畔 ITALIANO DI TECNOLOGIA

Metadynamics of Paths

Davide Mandelli, Barak Hirshberg, Michele Parrinello

Sampling the Boltzmann distribution

Given a system of interacting particles described by a potential energy $U(\boldsymbol{R})$, equilibrium properties can be computed sampling configurations from the Boltzmann distribution:

$$
p(\boldsymbol{R})=\frac{e^{-\beta U(\boldsymbol{R})}}{\int e^{-\beta U(\boldsymbol{R})} \mathrm{d} R}
$$

Hamilton's equations:
Standard Molecular Dynamics:

$$
\begin{gathered}
\dot{\boldsymbol{P}}=-\nabla_{\boldsymbol{R}} U(\boldsymbol{R})=\boldsymbol{F}(\boldsymbol{R}) \\
\dot{\boldsymbol{R}}=\frac{\boldsymbol{P}}{m}
\end{gathered}
$$

$$
\begin{gathered}
\boldsymbol{R}^{n+1}=\boldsymbol{R}^{n}+\dot{\boldsymbol{R}}^{n} \Delta t+\frac{1}{2} \boldsymbol{F}^{n} \Delta t^{2} \\
\dot{\boldsymbol{R}}^{n+1}=\dot{\boldsymbol{R}}^{n}+\frac{\boldsymbol{F}^{n}+\boldsymbol{F}^{n+1}}{2 m} \Delta t
\end{gathered}
$$

+ thermostat

Ergodic assumption:
Static properties: $\langle O\rangle=\frac{1}{Z} \int O(\boldsymbol{R}) e^{-\beta U(\boldsymbol{R})} \mathrm{d} R \approx \frac{1}{N} \sum_{n=1}^{N} O\left(\boldsymbol{R}^{n}\right)$
Dynamical properties: $\quad C_{O_{1} O_{2}}(\tau) \approx \frac{1}{N} \sum_{n=1}^{N-p} O_{1}\left(\boldsymbol{R}^{n}\right) O_{2}\left(\boldsymbol{R}^{n+k}\right), \tau=k \Delta t$

Sampling the Boltzmann distribution

Rare event scenario

Hamilton's equations:

$$
\dot{\boldsymbol{P}}=-\nabla_{\boldsymbol{R}}\left(U(\boldsymbol{R})+V_{\text {bias }}(s(\boldsymbol{R}))\right)=\boldsymbol{F}_{\text {biased }}(\boldsymbol{R})
$$

$$
\dot{\boldsymbol{R}}=\frac{\boldsymbol{P}}{m}
$$

Biased MD Simulations

$$
\boldsymbol{R}^{n+1}=\boldsymbol{R}^{n}+\dot{\boldsymbol{R}}^{n} \Delta t+\frac{1}{2} \boldsymbol{F}_{\text {biased }}^{n} \Delta t^{2}
$$

+ thermostat

$$
\dot{\boldsymbol{R}}^{n+1}=\dot{\boldsymbol{R}}^{n}+\frac{\boldsymbol{F}_{\text {biased }}^{n}+\boldsymbol{F}_{\text {biased }}^{n+1}}{2 m} \Delta t
$$

Static properties can be computed via reweighted averages:
$\langle O\rangle=\frac{1}{Z} \int O(\boldsymbol{R}) e^{-\beta U(\boldsymbol{R})} \mathrm{d} R \approx \frac{\sum_{n=1}^{N} w_{n} O\left(\boldsymbol{R}^{n}\right)}{\sum_{n=1}^{N} w_{n}} \quad w_{n}=e^{\beta V_{\text {bias }}\left(\boldsymbol{s}\left(\boldsymbol{R}^{n}\right)\right)}$

The bias introduces unphysical forces: dynamical information is generally lost.

Sampling the path distribution

The probability of observing a trajectory $R(t)$ is given by:

$$
P[R(t)] \propto e^{-S[R(t)]}
$$

where the Onsager-Machlup (OM) action is defined as:

$$
S[R(t)]=\int_{0}^{\tau} \frac{1}{2 \sigma^{2}}\left(\dot{R}(t)-\frac{F(t)}{m v}\right)^{2} \mathrm{~d} t, \quad \sigma^{2}=2 k_{B} T / m v
$$

One can sample trajectories by drawing them from $\mathrm{P}[\mathrm{R}(\mathrm{t})] \propto \mathrm{e}^{-\mathrm{S}[\mathrm{R}(\mathrm{t})]}$

Sampling the path distribution

We consider a molecular system of M atoms, $\boldsymbol{R}=\left\{\boldsymbol{r}_{j}\right\}_{j=1, M}$

$$
\boldsymbol{R}(t) \Rightarrow\left\{\boldsymbol{R}^{0} \rightarrow \boldsymbol{R}^{1} \rightarrow \cdots \rightarrow \boldsymbol{R}^{N}\right\}
$$

$\boldsymbol{R}^{n}=$ configuration at time $t_{n}=(n-1) \Delta t$

$$
S\left(\boldsymbol{R}^{0}, \boldsymbol{R}^{1}, \cdots, \boldsymbol{R}^{N}\right)=\sum_{n=1}^{N-1} \sum_{j=1}^{M} \frac{1}{2 \sigma_{j}^{2}}\left(\frac{\boldsymbol{r}_{j}^{n+1}-\boldsymbol{r}_{j}^{n}}{\Delta t}-\frac{\boldsymbol{F}_{j}^{n}}{m_{j} v}\right)^{2} \Delta t
$$

Probability of observing a discretized trajectory:

$$
\begin{gathered}
P\left(\boldsymbol{R}^{0}, \boldsymbol{R}^{1}, \cdots, \boldsymbol{R}^{N}\right) \propto e^{-\beta V_{\mathrm{eff}}\left(\boldsymbol{R}^{0}, \boldsymbol{R}^{1}, \cdots, \boldsymbol{R}^{N}\right)} \\
V_{\mathrm{eff}}=U\left(\boldsymbol{R}^{0}\right)+\sum_{n=0}^{N-1} \sum_{j=1}^{M} \frac{K_{j}}{2}\left(\boldsymbol{r}_{j}^{n+1}-\boldsymbol{r}_{j}^{n}-\boldsymbol{L}_{j}^{n}\right)^{2}, \quad K_{j}=\frac{m_{j} v}{2 \Delta t}, \quad \boldsymbol{L}_{j}^{n}=\frac{\Delta t}{m_{j} v} \boldsymbol{F}_{j}^{n}
\end{gathered}
$$

Molecular dynamics in trajectory space

We have mapped the original dynamical problem into a static polymer problem.
We can sample $P\left(\boldsymbol{R}^{0}, \boldsymbol{R}^{1}, \cdots, \boldsymbol{R}^{N}\right)$ using standard MD:

$$
\begin{gathered}
\dot{\boldsymbol{p}}_{j}^{n}=-\nabla_{\boldsymbol{r}_{j}^{n}} V_{\mathrm{eff}} \\
\dot{\boldsymbol{r}}_{j}^{n}=\frac{\boldsymbol{p}_{j}^{n}}{\mathrm{M}_{j}} \quad \text { +thermostat }
\end{gathered}
$$

- At each time step we obtain a new polymer configuration, which corresponds to a new discretized trajectory of N steps of the original system;

Molecular dynamics in trajectory space

PARALLEL IMPLEMENTATION

The method realizes parallelization at the level of time.
Calhoun et al., Chem. Phys. Lett. 262, 415 (1996)

Metadynamics in trajectory space

Temperature $k_{B} T \ll \Delta E$.

- First replica, \boldsymbol{R}^{1}
- Last replica, \boldsymbol{R}^{N}

BIASED

CV: $d_{\mathrm{e} 2 \mathrm{e}}=\left|\boldsymbol{R}^{N}-\boldsymbol{R}^{1}\right|$
Unconstrained exploration of multiple reaction routes.

Dynamical properties from static averages

$$
\begin{gathered}
C(\tau)=\langle O(t=0) O(\tau)\rangle=\frac{\sum_{i=1}^{P} w_{i} O_{i}^{0} O_{i}^{n}}{\sum_{i=1}^{P} w_{i}}, \quad w_{i}=e^{\beta V_{\text {bias }}\left(s_{i}\right)} \\
P=\# \text { of samples, } \quad O^{n}=O\left(\boldsymbol{R}^{n}\right)=O(n \Delta t)
\end{gathered}
$$

$$
k_{\mathrm{AB}}=\frac{\mathrm{dC}(\mathrm{t})}{\mathrm{d} t}, \quad C(t)=\frac{\left\langle I_{\mathrm{A}}(0) I_{\mathrm{B}}(t)\right\rangle}{\left\langle I_{\mathrm{A}}(0)\right\rangle}
$$

$I_{X}(t)=1$ if $R \in X$ at time t, and 0 otherwise.
W. H. Miller, J. Chem. Phys. 61, 1823 (1974)

Results: inversion of NH_{3} in vacuum

$\Delta E \approx 120 \mathrm{~kJ} / \mathrm{mol}$

ReaxFF force field
[Weismiller et al., J. Phys. Chem. A 114, 5485 (2010)]
N up to 200 replicas.
$\mathrm{CV}: \Delta h_{e 2 e}=\left(h^{N}-h^{1}\right)$ as CV.
Biased MD simulations using OPES ${ }^{1}$.

${ }^{1}$ Invernizzi M. and Parrinello M., J. Phys. Chem. Lett. 11, 2731 (2020)

$$
C(t)=\frac{\left\langle I_{\mathrm{A}}(0) I_{\mathrm{B}}(t)\right\rangle}{\left\langle I_{\mathrm{A}}(0)\right\rangle}
$$

$$
k_{\mathrm{AB}}=\frac{\mathrm{dC}(\mathrm{t})}{\mathrm{d} t}
$$

From the linear fit:
$\Delta E^{\mathrm{fit}} \approx 118 \pm 1 \mathrm{~kJ} / \mathrm{mol}$
Exact value:
$\Delta E^{\mathrm{ReaxFF}} \approx 120 \mathrm{~kJ} / \mathrm{mol}$

Results: inversion of NH_{3} in water

$\mathrm{NH}_{3}+215 \mathrm{H}_{2} \mathrm{O}$, tip3p water.
Cubic box $L \approx 19$ Å.
NH_{3} force field: $\sum_{i=1}^{3}\left(D\left[1-e^{-\alpha\left(r_{i}-r_{o}\right)^{2}}\right]+K\left(\theta_{i}-\theta_{0}\right)^{2}\right)$
Long range vdW interactions, cutoff at $9 \AA$.
Long range electroctatic interactions using pppm.
Temperature $T=300 \mathrm{~K}$.

Polymer model

Biased MD simulations using OPES.

$$
\mathrm{CV}: \Delta h_{e 2 e}=\left(h^{N}-h^{1}\right)
$$

Results: inversion of NH_{3} in water

$$
\begin{aligned}
& k_{\mathrm{vac}} \approx 3 \times 10^{-11} \mathrm{ps}^{-1} \\
& k_{\mathrm{wat}} \approx 6 \times 10^{-14} \mathrm{ps}^{-1}
\end{aligned}
$$

Prediction from TST

$$
k_{\mathrm{wat}} / k_{\mathrm{vac}}=e^{-\Delta F / k_{B} T} \approx 2.2 \times 10^{-3}
$$

Results: NH_{3}-water correlations

Non reactive trajectories

Reactive trajectories

Results: hydration shell of NH_{3}

Results: hydration shell of NH_{3}

Path MD: non-reactive trajectories

Standard equilibrium MD.

Results: hydration shell of NH_{3}

Path-MD:
Starting configurations of reactive trajectories.

Transition state configurations sampled via (constrained) standard MD.

The change in solvation structure from asymmetric to symmetric lowers the transition state energy and promotes the reaction.

Results: transition states and reactive trajectories

$V_{\mathrm{eff}}=U\left(\boldsymbol{R}^{1}\right)+\sum_{n=1}^{N-1} \sum_{j=1}^{M} \frac{m_{j} v}{4 \Delta t}\left(\boldsymbol{r}_{j}^{n+1}-\boldsymbol{r}_{j}^{n}-\frac{\Delta t}{m_{j} v} \boldsymbol{F}_{j}^{n}\right)^{2}$
The equilibrium length of the spring is zero near stable and unstable equilibrium states: $\boldsymbol{F}_{j}^{n} \approx 0$.

Reactive trajectories

Distribution of h in reactive paths.

Transition states correspond to peaks in the distribution of the reaction coordinate.

Conclusions

- We proposed a method to study rare events via enhanced-sampling MD simulations in trajectory space;
- The method allows unconstrained exploration of reactive routes;
- Time correlation functions can be computed as static (reweighted) averages;
- The method allows a parallel implementation that can take full advantage of modern massively parallel computer architectures;

