

Metadynamics of Paths

Davide Mandelli, Barak Hirshberg, Michele Parrinello SIF 18.09.2020

Sampling the Boltzmann distribution

Given a system of interacting particles described by a potential energy $U(\mathbf{R})$, equilibrium properties can be computed sampling configurations from the Boltzmann distribution:

$$p(\mathbf{R}) = \frac{e^{-\beta U(\mathbf{R})}}{\int e^{-\beta U(\mathbf{R})} \mathrm{d}R}$$

Hamilton's equations:

Standard Molecular Dynamics:

$$\dot{P} = -\nabla_R U(R) = F(R)$$

$$\dot{R} = \frac{P}{m}$$

$$R^{n+1} = R^n + \dot{R}^n \Delta t + \frac{1}{2} F^n \Delta t^2 + \text{thermostat}$$

$$\dot{R}^{n+1} = \dot{R}^n + \frac{F^n + F^{n+1}}{2m} \Delta t + \text{thermostat}$$

Ergodic assumption:

Static properties: $\langle 0 \rangle = \frac{1}{Z} \int O(\mathbf{R}) e^{-\beta U(\mathbf{R})} dR \approx \frac{1}{N} \sum_{n=1}^{N} O(\mathbf{R}^n)$

Dynamical properties: $C_{O_1O_2}(\tau) \approx \frac{1}{N} \sum_{n=1}^{N-p} O_1(\mathbf{R}^n) O_2(\mathbf{R}^{n+k}), \ \tau = k\Delta t$

Sampling the Boltzmann distribution

Static properties can be computed via reweighted averages:

$$\langle O \rangle = \frac{1}{Z} \int O(\mathbf{R}) e^{-\beta U(\mathbf{R})} dR \approx \frac{\sum_{n=1}^{N} w_n O(\mathbf{R}^n)}{\sum_{n=1}^{N} w_n} \qquad w_n = e^{\beta V_{\text{bias}}(\mathbf{s}(\mathbf{R}^n))}$$

The bias introduces unphysical forces: dynamical information is generally lost.

Sampling the path distribution

The probability of observing a trajectory R(t) is given by:

 $P[R(t)] \propto e^{-S[R(t)]}$

where the Onsager-Machlup (OM) action is defined as:

$$S[R(t)] = \int_0^\tau \frac{1}{2\sigma^2} \left(\dot{R}(t) - \frac{F(t)}{mv} \right)^2 dt, \qquad \sigma^2 = 2k_B T/mv$$

One can sample trajectories by drawing them from $P[R(t)] \propto e^{-S[R(t)]}$

Onsager L., Machlup S., *Phys. Rev.* **91**, 1505 (1953)

Sampling the path distribution

We consider a molecular system of M atoms, $\mathbf{R} = \{\mathbf{r}_j\}_{j=1,M}$ $\mathbf{R}(t) \Longrightarrow \{\mathbf{R}^0 \to \mathbf{R}^1 \to \dots \to \mathbf{R}^N\}$ $\mathbf{R}^n = \text{configuration at time } t_n = (n-1)\Delta t$

$$S(\mathbf{R}^{0}, \mathbf{R}^{1}, \cdots, \mathbf{R}^{N}) = \sum_{n=1}^{N-1} \sum_{j=1}^{M} \frac{1}{2\sigma_{j}^{2}} \left(\frac{\mathbf{r}_{j}^{n+1} - \mathbf{r}_{j}^{n}}{\Delta t} - \frac{\mathbf{F}_{j}^{n}}{m_{j}v}\right)^{2} \Delta t$$

Probability of observing a discretized trajectory:

$$P(\mathbf{R}^0, \mathbf{R}^1, \cdots, \mathbf{R}^N) \propto e^{-\beta V_{\text{eff}}(\mathbf{R}^0, \mathbf{R}^1, \cdots, \mathbf{R}^N)}$$

Molecular dynamics in trajectory space

 $P(\mathbf{R}^0, \mathbf{R}^2, \cdots, \mathbf{R}^N) \propto e^{-\beta V_{\text{eff}}(\mathbf{R}^0, \mathbf{R}^2, \cdots, \mathbf{R}^N)}$

We have mapped the original dynamical problem into a static polymer problem.

We can sample $P(\mathbf{R}^0, \mathbf{R}^1, \dots, \mathbf{R}^N)$ using standard MD:

 $\dot{\boldsymbol{p}}_{j}^{n} = -\nabla_{\boldsymbol{r}_{j}^{n}}V_{\mathrm{eff}}$ $\dot{\boldsymbol{r}}_{j}^{n} = rac{\boldsymbol{p}_{j}^{n}}{\mathrm{M}_{i}}$

+thermostat

• At each time step we obtain a new polymer configuration, which corresponds to a new discretized trajectory of *N* steps of the original system;

Molecular dynamics in trajectory space

PARALLEL IMPLEMENTATION

The method realizes parallelization at the level of time.

Calhoun et al., Chem. Phys. Lett. 262, 415 (1996)

Metadynamics in trajectory space

Dynamical properties from static averages

 $t_n = n\Delta t$

Results: inversion of NH₃ in vacuum

replicas

n=2

t₂=∆t

mmm

n=1

t1=0

 $\Delta E \approx 120 \text{ kJ/mol}$

ReaxFF force field [Weismiller *et al.*, *J. Phys. Chem. A* **114**, 5485 (2010)]

CV: $\Delta h_{e2e} = (h^N - h^1)$ as CV.

Biased MD simulations using OPES¹.

¹Invernizzi M. and Parrinello M., J. Phys. Chem. Lett. **11**, 2731 (2020)

n=3

t₃= 2∆t

Results: inversion of NH₃ in vacuum

Results: inversion of NH₃ in water

NH₃ + 215H₂O, tip3p water. Cubic box $L \approx 19$ Å.

NH₃ force field: $\sum_{i=1}^{3} \left(D \left[1 - e^{-\alpha (r_i - r_o)^2} \right] + K (\theta_i - \theta_0)^2 \right)$ Long range vdW interactions, cutoff at 9 Å. Long range electroctatic interactions using pppm. Temperature *T*=300 K.

Polymer model

N up to 200 replicas.

Biased MD simulations using OPES.

 $\mathsf{CV:} \ \Delta h_{e2e} = (h^N - h^1).$

Results: inversion of NH₃ in water

 $k_{\rm wat}/k_{\rm vac} = e^{-\Delta F/k_B T} \approx 2.2 \times 10^{-3}$

Results: NH₃-water correlations

Non reactive trajectories

r (Å)

Reactive trajectories

r (Å)

Results: hydration shell of NH₃

-2 0 2 x (Å)

0.1

0.3

4

Results: hydration shell of NH₃

Path MD: non-reactive trajectories

Standard equilibrium MD.

Results: hydration shell of NH₃

Transition state configurations sampled via (constrained) standard MD.

The change in solvation structure from asymmetric to symmetric lowers the transition state energy and promotes the reaction.

Results: transition states and reactive trajectories

$$V_{\text{eff}} = U(\mathbf{R}^1) + \sum_{n=1}^{N-1} \sum_{j=1}^{M} \frac{m_j v}{4\Delta t} \left(\mathbf{r}_j^{n+1} - \mathbf{r}_j^n - \frac{\Delta t}{m_j v} \mathbf{F}_j^n \right)^2$$

The equilibrium length of the spring is zero near $h \approx -0$. stable and unstable equilibrium states: $F_i^n \approx 0$. Reactive trajectories

Transition states correspond to peaks in the distribution of the reaction coordinate.

Conclusions

- We proposed a method to study rare events via enhanced-sampling MD simulations in trajectory space;
- The method allows unconstrained exploration of reactive routes;
- Time correlation functions can be computed as static (reweighted) averages;
- The method allows a parallel implementation that can take full advantage of modern massively parallel computer architectures;

Mandelli D., Hirshberg B., Parrinello M., Phys. Rev. Lett. 125, 026001 (2020)