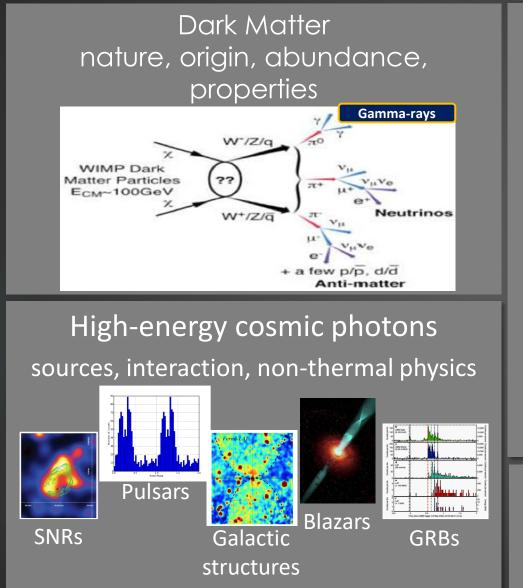
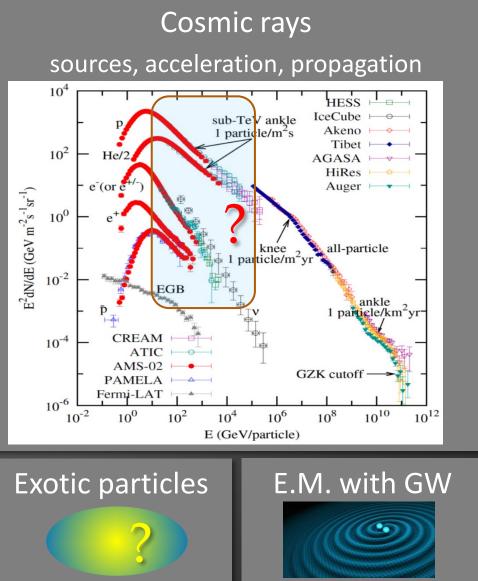


106° CONGRESSO NAZIONALE SOCIETÀ ITALIANA DI FISICA 14-18 settembre 2020

Recent results on high-energy cosmic ray studies with DAMPE calorimetric spaceborne detector and perspectives for the future


F. GARGANO ON BEHALF OF THE DAMPE AND HERD COLLABORATION



DAMPE experiment

- DAMPE results and comparison with other experiments
- Perspective for the future: the HERD experiment

Open questions in astroparticle physics

DAMPE

DAMPE – DArk Matter Particle Explorer – is a space particle and photon detector aimed to:

- study cosmic electrons spectra
- study cosmic protons + nuclei spectra and composition
- astronomy with high-energy cosmic gamma-rays
- search for dark matter signatures in photon and lepton spectra
- search for e.m. counterparts of gravitational waves or neutrinos
- quest for exotic particles and phenomena
- Excellent performance:
 - detection of 5 GeV 10 TeV e/γ , 50 GeV 100 TeV p and nuclei
 - energy resolution: < 1.5% for 100 GeV e/ γ , < 40% for 800 GeV p
 - ► angular resolution: < 0.2° for 100 GeV γ
 - ▶ field of view: ~1 sr
 - effective area (normal incidence): 1200 cm² @ 100 GeV

CHINA

- Purple Mountain Observatory, CAS, Nanjing, <u>PI Prof. Jin Chang</u>
- ► Institute of High Energy Physics, CAS, Beijing
- ► National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- ▶ Institute of Modern Physics, CAS, Lanzhou

ITALY

- ▶ INFN Perugia and University of Perugia
- ▶ INFN Bari and University of Bari
- ► INFN Lecce and University of Salento
- GSSI Gran Sasso Science Institute and INFN LNGS

SWITZERLAND

University of Geneva

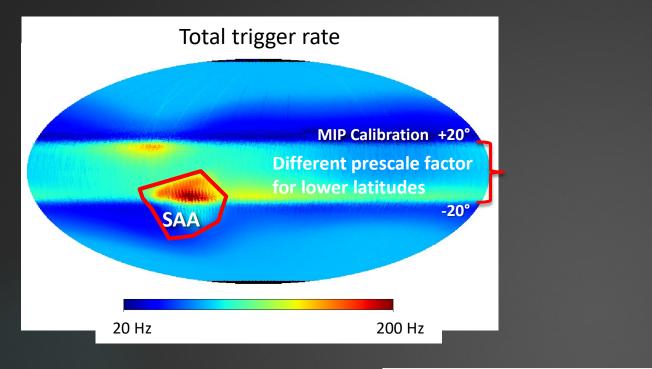
The DAMPE instrument

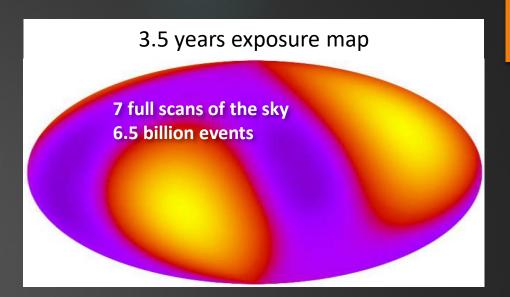
PSD: Plastic Scintillator Detector Anti-coincidence, nuclei identification

STK: Silicon TracKer/converter (6 Si double layers + 3 W plates 1 mm) Photon conversion, particle tracking

DAMPE facts
Mass: 1400 kg
Power consumption: 400 W
Readout channels: > 75k
Data transfer: 16 Gbyte/day
Lifetime: >5 years

Performance	DAMPE
e/γ Energy resol. @100 GeV (%)	<1.5
e/γ Angular resol. @100 GeV (deg.)	<0.2
e/p discrimination	>105
Calorimeter thickness (X ₀)	32
Geometrical acceptance (m ² sr)	0.3

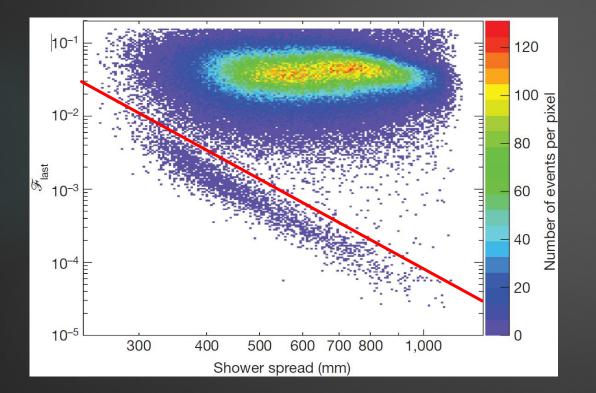

CALO: Calorimeter (14x22 hodoscopic BGO bars, 32 r.l.) Energy deposition and profile, trigger **NUD:** Neutron detector (4 B-doped plastic scintillators) Neutron showers measurement 5

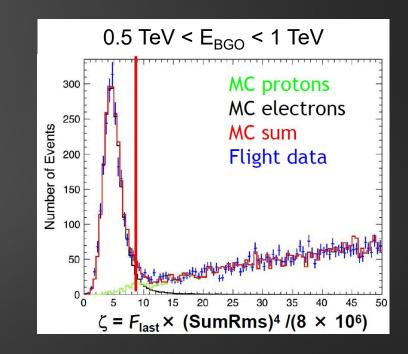

[Astropart. Phys. 95, 6 (2017)]

The launch

DAMPE was launched on Dec. 17th 2015 Launch site: Jiuquan Satellite Launch Center, Gobi desert, China Orbit: 500 km altitude, 97° inclination, Sun-synchronous

Trigger rate and data transfer

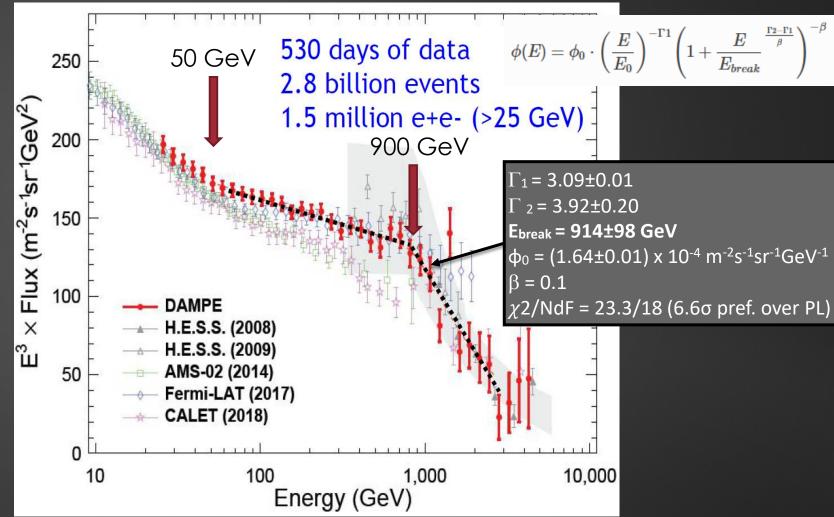

7


Two full scan of the sky every year

Acquisition rate	up to 200 Hz
High Energy (physics) trigger rate	up to 50 Hz
Raw data plus control data download	15 GB/day
Reconstructed data in ROOT format	85 GB/day
Total data per year	35 TB
Total events at 01/08/2020	>8 billion

Electron/proton separation

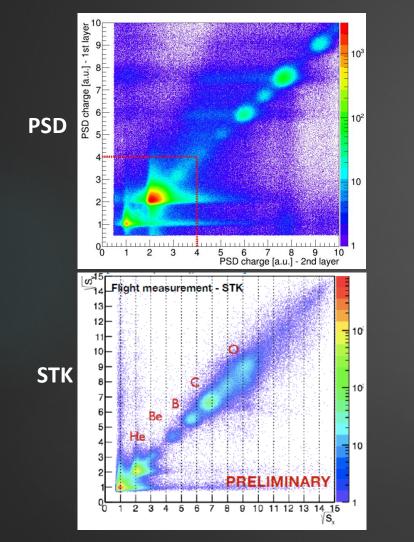
- The "ζ shower parameter" was computed from the lateral shower development in BGO and the energy deposition in the last layer
 - ► the cut ζ > 8.5 was adopted to discriminate e⁻ (and e⁺) from p
 - ▶ for 90% e[±] efficiency, p background ~2% @ 1 TeV, ~5% @ 2 TeV, ~10% @ 5 TeV

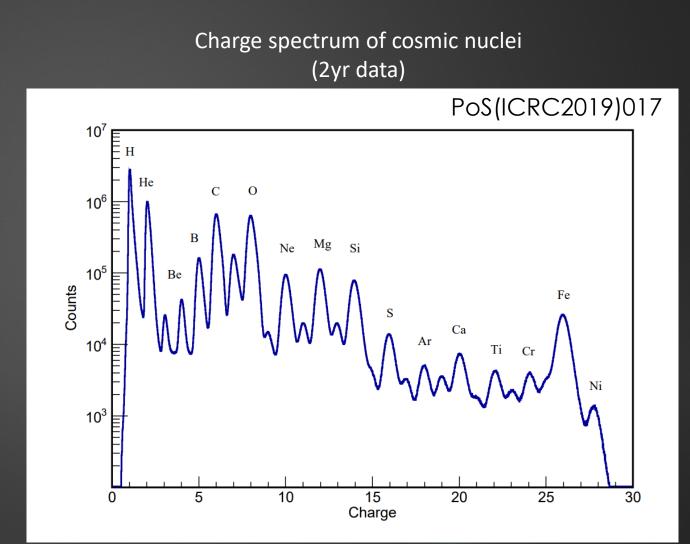

Cosmic-rays electrons and positrons from 20 GeV to ~5 TeV

[Nature 552, 63 (2017)] + CALET (2018)

- spectral hardening at 50 GeV
- direct detection of a spectral break at 0.9 TeV (6.6 σ c.l.)
- a smoothly broken power law fits data ($\gamma = 3.1 \rightarrow 3.9$)

Tension in the data from different experiments

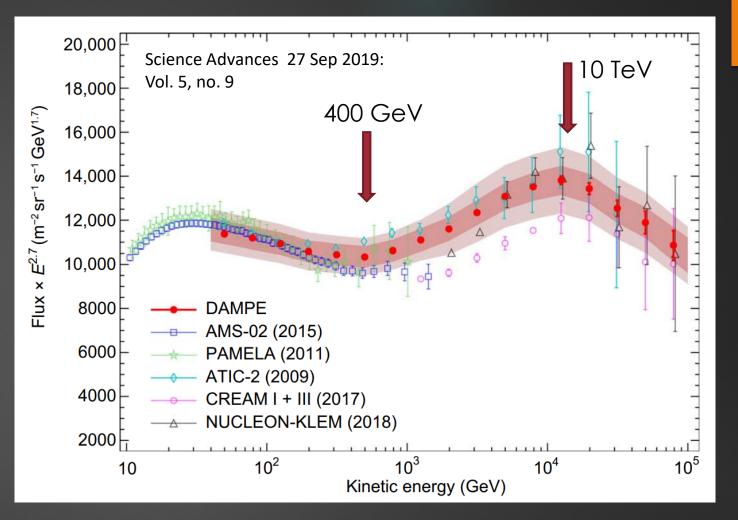

CALET data are consistent with a single power law without cutoff - PRL 120 (2018)



Shaded band shows the systematic uncertainties of the H.E.S.S. measurements

Study of cosmic nuclei charge

- Identifying protons and nuclei with PSD and STK
 - ▶ charge resolution: 0.1e for protons, 0.2e for CNO, 0.3e for Fe



Cosmic ray protons flux

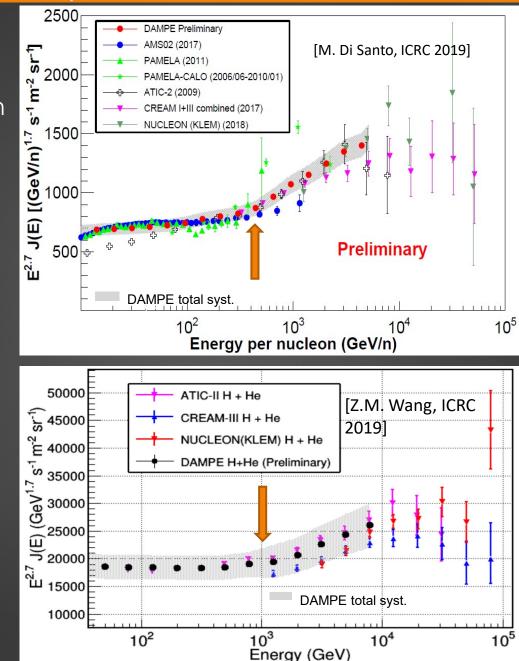
Protons flux

- ▶ from 40 GeV to 100 TeV
- 30 months of data (01/01/2016 – 30/06/2018)
- ► 4.68 billion events
- spectral hardening at ~400 GeV
- softening at ~10 TeV
- fitting with a smoothly broken power-law:
 γ = 2.60 → 2.85 at 13.6 TeV

The CALET collaboration reported new measurements of the proton spectrum from 50 GeV to 10 TeV and confirmed the spectral hardening feature

The red error bars show the statistical uncertainties, the inner shaded band shows the estimated systematic uncertainties due to the analysis procedure, and the outer band shows the total systematic uncertainties including also those from the hadronic models.

He and p+He flux – preliminary results


Helium flux

- ▶ from 10 GeV/n to ~5 TeV/n
- spectral hardening at ~400 GeV/n
- analysis ongoing at higher energies

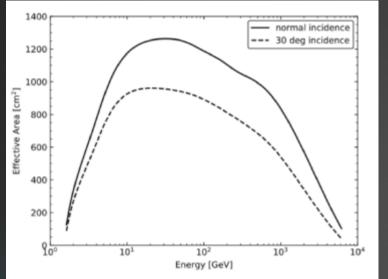
p+He flux

- ▶ from 50 GeV to ~7 TeV
- spectral hardening below ~1 TeV/n
- analysis ongoing up to 100 TeV, new results expected

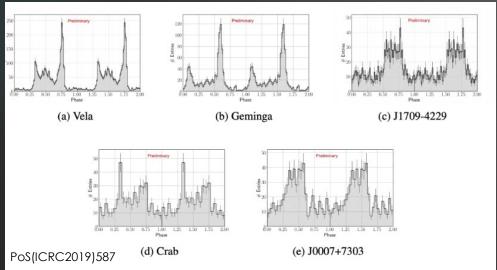
39 months of data (01/01/2016 - 31/03/2019)

12

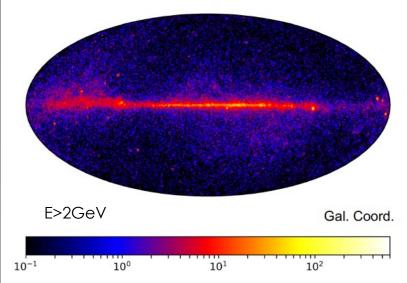
38 million events

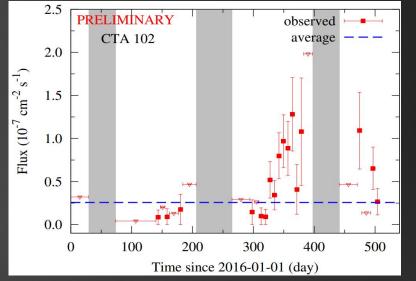

Focused talk @ SIF2020

Study of the cosmic B, C, N and O nuclei with the DAMPE space mission Dimitrios Kyratzis


Measuring light elements in space with the DAMPE mission Francesca Alemanno

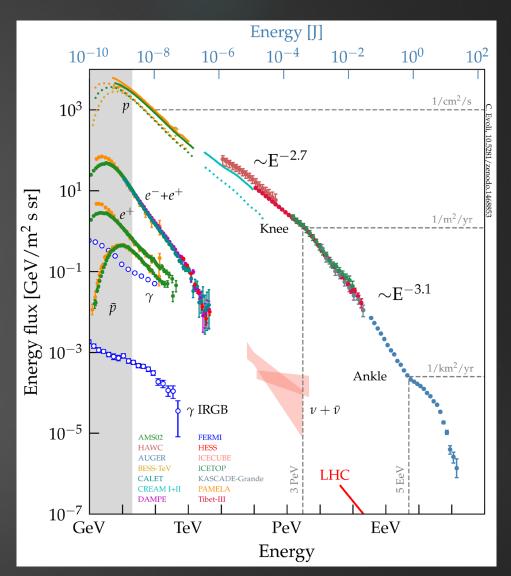
Gamma-ray studies


Effective area


5 bright pulsars seen by DAMPE

6 full sky scan – Count map

Blazar flare detection


DAMPE detection of variable GeV gamma-ray emission from blazar CTA 102

ATel #9901; Zun-Lei Xu (PMO), Micaela Caragiulo (Bari), Jin Chang (PMO), Kai-Kai Duan (PMO), Yi-Zhong Fan (PMO), Fabio Gargano (Bari), Shi-Jun Lei (PMO), Xiang Li (PMO), Yun-Feng Liang (PMO), M. Nicola Mazziotta (Bari), Zhao-Qiang Shen (PMO), Meng Su (HKU/PMO), Andrii Tykhonov (Geneva), Qiang Yuan (PMO), Stephan Zimmer (Geneva), on behalf of the DAMPE collaboration, and Bin Li (PMO) and Hai-Bin Zhao (PMO) on behalf of the CNEOST group. on 27 Dec 2016; 01:02 UT Credential Certification: Zun-Lei Xu (xuzl@pmo.ac.cn)

DAMPE summary Towards the future

- DAMPE is working extremely well since ~5 years
- e⁻+e⁺ spectrum precisely measured up to TeV energies
 - ▶ a clear spectral break has been directly measured at ~1 TeV
- Proton spectrum measured
 - ▶ hardening at ~400 GeV, softening at ~10 TeV
- Helium spectrum measured
 - ▶ hardening at ~400 GeV/n
- Protons + Helium nuclei spectrum measured
- Heavier nuclei, chemical composition, etc. measurements ongoing

- A new space borne detector is needed in the next years to extend the measurements up to the PeV energy for charged particles in order to confirm (or not) the actual measurements from DAMPE, CALET, NUCLEON, (ISS) CREAM and to give an answer to still open questions in astroparticle physics
- This detector should have the capability to make direct measurement up to the knee of the cosmic rays spectrum
- This detector could be also very useful in gamma astrophysics since it can work togheter with ground-based Cherenkov detectors (MAGIC, HESS, CTA) with a good energy overlap

15

The **High Energy cosmic-Radiation Detection** (HERD) facility is a China-led international space mission that will start operation around 2026.

The experiment is based on a **3D**, **homogeneous**, **isotropic and finely-segmented calorimeter** that fulfills the following requirements and goals

Main requirements			
	γ	е	p, nuclei
Energy Range	0.5 GeV 100 TeV	10 GeV 100 TeV	30 GeV 3 PeV
Energy resolution	1% @ 200 GeV	1% @ 200 GeV	20% @ 100 GeV -1 PeV
Effective Geometric Factor	>1 m²sr @ 200 GeV	>3 m²sr @ 200 GeV	>2 m ² sr @ 100 TeV

16

Main Scientific goals

Direct measurement of cosmic rays flux and composition up to the knee region

Gamma-ray monitoring and full sky survey

Indirect dark matter search (e⁺+e⁻, γ,...)

HERD-COLLABORATION

CHINA

Institute of High Energy Physics, CAS (IHEP)

Xi'an Institute of Optical and Precision Mechanics, CAS (XIOPM) Guangxi University (GXU) Shandong University (SDU) Southwest Jiaotong University (SWJTU) Purple Mountain Observatory, CAS (PMO) University of Science and Technology of China (USTC) Yunnan Observatories (YNAO) North Night Vision Technology (NVT) University of Hong Kong (HKU) Academia Sinica

★**

ITALY

- INFN Bari and Bari University INFN Firenze and Firenze University INFN Pavia and Pavia University INFN Perugia and Perugia University INFN Pisa and Pisa University INFN Laboratori Nazionali del Gran Sasso and GSSI Gran Sasso Science Institute INFN Lecce and Napoli University
- INFN Napoli and Salento University
- INFN Roma2 and Tor Vergata Univ
- INFN Trieste and Trieste University

SPAIN

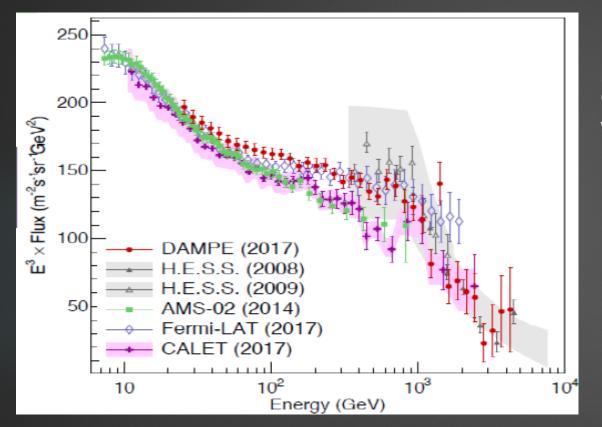
CIEMAT - Madrid ICCUB – Barcellona IFAE – Barcellona SWITZERLAND University of Geneva

versity	·				
	HERD	DAMPE	CALET	AMS-02	Fermi LAT
e/γ Energy res.@100 GeV (%)	<1	<1.5	2	3	10
e/γ Angular res.@100 GeV (deg.)	< 0.1	<0.2	0.2	0.3	0.1
e/p discrimination	>10 ⁶	>10 ⁵	10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	55	32	27	17	8.6
Geometrical accep. (m ² sr)	>3	0.3	0.12	0.09*	1

*After analysis cuts for electrons

HERD on board CSS

CSS expected to be completed in 2025

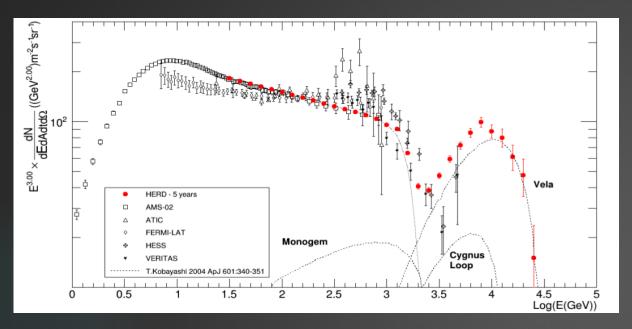

Life time	> 10y
Orbit	Circular LEO
Altitude	340-450 km
Inclination	42°

HERD expected to be installed around 2026

Life time	> 10y
FOV	+/- 70°
Power	< 1.5 kW
Mass	< 4 t

Electrons and Positrons (Fermi-LAT, DAMPE and CALET)

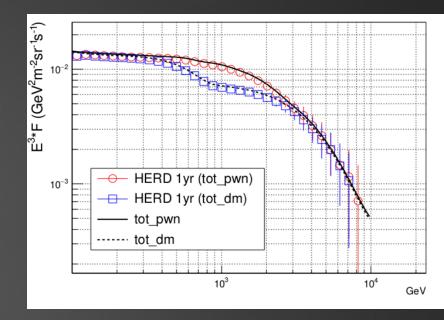
Recent calorimetric measurement of the e⁺+e⁻ flux (Fermi-LAT, CALET, DAMPE) lead to **very different results** and **no clear conclusion**



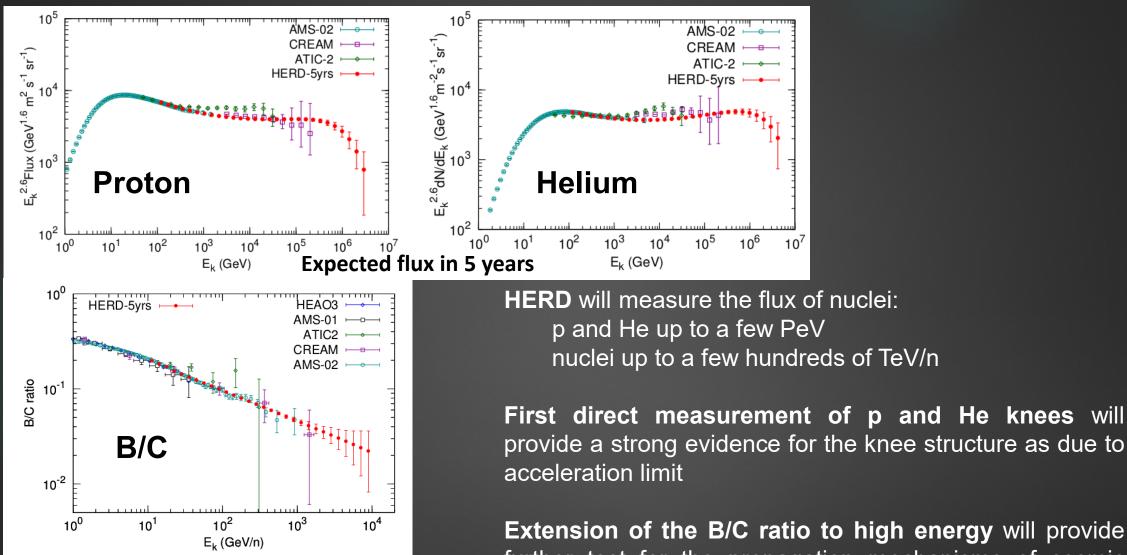
DAMPE data shows a cutoff at 1 TeV and a "sharp peak" at 1.4 TeV – NATURE 552 (2017) CALET data are consistent with a single power law without cutoff - PRL 120 (2018)

HERD could help in resolving the "conflict" between different measurements: improving the precision of the measurement extending the measurement to higher energy

Electrons and Positrons (HERD)


Expected e⁺+e⁻ flux in 5 years

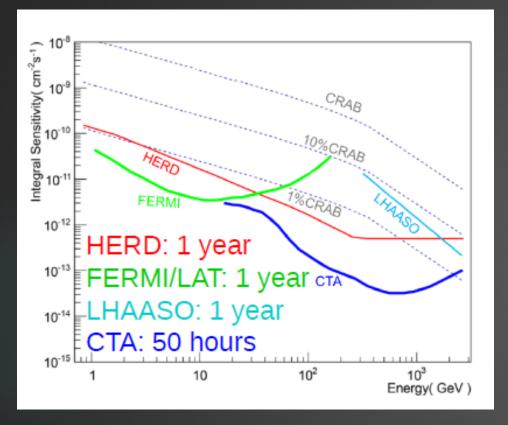
HERD will measure the flux up to several tens of TeV in order to detect: spectral cutoff at high energy local SNR sources of very high energy e⁻


... and additional information from anisotropy measurement!

Expected e⁺+e⁻ flux in 1 year with PWN or DM sources

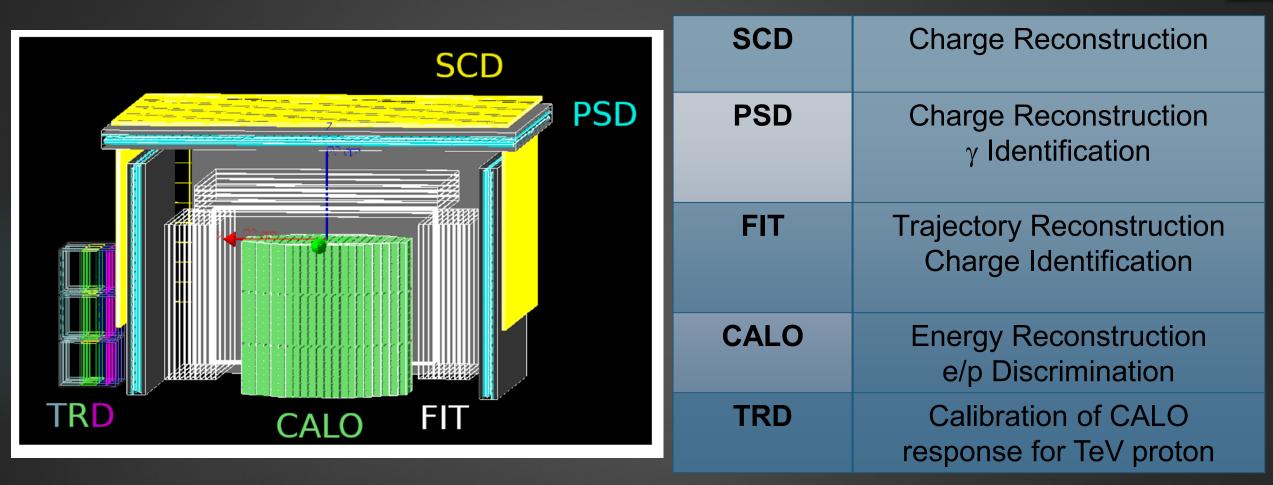
In case of additional PWN or DM production, **HERD** will give important indications on the two hypothesis thanks to precise measurement of the different spectral shape

Protons and Nuclei (HERD)

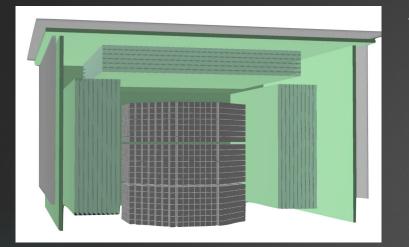

Extension of the B/C ratio to high energy will provide further test for the propagation mechanisms of cosmic rays

107

21

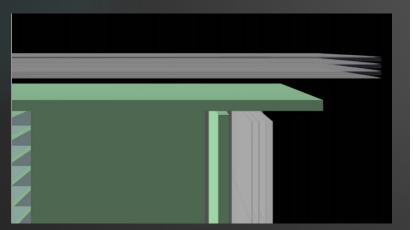

Gamma ray sky-survey (HERD)

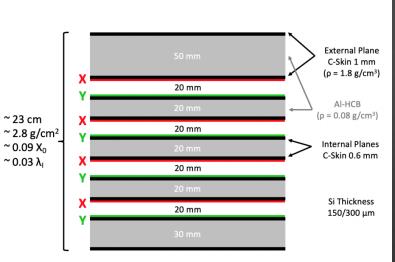
Sky survey 5σ sensitivity

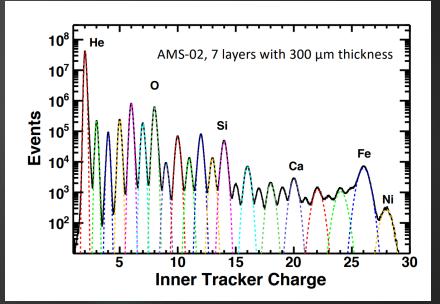


Multi-messenger astronomy Possible synergy with other experiments designed for γ (CTA), ν (KM3, IceCube), GW (Ligo, Virgo)

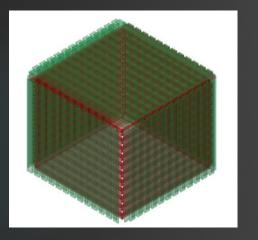
- Thanks to its large acceptance and sensitivity, HERD will be able to:
 - improve Fermi-LAT measurements between 10 and 100 GeV
 - extend Fermi-LAT catalog to higher energy (between 0.1 and 100 TeV)
 - increase the chances to detect rare γ events
- Targets of Gamma-Ray Sky Survey:
 - ► search for dark matter signatures
 - study of galactic and extragalactic γ sources
 - study of galactic and extragalactic γ diffuse emission
 - detection of high energy γ Burst

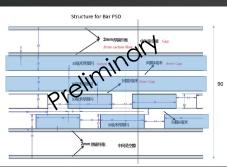



HERD Silicon Charge Detector (SCD)


SCD is the outermost detector to identify the ions with high accuracy

9.5cm x 9.5cm x 150um silicon wafers
8 single sided top layers - 1.92m x 1.92m
8 single sided side layers - 1.72m x 0.86m
Carbon fiber support structures

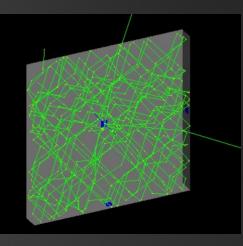

SCD Simple Design (à la DAMPE)

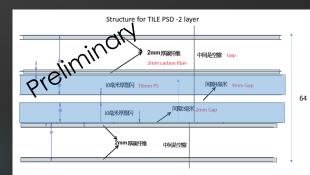


HERD Plastic Scintillator Detector (PSD)

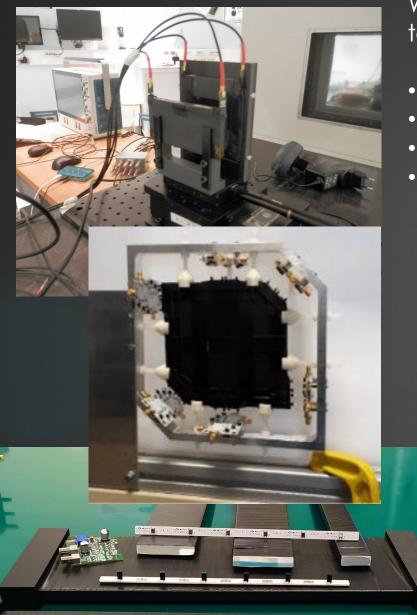
- PSD provide γ identification (VETO of charged particles) and nuclei identification (energy loss $\propto Z^2$)
- PSD needs to have a very high efficiency in charged particles detection (>99,98%) to be used as veto, but also a very high dynamic range to identify nuclei at least up to iron
- Back-scattering can greatly degrade the PID performances

Two layout configuration are under investigation:

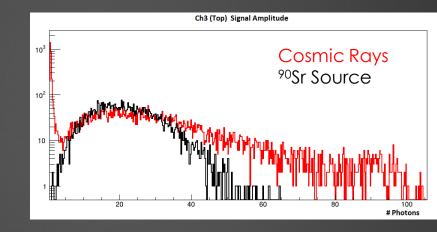


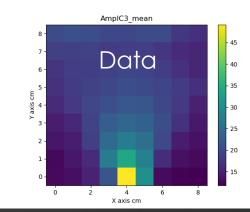

Bar - option

- Long bars 160x3x1 cm³
- Each layer made by two staggered sub layer to increase hermeticity
- Read-out with 4 SiPM (two for each end)
- PRO
 - Less number of readout channel
- CONS
 - Higher Back-scattering problem


Tile - option

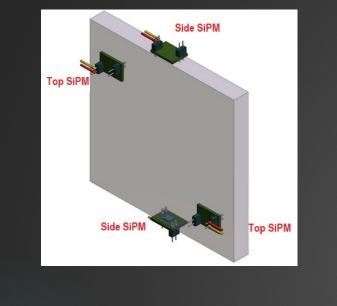
- Small square tile 10x10x1 cm³
- Two layer of tiles to increase nuclei identification power
- Each tile is readout by 6 SiPM (three on two sides)
- PRO
 - Reduce back-scattering problem
- CONS
 - Higher number of readout channel

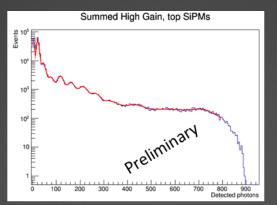

HERD Plastic Scintillator Detector (PSD)

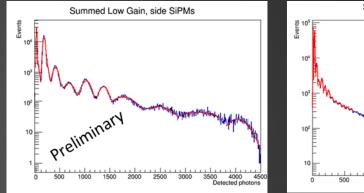

SIF - 106° Congresso Nazionale - 2020 - 14/09/2020

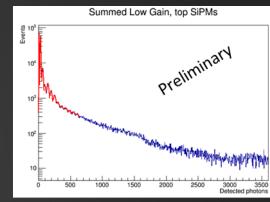
We have built different tile and bar prototypes and we are testing them in different configurations:

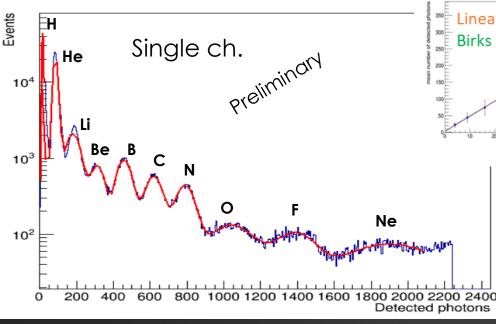
- Test with protons and ions @ CERN (2018-2019)
- Test with CR in labs
- Test with radioactive sources in labs
- Test with ions @ CNAO (PV)

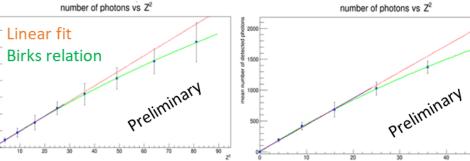




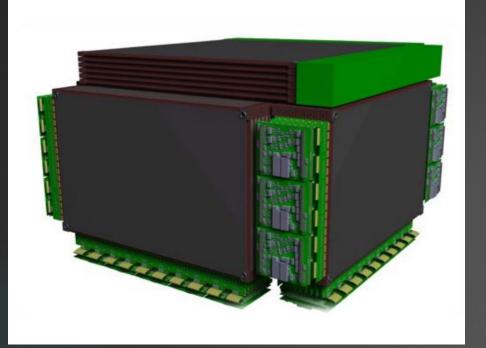

SiPM4: Fired Cells


CERN beam test (2018-2019)


Improvement achieved if we sum together the signals from SiPMs 27



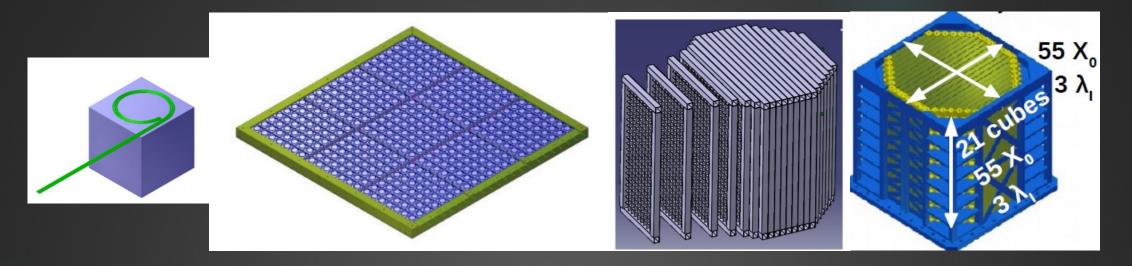
Side - Low Gain



<u>SI</u>F2020

Characterization of plastic scintillator Detector prototypes for the HERD experiment Davide Serini

HERD Fiber TracKer (FIT)


Ion identification capability Very preliminary results

	Z	μ_{z}	σΖ	σ _z /μ _z
	2	1.99	0.31	15 %
1.	3	3.07	0.40	13 %
n/	÷ 4	4.01	0.51	12 %
	70	•		

- 4 identical side sectors + 1 top sector
- 9 x-y planes in each side sector
- 5 x-y planes in the top sector
- 6 x modules (106 cm fiber length) in each x plane
- 10 y modules (77 cm fiber length) in each y plane
- 1 fiber mat + 3 silicon photomultiplier (SiPM) arrays

HERD CALOrimeter (CALO)

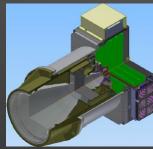
Octagonal Prism made of about 7500 LYSO cubic crystals (80x80x80 cm³): each crystal has 3 cm side

Deep homogeneous calorimeter	Good energy resolution	
Isotropic 3D geometry	Large geometric factor (top + lateral faces)	
Shower imaging with 3D segmentation	Good e/p discrimination, identification of shower axis and of shower starting point	
Congresso Nationale 2020 $14/02/2020$	SIF2020 Progettazione, sviluppo e realizzazione del calorimetro dell'esperimento HERD Eugenio Berti	

HERD CALO READOUT

Dynamic range of 10⁷ is needed to detect from a MIP (~30 MeV released in a single crystal) to a PeV proton (~20 TeV released in a single crystal)

WLS read-out


Each cube is read-out by 3 WLS fibers.

One of the fiber is used for triggering and the light signal is readout by a fast PMT

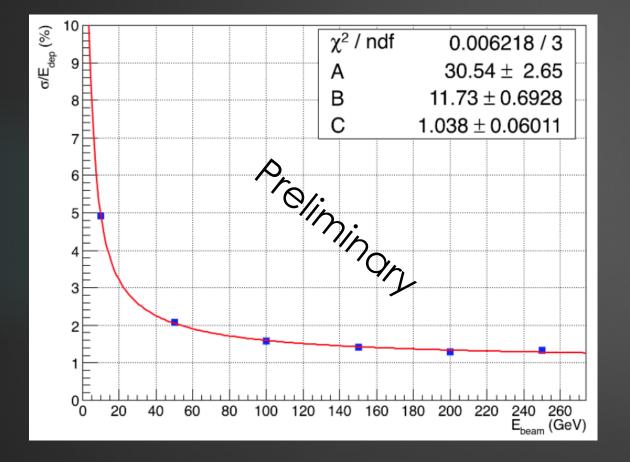
The light signal from the other two fibers is amplified by an Image Intensifier (two gains) and read-out by a IsCMOS camera

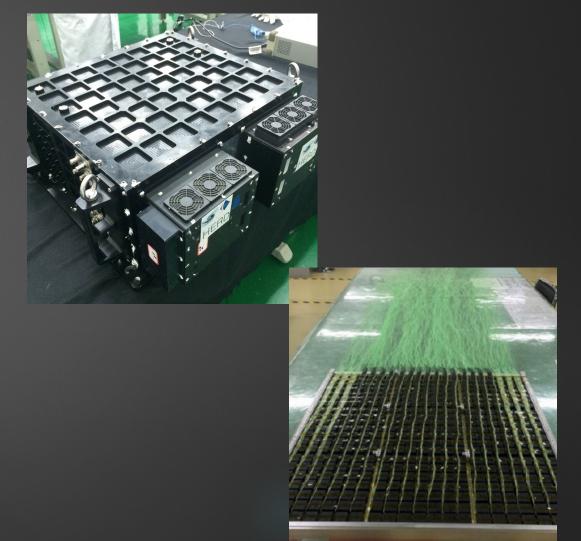
Protocalhole Proto

PIN-Diode read-out

Each cube is read-out by 2 PIN-Diode of different area (1:100 ratio)

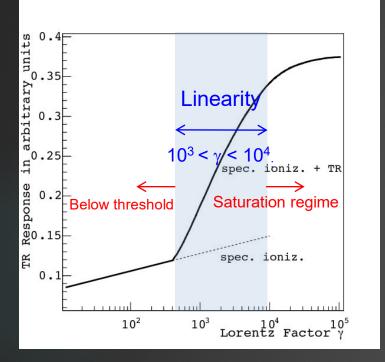
Each PIN-Diode is readout by CASIS chip with two gains and trigger capability





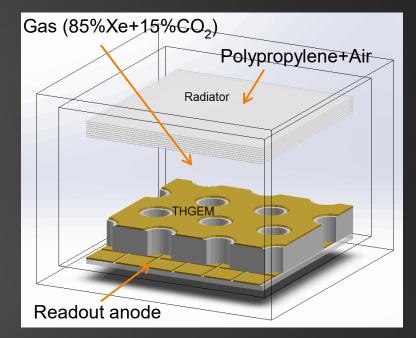
CALO Test Beam Results

Beam Test at CERN – SPS (2017) with a prototype of 250 crystals with WLS read-out


Energy resolution < 1.3% at 200 GeV/c (electrons)

HERD Transition Radiation Detector (TRD)

The TRD, installed on a lateral face of the detector, is needed to calibrate the response of the calorimeter to high energy hadronic showers



Calibration procedure

Linearity for $10^3 < \gamma < 10^4$

Electron 0.5 GeV $\leq E \leq 5$ GeV

Proton 1 TeV < E < 10 TeV

calibrate TRD response using [0.5 GeV, 5 GeV] electrons in space (and at beam test)

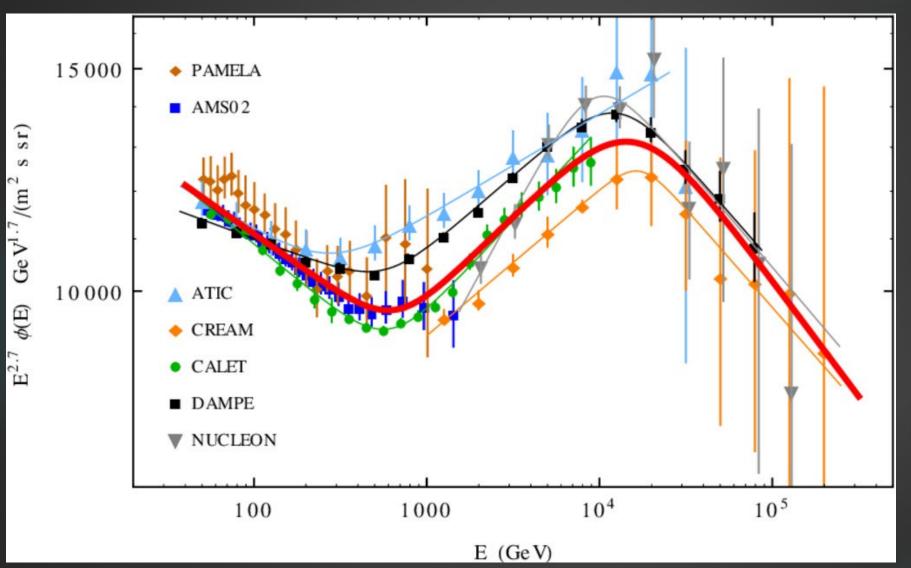
calibrate CALO response using [1 TeV, 10 TeV] protons from TRD (3 months data required)

SUMMARY

The **High Energy cosmic-Radiation Detection** facility is a China-led international space mission that will start its operation around 2026 on board the future China's Space Station.

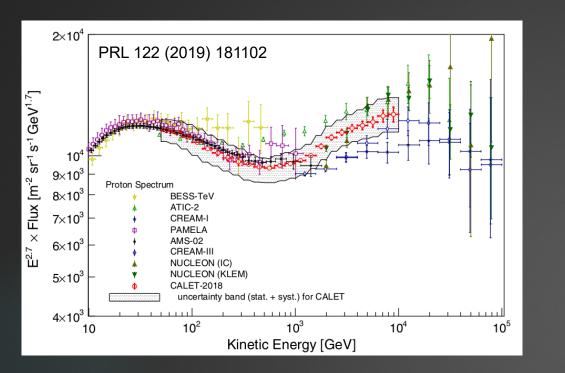
Thanks to its **novel design**, based on a 3D, homogeneous, isotropic and finelysegmented calorimeter, HERD is expected to accomplish **important and frontier goals** relative to DM search, CR observations and Gamma-Ray astronomy:

- extend the measurement of e⁺+e⁻ flux up to several tens of TeV
 - testing the hypothesis of the expected cutoff at high energy
 - distinguishing between DM or astrophysical origin of positron excess
- extend the measurement of p and He flux up to a few PeV
 - testing the theory of the knee structure as due to acceleration limit
- large acceptance, high sensitivity to γ up to several tens of TeV
 - searching for γ line associated to DM annihilation
 - accomplishing a γ sky survey up to very high energy

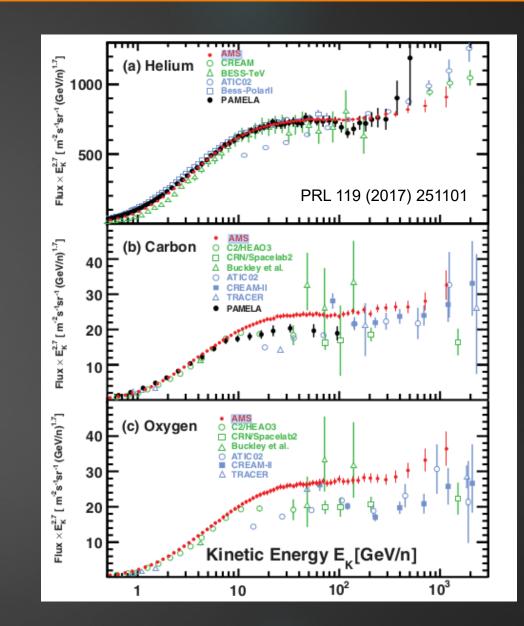

Thank you for your attention

34

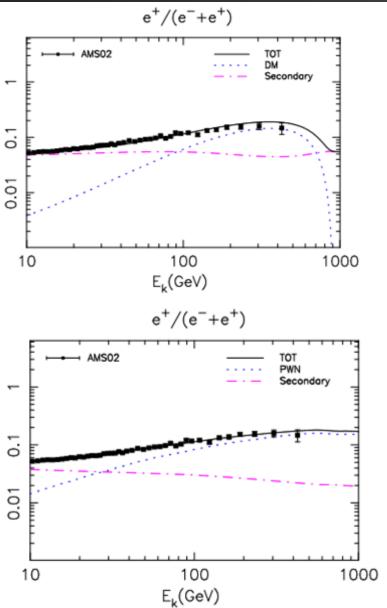
35


DAMPE - CALET Proton spectrum comparison

arXiv:1911.01311 [astro-ph.HE]


36

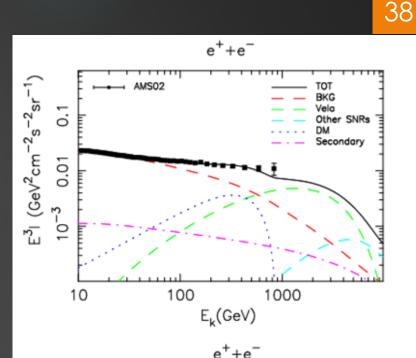
Protons and Nuclei


Proton flux measured up to 100 TeV but with large uncertainties: spectral hardening at 200 GeV spectral softening > 10 TeV (DAMPE preliminary analysis)

Still no direct measurement of proton and helium knee He spectral hardening > 100 Gev/n (DAMPE preliminary analysis)

37

Electrons and Positrons (Pamela and AMS-02)


SIF - 106° Congresso Nazionale - 2020 - 14/09/2020


Positron excess respect to pure secondary production (PAMELA, AMS-02)

Two hypotheses Dark Matter (DM) annihilation Nearby Pulsar Wind Nebulae (PWN)

How to distinguish among them?

An important contribution to our understanding can be obtained by high energy (calorimetric) measurement of the e⁺+e⁻ flux

CHINA

- Institute of High Energy Physics, CAS (IHEP)
- Xi'an Institute of Optical and Precision Mechanics, CAS (XIOPM)
- Guangxi University (GXU)
- Shandong University (SDU)
- Southwest Jiaotong University (SWJTU)
- Purple Mountain Observatory, CAS (PMO)
- University of Science and Technology of China (USTC)
- Yunnan Observatories (YNAO)
- North Night Vision Technology (NVT)
- University of Hong Kong (HKU)
- Academia Sinica

ITAL)

- INFN Bari and University of Bari
- INFN Firenze and University of Firenze
- INFN Pavia and University of Pavia
- INFN Perugia and University of Perugia
- INFN Pisa and University of Pisa
- INFN Lecce and University of Salento
- INFN Laboratori Nazionali del Gran Sasso and GSSI Gran Sasso Science Institute
- INFN Roma2 and University of Tor Vergata
- ► SPAIN
 - CIEMAT Madrid
 - ICCUB Barcellona
 - IFAE Barcellona
- **SWITZERLAND**
 - University of Geneva