics

 $\eta
ightarrow \pi^+\pi^-$ decay

Other

progress

Conclusions

Outline

- KLOE-2@DAΦNE
 - ullet DA Φ NE: the ϕ factory
 - KLOE-2
- 2 Kaon Physics
 - $K_S \rightarrow \pi \mu \nu$
- 3 Hadron Physics
 - ullet $\eta o \pi^+\pi^-$ decay
 - \bullet The $\pi^{\circ} \rightarrow \gamma \gamma$ width
- 4 Other analyses in progress
- Conclusions

L'esperimento KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE

 $\mathsf{DA} \Phi \mathsf{NE} \colon \mathsf{the} \ \phi$ factory $\mathsf{KLOE} \text{-} 2$

Kaon Physics

 $K_S \rightarrow \pi \mu \nu$

Hadron Physics

 $\eta
ightarrow \pi^+\pi^-$

The $\pi^{\circ} \rightarrow$

Other analyses

an alyses progress

DAΦNE: the φ factory

New interaction region:

- Large beam crossing angle: 2 × 12.5 mrad.
- Sextupoles for crabbed waist optics:
 59% increase in terms of peak luminosity.

- e^+e^- collider $\sqrt{s} = M_{\Phi} = 1019.4 \; MeV.$
- 2 interaction regions and 2 separate rings.
- \bullet 105 + 105 bunches, $T_{RF} = 2.7 \ ns$.
- Best Performance (1999÷2006): $\mathcal{L}_{\text{peak}} = 1.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$.
- Best Performance (2014÷2018): $\mathcal{L}_{\text{peak}} = 2.4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$.

L'<mark>esperiment</mark> o KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory

Kaon Physic

 $K_S \rightarrow \pi \mu \nu$

Physics $\eta o \pi^+\pi^-$ decay

decay The $\pi^{\circ} \rightarrow$ width

Other analyses in progress

KLOE-2

KLOE-2 experiment ended on March 30th 2018:

- $\mathcal{L}_{\text{acquired}} = 5.5 \text{ fb}^{-1}$.
- KLOE + KLOE-2 data sample: $\mathcal{L}_{int} = 8 \text{ fb}^{-1} \rightarrow 2.4 \times 10^{10} \text{ } \phi \text{ mesons produced, the}$ largest sample ever collected at the $\phi(1020)$ peak in collider experiments. In particular we have: 8×10^9 entangled pair of neutral K, and 3 imes 10 8 η mesons.

The KLOE detector has been rolled out from the IR after almost 20 years of operation

The KLOF-2 new sub-detectors

Dario Moricciani

DAΦNE: the φ

KLOE-2

$K_S \to \pi \mu \nu$, the physics case

- The branching fraction for semi-leptonic decays of charged and neutral kaons together with the lifetime measurements are used to determine the $|V_{us}|$ element of the CKM quark mixing matrix. The relation among the matrix elements of the first row, $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$, provides the most stringent test of the unitarity of the quark mixing matrix.
- the $\mathcal{B}(K_S o \pi e
 u)$ decay provides the least precise determination of $|V_{us}|$.
- A new measurements of $\mathcal{B}(K_S \to \pi \mu \nu)$ allows an independent determination of $|V_{us}|$ and to extend the test of lepton-flavour universality to K_S semi-leptonic decays by comparison with the expected value of $(4.69 \pm 0.06) \times 10^{-4}$ derived from $\mathcal{B}(K_S \to \pi e \nu)$.

2.5 $|V_{us}| f_+(0)$ from world data: Update

Average: $|V_{us}|f_+(0) = 0.21652(41)$ $\chi^2/ndf = 0.98/4 (91\%)$

L'<mark>esperiment</mark>o KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE DAΦNE: the φ factory

Kaon Physics

 $\kappa_s \to \pi \mu \nu$

Physics $n \to \pi^+\pi^-$

 $\eta
ightarrow \pi^+\pi^-$ decay
The $\pi^\circ
ightarrow \gamma$

Other analyses i progress

$K_S \to \pi \mu \nu$, the experimental measure procedure

- The $K_S(K_L)$ mesons are identified (tagged) by the observation of a $K_L(K_S)$ meson in the opposite hemisphere.
- This tagging procedure allows the selection efficiency for $K_S \to \pi \mu \nu$ to be evaluated with good accuracy using a control sample of the abundant decay $K_L \to \pi \mu \nu$ tagged close to IP by the detection of $K_S \to \pi^+ \pi^-$ decays.
- The branching fraction is extracted normalizing the number of $K_S \to \pi \mu \nu$ events to the number of $K_S \to \pi^+ \pi^-$ events recorded in the same dataset.
- KLOE statistics 1.63 fb⁻¹.

L'esperimento KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE

> DA Φ NE: the ϕ factory KLOE-2

Kaon Physics

 $\kappa_s \to \pi \mu \nu$

Hadron Physics

 $\eta
ightarrow \pi^+\pi^-$ decay

The π° -width

Other analyses in progress

$K_S \to \pi \mu \nu$, results: [PLB804(2020)135378]

BDT > 0.18 with kinematic variables in order to reject main background, PID with Time of Flight, Signal count give: $N_{\rm ev} = (7223 \pm 180)~K_{S\mu3}$ from the fit of $M_\mu^2 = (E_{K_S,tag} - E_\pi - p_{\rm mis})^2 - p_\mu^2$. $\mathcal{B}(K_S \to \pi\mu\nu) = (4.56 \pm 0.11_{\rm stat} \pm 0.17_{\rm syst.}) \times 10^{-4}$

 $L_{\rm stat} \perp 0.17_{\rm syst}$) $\times 10$

L'esperiment o KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory

Kaon Physics

 $\kappa_s \to \pi \mu \nu$

Hadron

Physics $\eta
ightarrow \pi^+\pi^-$ decay

The $\pi^{\, \circ} \,
ightarrow \, \gamma$ width

Other analyses in progress

$\eta \to \pi^+\pi^-$ decay, the physics case

- In the Standard Model the P and CP violating decay $\eta \to \pi^+\pi^-$ with an expected branching fraction less than 2×10^{-27} .
- Introducing CP violation in strong interactions through a possible θ -term in the QCD Lagrangian would enhance this limit at the level of $\sim 3 \times 10^{-17}$.
- Allowing additional CP violation phases in the extended Higgs sector of the electroweak theory could generate the decay with a branching fraction up to 1.2×10^{-15} .
- Detection at any accessible level would be signal of CP violation beyond the SM.
- Best limit $\mathcal{B} < 1.3 \times 10^{-5}$ at 90% C.L. ($\mathcal{L}_{int} = 350 \ pb^{-1}$) [KLOE, PLB606(2005)276].
- LHCb recent measurement: $\mathcal{B} < 1.6 \times 10^{-5}$ at 90% C.L. [PLB764(2017)233].

L'esperimente KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory KLOE-2

Kaon Physics $\kappa_{*} \rightarrow \pi \mu \nu$

Hadron

Physics

decay The $\pi^{\circ} \to \gamma^{\circ}$ width

Other analyses in

onclusion

$\eta \to \pi^+\pi^-$ decay, the experimental measure procedure

Selection of signal candidate events $\phi \to \eta \gamma$ with $\eta \to \pi^+\pi^-$:

- A neutral cluster in the EMC compatible with the photon recoiling against the η meson from the IP.
- Two opposite charged trackswith a vertex near the e^+e^- interaction point (IP) are required.
- The remaining background originates from the processes $e^+e^- \to e^+e^-\gamma, \; \mu^+\mu^-\gamma, \; \phi \to \rho^\pm\pi^\mp$ with $\rho^\pm \to \pi^\pm\gamma,$ and $\phi \to \pi^+\pi^-\pi^\circ$ with an undetected photon.
- To separate $\pi^+\pi^-\gamma$ and $e^+e^-\gamma$ events, particle identification with a time of flight technique is used.
- KLOE statistics 1.63 fb⁻¹.

L'esperimento KLOE-2 ai

> Dario Moricciani

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory KLOE-2

Kaon Physics

Hadron

Physics

decay $\begin{array}{c} \text{The } \pi^{\circ} \rightarrow \gamma \gamma \\ \text{width} \end{array}$

Other analyses in progress

$\eta \to \pi^+\pi^-$ decay, results

Accepted for the pubblication on JHEP

Fit η sidebands in the regions (500,540) and (555,600) permit to estimate the background in signal region. Evaluation of the UL using the CLs method:

$${\cal B}(\eta o \pi^+\pi^-) < 4.4 imes 10^{-6}$$
 at 90% confidence level.

L'esperimento KLOE-2 ai

> Dario Moricciani

KLOE-2@DAΦNE

> DA Φ NE: the ϕ factory KLOE-2

Kaon Physics

 $\zeta_s \to \pi \mu \nu$

Hadron Physics

 $\eta
ightarrow \pi^+\pi^-$ decay

The π° -width

Other analyses in progress

on clusion:

The $\pi^{\circ} \rightarrow \gamma \gamma$ width, physics case

- The QCD Green's function $\langle VVA \rangle$ exhibits the axial anomaly of Adler, Bell and Jackiw (non-conservation of the axial vector current), which is responsible for the decay $\pi^0 \to \gamma \gamma$.
- The anomaly is a pure one-loop effect (triangle diagram).
- Link between the strong dynamics of infrared physics at low energies (pions) with the perturbative description in terms of quarks and gluons at high energies.
- Due to the recent theoretical advances, the decay width $\Gamma_{\pi^0 \to \gamma\gamma}$ is now predicted with a 1.4% accuracy:

$$\Gamma_{\pi^0 \to \gamma\gamma}^{\text{theor}} = 8.09 \pm 0.11 \text{ eV}. \tag{1}$$

 The most precise experimental measurement on this decay comes from the photo-production of pions on a nuclear target via the Primakoff effect. L'esperimente KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory KLOE-2

Kaon Physics $\kappa_s \to \pi \mu \nu$

 $\kappa_s \to \pi \mu \nu$ Hadron

 $\eta
ightarrow \pi^+\pi^-$ decay

decay

The $\pi^{\circ} \to \gamma \gamma$ width

Other analyses in

The $\pi^{\circ} \rightarrow \gamma \gamma$ width, HET detector idea

In order to fully reconstruct the reaction $e^+e^- \to e^+e^-\gamma\gamma$ at the ϕ peak, new detectors along the (DA Φ NE) beam line have been installed in order to detect the e^+e^- in the final state. General scheme:

- $e_{in}^+e_{in}^- \rightarrow e_{fin}^+e_{fin}^-\gamma\gamma \rightarrow e_{fin}^+e_{fin}^-X$
- $e_{fin}^+ e_{fin}^-$ detected by HETs
- $X=(\pi^\circ,\ \pi\pi\ {
 m or}\ \eta)$ detected by KLOE

L'esperimento KLOE-2 ai

Dario Moricciani

2@DAΦNE

DAΦNE: the φ

KLOE-2

 $K_s \rightarrow \pi \mu \nu$

Physics $\eta o \pi^+\pi^-$

decay

The $\pi^{\circ} \rightarrow$

Other analyses in progress

The $\pi^{\circ} \rightarrow \gamma \gamma$ width, HET detector DAQ

HET detectors could store data corresponding to 3 DAΦNE turns and transfer them to KLOE DAQ when KLOE trigger is asserted:

- A⁺ is in coincidence with KLOE
- A_0 and A_2 are pure accidentals

L'esperimento KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory KLOE-2

Kaon Physics $\kappa_s \to \pi \mu \nu$

Hadron Physics

 $\eta
ightarrow \pi^+\pi^-$

Other

on clusio

The $\pi^{\circ} \rightarrow \gamma \gamma$ width, results *Work in progress*

Comparison of A^+ and $A_{1,2}$ samples performed with $1fb^{-1}$ shows 3500 \pm 700 tagged events in the $M_{\gamma\gamma}$ vs $\Delta T_{\gamma\gamma}$ region where $\gamma\gamma \to \pi^\circ$ are expected.

L'esperimento KLOE-2 ai

Dario Moricciani

NLOE-2@DAΦNE DAΦNE: the Φ

Kaon Physics

KLOE-2

 $K_S \rightarrow \pi \mu \nu$

Physics $\eta
ightarrow \pi^+\pi^-$

The $\pi^{\circ} \rightarrow \cdot$

Other analyses in progress

Other analyses in progress

- $K_S \rightarrow 3\pi^{\circ}$ (CP viol.)
- 2 T/CPT tests with $\phi \to K_S K_L \to 3\pi^\circ \pi e \nu, \pi\pi\pi e \nu$
- 3 $K_S o \pi^+\pi^-$ and $K_L o \pi^+\pi^-$

- **8** ...

L'esperimento KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory

KLUE-2 Kaon Physi

Kaon Filysics $K_c o \pi \mu
u$

Physics

Physics $\eta o \pi^+ \pi$

The $\pi^{\circ} \rightarrow \gamma$ width

Other analyses in progress

Conclusion:

Conclusions

- KLOE and KLOE-2 collected 8 fb^{-1} which correspond to $2.4 \times 10^{10}~\phi$ mesons produced, the largest sample ever collected at the $\phi(1020)$ peak in e^+e^- collider experiments.
- ② $\mathcal{B}(K_S \to \pi \mu \nu) = (4.56 \pm 0.11_{\rm stat} \pm 0.17_{\rm syst}) \times 10^{-4}$ to be compared with the expected value of $(4.69 \pm 0.06) \times 10^{-4}$ assuming lepton-flavour universality.
- The upper limit at 90% CL of $\mathcal{B}(\eta \to \pi^+\pi^-) < 4.4 \times 10^{-6}$ which is almost a factor of three smaller than the previous limit.
- $oldsymbol{\bullet} \gamma \gamma$ physics program at KLOE thanks to new detectors.
- Other analyses are in progress using KLOE + KLOE-2 data.

L'esperimente KLOE-2 ai

Dario Moricciani

KLOE-2@DAΦNE

DA Φ NE: the ϕ factory KLOE-2

Kaon Physics $\kappa_s o \pi \mu
u$

Physics $n o\pi^+\pi^-$

 $\eta
ightarrow \pi^+\pi^-$ decay

The $\pi^\circ
ightarrow \gamma \gamma$

Other analyses in progress

on clusion: