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Static properties:   𝑂 =
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𝑍
𝑂(𝑹)𝑒−𝛽𝑈(𝑹)d𝑅׬ ≈
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𝑁
σ𝑛=1
𝑁 𝑂(𝑹𝑛)

Hamilton’s equations:

ሶ𝑷 = −𝛻𝑹𝑈 𝑹 = 𝑭(𝑹)

ሶ𝑹 =
𝑷

𝑚

Standard Molecular Dynamics:

𝑹𝑛+1 = 𝑹𝑛 + ሶ𝑹𝑛∆𝑡 +
1

2
𝑭𝑛∆𝑡2

ሶ𝑹𝑛+1 = ሶ𝑹𝑛 +
𝑭𝑛 + 𝑭𝑛+1

2𝑚
∆𝑡

Ergodic assumption:

Sampling the Boltzmann distribution

+ thermostat

Given a system of interacting particles described by a potential energy 𝑈(𝑹), equilibrium

properties can be computed sampling configurations from the Boltzmann distribution:

𝑝 𝑹 =
𝑒−𝛽𝑈(𝑹)

׬ 𝑒−𝛽𝑈(𝑹)d𝑅

Dynamical properties:   𝐶𝑂1𝑂2 𝜏 ≈
1

𝑁
σ𝑛=1
𝑁−𝑝

𝑂1 𝑹𝑛 𝑂2 𝑹𝑛+𝑘 , 𝜏 = 𝑘Δ𝑡
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Rare event scenario

∆𝐹 ≫ 𝑘𝐵𝑇

Hamilton’s equations:

ሶ𝑷 = −𝛻𝑹 𝑈 𝑹 + 𝑉bias(𝑠 𝑹 ) = 𝑭biased (𝑹)

ሶ𝑹 =
𝑷

𝑚

Biased MD Simulations

𝑹𝑛+1 = 𝑹𝑛 + ሶ𝑹𝑛∆𝑡 +
1

2
𝑭biased
𝑛 ∆𝑡2

ሶ𝑹𝑛+1 = ሶ𝑹𝑛 +
𝑭biased
𝑛 + 𝑭biased

𝑛+1

2𝑚
∆𝑡

𝑂 =
1

𝑍
න𝑂(𝑹)𝑒−𝛽𝑈(𝑹)d𝑅 ≈

σ𝑛=1
𝑁 𝑤𝑛 𝑂(𝑹

𝑛)

σ𝑛=1
𝑁 𝑤𝑛

Static properties can be computed via reweighted averages:

𝑤𝑛 = 𝑒𝛽𝑉bias(𝒔(𝑹
𝑛))

+ thermostat

Sampling the Boltzmann distribution

The bias introduces unphysical forces: dynamical information is generally lost.



Sampling the path distribution

The probability of observing a trajectory 𝑅 𝑡 is given by:

𝑃[𝑅(𝑡)] ∝ 𝑒−𝑆[𝑅(𝑡)]

where the Onsager-Machlup (OM) action is defined as:

𝑆 𝑅 𝑡 = න
0

𝜏 1

2𝜎2
ሶ𝑅 𝑡 −

𝐹(𝑡)

𝑚𝜐

2

d𝑡 , 𝜎2 = 2𝑘𝐵𝑇/𝑚𝜐

One can sample trajectories by drawing them from P[R(t)] ∝ e−S[R(t)]

Onsager L., Machlup S., Phys. Rev. 91, 1505 (1953)



Sampling the path distribution

We consider a molecular system of M atoms, 𝑹 = 𝒓𝑗 𝑗=1,𝑀

𝑹 𝑡 ⟹ 𝑹0 → 𝑹1 → ⋯ → 𝑹𝑁

𝑹𝑛 = configuration at time 𝑡𝑛 = 𝑛 − 1 ∆𝑡

𝑆(𝑹0, 𝑹1, ⋯ , 𝑹𝑁) = ෍

𝑛=1

𝑁−1

෍

𝑗=1

𝑀
1

2𝜎𝑗
2

𝒓𝑗
𝑛+1 − 𝒓𝑗

𝑛

Δ𝑡
−

𝑭𝑗
𝑛

𝑚𝑗𝜐

2

Δ𝑡

Probability of observing a discretized trajectory:

𝑃 𝑹0, 𝑹1, ⋯ , 𝑹𝑁 ∝ 𝑒−𝛽𝑉eff(𝑹
0,𝑹1,⋯,𝑹𝑁)

𝑉eff = 𝑈 𝑹0 + ෍

𝑛=0

𝑁−1

෍

𝑗=1

𝑀
𝐾𝑗

2
𝒓𝑗
𝑛+1 − 𝒓𝑗

𝑛 − 𝑳𝑗
𝑛 2

, 𝐾𝑗 =
𝑚𝑗𝜐

2Δ𝑡
, 𝑳𝑗

𝑛 =
Δ𝑡

𝑚𝑗𝜐
𝑭𝑗
𝑛



Molecular dynamics in trajectory space

• At each time step we obtain a new polymer configuration, which corresponds to a 

new discretized trajectory of 𝑁 steps of the original system;

We can sample 𝑃(𝑹0, 𝑹1, ⋯ , 𝑹𝑁) using standard MD:

𝑃 𝑹0, 𝑹2, ⋯ , 𝑹𝑁 ∝ 𝑒−𝛽𝑉eff(𝑹
0,𝑹2,⋯,𝑹𝑁)

We have mapped the original dynamical problem into a static polymer problem.

ሶ𝒑𝑗
𝑛 = −𝛻𝒓𝑗

𝑛𝑉eff

ሶ𝒓𝑗
𝑛 =

𝒑𝑗
𝑛

M𝑗

+thermostat

𝑹0 𝑹1 𝑹2 𝑹𝑁−1 𝑹𝑁



Molecular dynamics in trajectory space
PARALLEL IMPLEMENTATION

The method realizes parallelization at the level of time.

Calhoun et al., Chem. Phys. Lett. 262, 415 (1996)



Metadynamics in trajectory space

First replica, 𝑹1

Last replica, 𝑹𝑁

Temperature 𝑘𝐵𝑇 ≪ ∆𝐸.
UNBIASED BIASED

CV: 𝑑e2e = 𝑹𝑁 − 𝑹1

Unconstrained exploration of multiple 

reaction routes.



Dynamical properties from static averages

𝑹0 𝑹1 𝑹2 𝑹𝑁−1 𝑹𝑁

Time correlation functions:

𝐶 𝜏 = 𝑂 𝑡 = 0 𝑂(𝜏) =
σ𝑖=1
𝑃 𝑤𝑖𝑂𝑖

0𝑂𝑖
𝑛

σ𝑖=1
𝑃 𝑤𝑖

, 𝑤𝑖 = 𝑒𝛽𝑉bias(𝑠𝑖)

𝑃 = # of samples, 𝑂𝑛 = 𝑂 𝑹𝑛 = 𝑂(𝑛Δ𝑡)

𝑡𝑛 = 𝑛Δ𝑡
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𝑘AB
𝑘AB =

dC(t)

d𝑡
, 𝐶 𝑡 =

𝐼A(0)𝐼B(𝑡)

𝐼A(0)

𝐼𝑋 𝑡 = 1 if 𝑅 ∈ 𝑋 at time t, and 0 otherwise.

W. H. Miller, J. Chem. Phys. 61, 1823 (1974)



Results: inversion of NH3 in vacuum

∆𝐸 ≈ 120 kJ/mol

ReaxFF force field

[Weismiller et al., J. Phys. Chem. A 114, 5485 (2010)]

oriented height, ℎ (Å)

E
n
e
rg

y
 (

k
J
/
m

o
l)

𝑁 up to 200 replicas.

CV: ∆ℎ𝑒2𝑒 = (ℎ𝑁−ℎ1) as CV.

Biased MD simulations using OPES1.

1Invernizzi M. and Parrinello M., J. Phys. Chem. Lett. 11, 2731 (2020)



Results: inversion of NH3 in vacuum

𝐶 𝑡 =
𝐼A(0)𝐼B(𝑡)

𝐼A(0)

From the linear fit:

∆𝐸fit ≈ 118 ± 1 kJ/mol

Exact value:

∆𝐸ReaxFF ≈ 120 kJ/mol

𝑘AB =
dC(t)

d𝑡



Results: inversion of NH3 in water

NH3 + 215H2O, tip3p water.

Cubic box 𝐿 ≈ 19 Å.

NH3 force field:  σ𝑖=1
3 𝐷 1 − 𝑒−𝛼 𝑟𝑖−𝑟𝑜

2
+ 𝐾 𝜃𝑖 − 𝜃0

2

Long range vdW interactions, cutoff at 9 Å.

Long range electroctatic interactions using pppm.

Temperature T=300 K.

𝑁 up to 200 replicas.

Biased MD simulations using OPES.

CV: ∆ℎ𝑒2𝑒 = (ℎ𝑁−ℎ1).

Polymer model



Results: inversion of NH3 in water

𝑘vac ≈ 3 × 10−11 ps−1

𝑘wat ≈ 6 × 10−14 ps−1

Prediction from TST

𝑘wat/𝑘vac = 𝑒−∆𝐹/𝑘𝐵𝑇 ≈ 2.2 × 10−3



Non reactive trajectories

Results: NH3-water correlations
Reactive trajectories



Results: hydration shell of NH3

Avg. pos. of 

NH3



Results: hydration shell of NH3

Path MD:

non-reactive trajectories
Standard equilibrium MD.



Results: hydration shell of NH3

Path-MD:

Starting configurations

of reactive trajectories.

Transition state configurations sampled

via (constrained) standard MD.

The change in solvation structure from asymmetric to symmetric lowers 

the transition state energy and promotes the reaction.



ℎ ≈ −0.4 Å ℎ ≈ +0.4 Å

ℎ ≈ 0

𝑉eff = 𝑈 𝑹1 + ෍

𝑛=1

𝑁−1

෍

𝑗=1

𝑀
𝑚𝑗𝜐

4Δ𝑡
𝒓𝑗
𝑛+1 − 𝒓𝑗

𝑛 −
Δ𝑡

𝑚𝑗𝜐
𝑭𝑗
𝑛

2

The equilibrium length of the spring is zero near

stable and unstable equilibrium states: 𝑭𝑗
𝑛 ≈ 0.

Reactive trajectories

Results: transition states and reactive trajectories

Distribution of ℎ in reactive paths.

Transition states correspond to peaks in the 

distribution of the reaction coordinate.

ℎ ≈ −0.4 Å ℎ ≈ +0.4 Å

ℎ ≈ 0



Conclusions

Mandelli D., Hirshberg B., Parrinello M., Phys. Rev. Lett. 125, 026001 (2020)

• We proposed a method to study rare events via enhanced-sampling

MD simulations in trajectory space;

• The method allows unconstrained exploration of reactive routes;

• Time correlation functions can be computed as static (reweighted) 

averages;

• The method allows a parallel implementation that can take full 

advantage of modern massively parallel computer architectures;


