SIF, 17 Settembre 2020

Individual automatic plan optimization in radiotherapy by Knowledge-based (KB) models: Clinical implementation and potential for multi-Institute extension

C. Fiorino

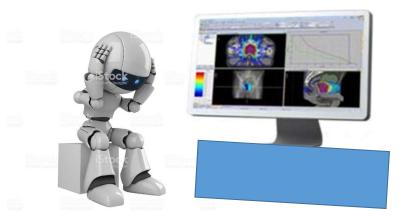
Medical Physics

San Raffaele Scientific Institute, Milano, Italy

Summary

- AI in RT, coming changes...
- AI for planning vs the auto-plan scenario
- KB based auto-plan: clinical implementation
- KB planning: pro's & con's
- The frontier: large-scale, multi-institutional KB planning.

The MIKAPOCo national study



<u>AI IN RT</u>: Coming (disruptive ?) applications....

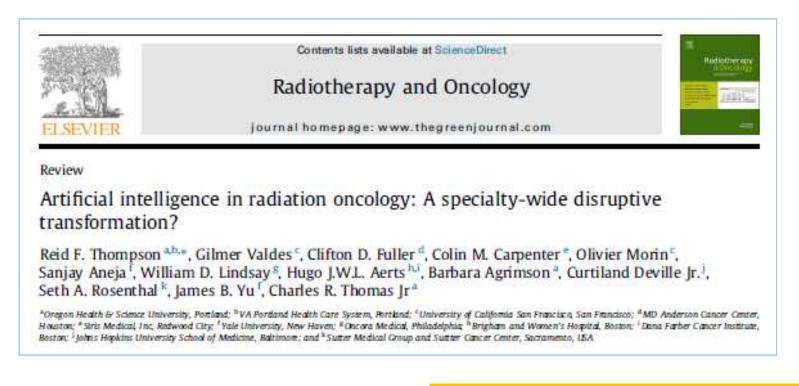
Review

Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?

Reid F. Thompson^{a.b.}, Gilmer Valdes^c, Clifton D. Fuller^d, Colin M. Carpenter^e, Olivier Morin^c, Sanjay Aneja^f, William D. Lindsay^g, Hugo J.W.L. Aerts^{h.i}, Barbara Agrimson^a, Curtiland Deville Jr.^j, Seth A. Rosenthal^k, James B. Yu^f, Charles R. Thomas Jr^a

*Oregon Health & Science University, Portland; *VA Portland Health Care System, Portland; *University of California San Francisco; *MD Anderson Cancer Center, Houston; *Siris Medical, Inc, Redwood City; *Yale University, New Haven; *Oncora Medical, Philadelphia; *Brigham and Women's Hospital, Boston; *Dana Farber Cancer Institute, Boston; *Johns Hopkins University School of Medicine, Baltimone; and *Sutter Medical Group and Sutter Cancer Center, Sacramento, USA

<u>AI IN RT</u>: Coming (disruptive ?) applications....

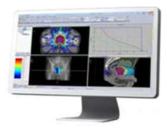


Nb: Disruptive = Dirompente Disruptors = Perturbatore

MP IN RT ALWAYS HAD A DISRUPTIVE ROLE !!!

AI IN RT: Coming applications....

Image segmentation and contouring, atlasbased, deep learning....



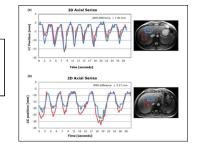
TPS

Learning Health systems, patient analytics, decision support systems, data sharing and AI-based prediction...

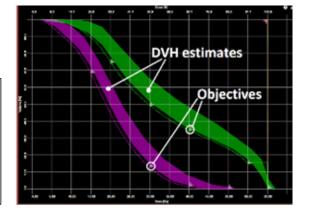
Dosimetry and QA, Linac safety and maintenance, Outliers identification for patient QA,...

Machine learning systems to develop predictions, data sharing & big data integration, distributed learning...

Fast Image recognition for patient-setup, tracking, 4D IGRT.....

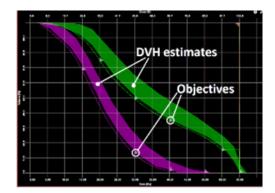


Planning Optimization,plan QA,AI-based remote planning, on-line adaptive planning, QA of clinical trials....



AI IN RT: Coming applications....

Planning Optimization,plan QA,AI-based remote planning, on-line adaptive planning, Qa of clinical trials....



Why AI clinical implementation is more advanced in plan optimization (and auto-contouring) ??

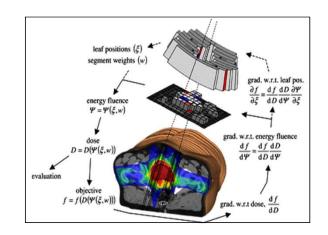
- Large availability of «high quality» data (plan experience)
- Generally well-posed quantitative problem (defining constraints & cost functions during optimization)
- Potentially large cost-benefit ratio (plan quality, time, resources....)
- Interpretable (and then usable) models
- Pivotal position of Medical Physicists...no need of external professionals
- (Commercial systems available)

Al for planning & the auto-plan scenario

 \rightarrow IMRT planning is based on the inverse problem optimization:

- not physical solution which fulfils the ideal objectives
- multi-objective problem with conflicting objectives
- trial-and-error procedure
- \rightarrow IMRT planning optimization result:
 - time consuming
 - strongly planner depending
 - strongly Institution depending
 - variable risk of clinically relevant suboptimal plans



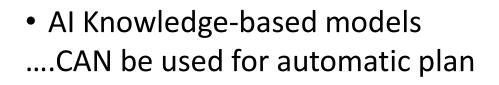


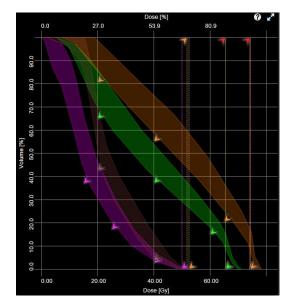
Al for planning & the auto-plan scenario

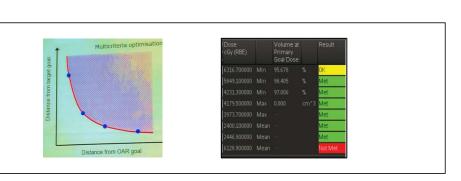
To overcome limitation of manual optimization

\rightarrow Automatic planning optimization

- Multicriteria optimization (MCO), Pareto-like
- Protocol-based optimization





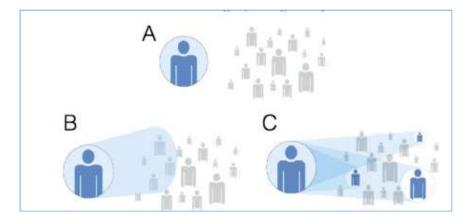


-Knowledge-based (KB) planning: the concept

 Plan prediction: can the plan on a new patient be «predicted» based on its similarity/dissimilarity against a (large enough) sample?

Example: Plan classification based on pts characteristics

(anatomical, medical, intent, physics,....)



Decision support system

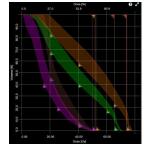
Clinical decision support of radiotherapy treatment planning: A data-driven machine learning strategy for patient-specific dosimetric decision making

Gilmer Valdes^{a,*}, Charles B. Simone II ^b, Josephine Chen^a, Alexander Lin^c, Sue S. Yom^{a,d}, Adam J. Pattison^e, Colin M. Carpenter^e, Timothy D. Solberg^a

Table 1

Reature-set categories used to predict dose for a radiation treatment plan.

Feature category	Example features
Anatomical information	Distance, volume, geometric relationship, and importance of structures and surrounding structures
Medical record	KD-9/10 code, gender, ethnicity
Treatment intent	Practionation schedule, treatment margin, number of beams/arcs, and the clinicians who are part of the team creating the indiation treatment plan
Radiation transport	Penumbra, aperture, incident angle, beam energy, radiation type (proton w photon), depth of structure, and existence of bolus



Valdes et al. 2017

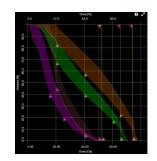
- KB-models of planning data
- DVH prediction
- Dose metrics prediction
- Voxel-dose prediction

Plan QA

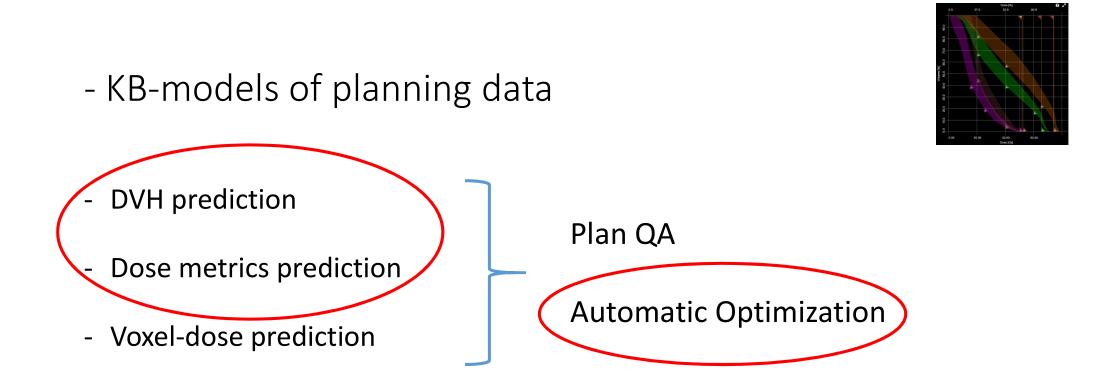
Automatic Optimization

- Beam parameters prediction

- Patient QA prediction
- (Objective function weights)





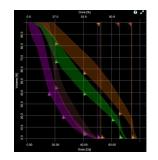


- Beam parameters prediction

- Patient QA prediction
- (Objective function weights)

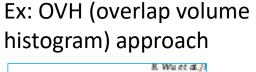
Adapted from Ge & Wu 2019

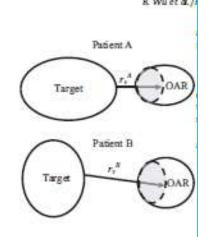
- KB-based auto-planning: methods

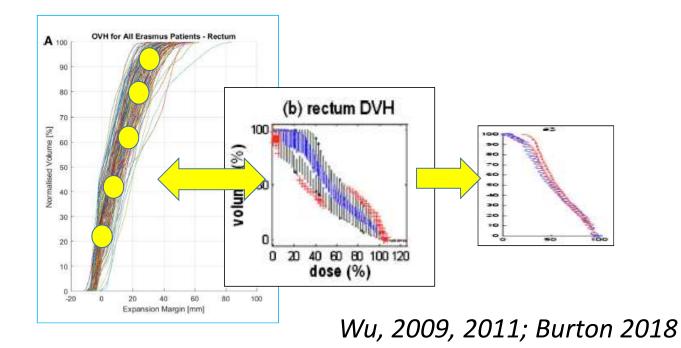


- Case and Atlas-based methods
- Statistical and machine learning methods

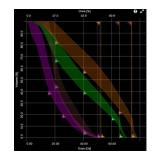
Fitting one new case with the most similar case in a dbase: a) similarity measurement to assess the most similar plan; b) transfer the knowledge to the new patient







- KB-based auto-planning: methods



- Case and Atlas-based methods
- Statistical and machine learning methods

Creating a predictive model using the prior plans dbase; most based on regression models (multi-linear, logistic, stepwise...) or other methods (curve fitting, artificial neural network, random forest, support vector machine,)

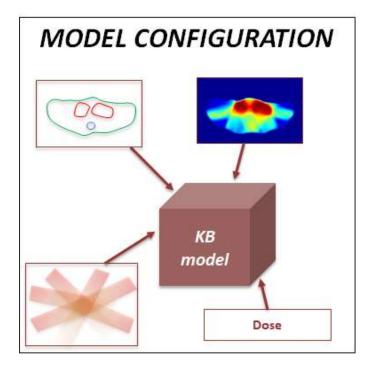
The most popular (commercially available, Rapidplan Varian©) is the multi-variable linear regression (Yuan 2012), using Principal Component Analysis (PCA)

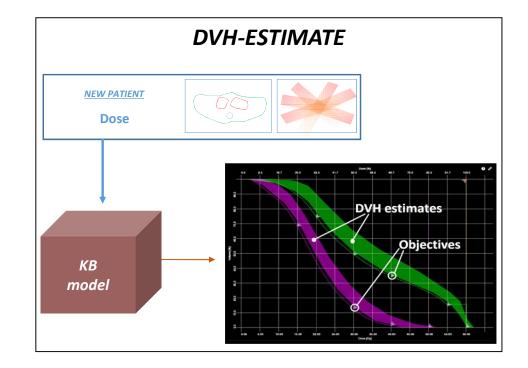
Pioneering papers by Fogliata et al, 2014, 2015; Tol et al 2015

- KB-based planning: examples of clinical implementation

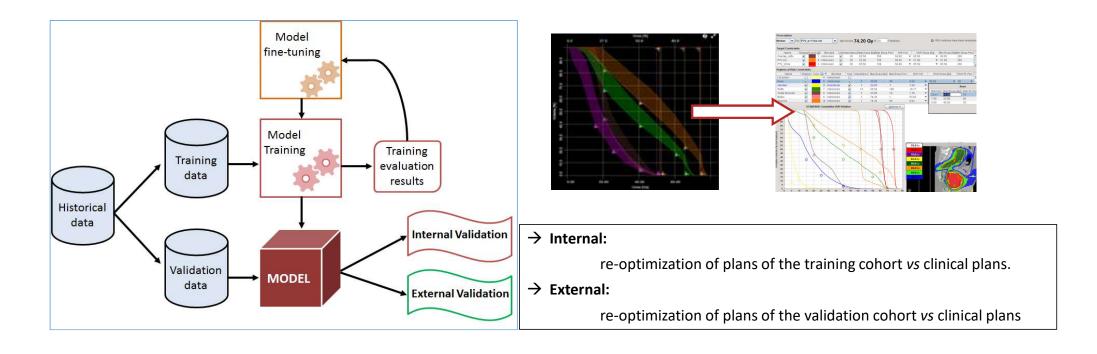
.....using RapidPlan

- MODEL CONFIGURATION existing clinical treatment plans are used to estimate the most likely dosimetric features of a similar treatment plan in a new patient case.
- DVH-ESTIMATE based on previously modelled patients data, the KB-model generates an estimated DHV range suggesting where the DVH of a structure will most likely land.





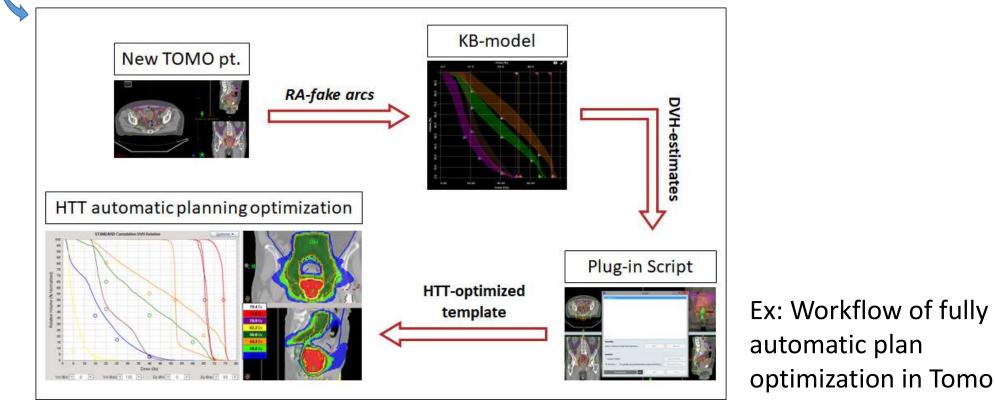
- KB-based planning: examples of clinical implementation
- **KB-BASED (INDIVIDUAL) TEMPLATE FOR PLAN OPTIMIZATION** based on the DVH estimate, this information may be used to generate a template for automatic plan optimization
- "FINE TUNING" OF THE TEMPLATE IS CRUCIAL AND NEED CAREFUL "ITERATIVE" OPTIMIZATION, TO EFFICIENTLY TRANSLATE KB-PREDICTION IN EXECUTABLE AUTOMATIC OPTIMIZATION !
- KB-BASED TEMPLATES FOR AUTOMATIC PLANNING NEED TO BE EXTENSIVELY VALIDATED BEFORE CLINICAL IMPLEMENTATION !



- KB-based planning: examples of clinical implementation

Models developed and validated @ San Raffaele Institute (year of clinical implementation)

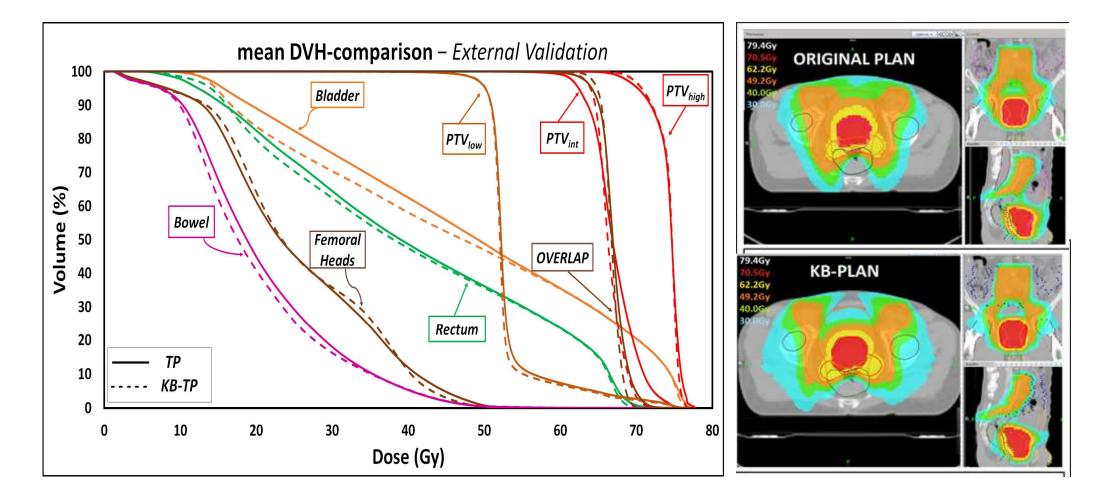
- Post-operative prostate ca: pelvis + boost (2017)
- Rectal ca: including early-regression guided adaptive boost (2018)
- Prostate ca (Tomotherapy): high and intermediate risk pts (2019)
- Breast ca: tangential-field like (ViTAT) right (2020) and left (ongoing...)



OSR Prostatic KB-TOMO – Model validation

\rightarrow *External Validation*:

 re-optimization of 30 plans (<u>treated in 2018-2019</u> and not included in the model) by KB-approach;

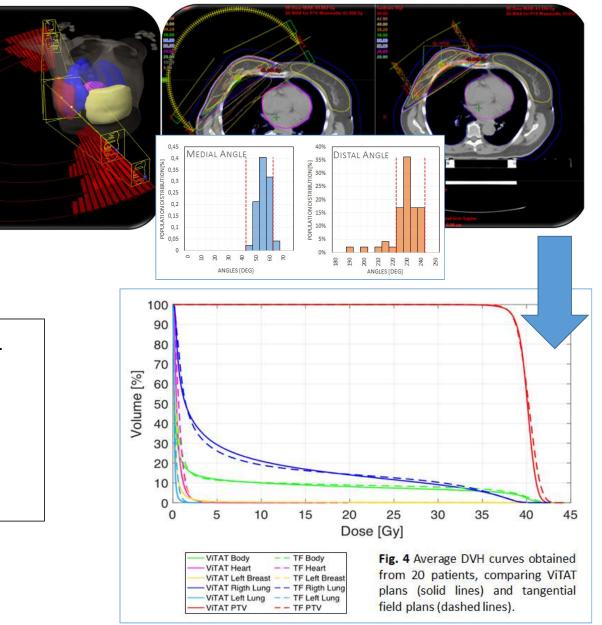


→ Up to now, 95 clinical plans delivered in 10 months wout or with minimal (<20 min) human intervention

OSR experience – ViTAT, KB breast

Right-sided BREAST OK

- 40 Gy to whole breast 15 fractions
- 4 arcs (6 MV) completely blocked apart the first and last 20° of rotation (60-40°/220-240°).
- Left-sided BREAST (ongoing)



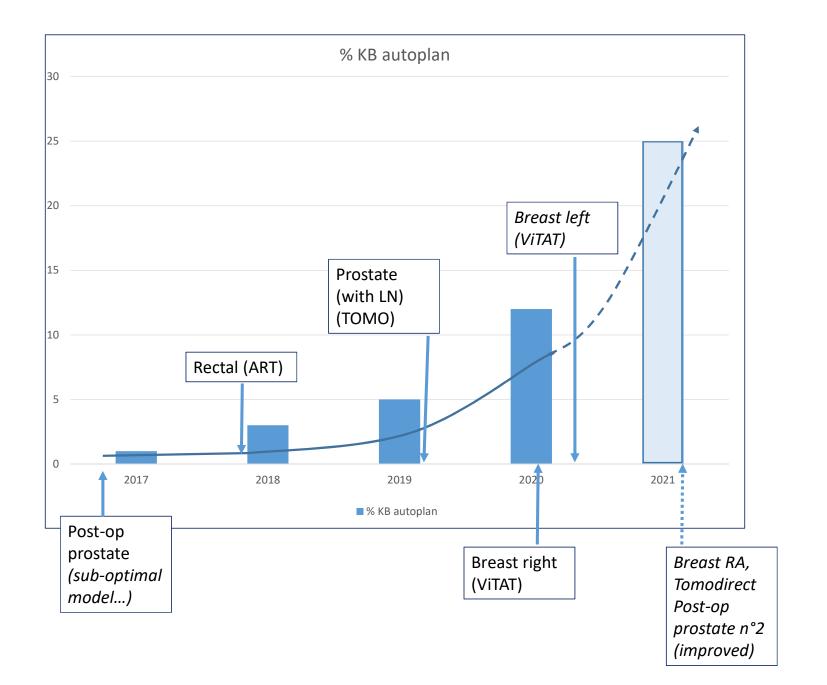
KB-model for tangential using ViTAT approach:

Right-sided BREAST implemented

• 6 pts treated

*ViTAT: Virtual Tangential Arc Therapy

OSR KB-based autoplan clinical implementation



KB planning: pro's and con's

PRO'S

- Reduce/eliminate sub-optimal plans
- Reduce/eliminate inter-planner variability
- Moderately improve plan quality, depending on the quality of KB implementation; resulting auto-plan solutions are «individually» optimized
- Keep past experience, avoid dose distributions too far from your experience
- Strong reduction of planning time for individual optimizations
- Push to optimize and homogeneize the whole planning chain, including support structures contouring

CON'S

- Risk of «garbage in garbage out»
- Plan quality is not expected to increase dramatically
- Needs time to generate and validate DVH estimate models
- Needs time to translate DVH prediction into effective and automatic automatic plan solutions
- Needs (continuous) update
- (...last three issues maybe not a CON's....)

KB planning: pro's and con's

Additional «large-scale» PRO'S

- Potentials in QA of clinical trials and remote plan QA/plan assistance
- Rational «in-silico» plan comparison, cost-benefit analysis, HTA
- Potentials in patient selection for specific technology solutions (for instance: heavy particles vs photons)
- Educational, Tutorial
- Measuring plan quality changes with time
- Potentials for shared/multiinstitutional KB models (?)

Multi-Institutional Validation of a Knowledge-Based Planning Model for Patients Enrolled in RTOG 0617: Implications for Plan Quality Controls in Cooperative Group Trials

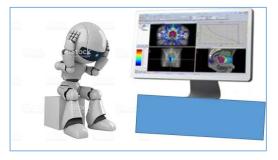
James A. Kavanaugh MS^{a,*}, Sarah Holler BS^b, Todd A. DeWees PhD^c, Clifford G. Robinson MD^a, Jeffrey D. Bradley MD^a, Puneeth Iyengar MD, PhD^d, Kristin A. Higgins MD^e, Sasa Mutic PhD^a, Lindsey A. Olsen PhD^f

Analysis of EORTC-1219-DAHANCA-29 trial plans demonstrates the potential of knowledge-based planning to provide patient-specific treatment plan quality assurance

Jim P. Tol^a, Max Dahele^a, Vincent Gregoire^b, Jens Overgaard^c, Ben J. Slotman^a, Wilko F.A.R. Verbakel^{a,*}

Using a knowledge-based planning solution to select patients for proton therapy

Alexander R. Delaney *, Max Dahele, Jim P. Tol, Ingrid T. Kuijper, Ben J. Slotman, Wilko F.A.R. Verbakel Department of Radiation Oncology. VII University Medical Center, Amsterdam, The Netherlands



Chaok Ex-

The frontier: large-scale, multi-institutional KB planning

Promises and pitfalls.....open issues

- Inter-Institute protocols variability (dose, fractionation, technique...)
- Inter-Institute OARs/CTV/PTV definition and contouring variability
- Inter-changeability/esportability of a model from an institute to another
- Meta-models incorporating Inter-Institute variability
- Generating/adapting benchmark models
- Measuring plan quality Inter-Institute variability

RESEARCH ARTICLE

Intercenter validation of a knowledge based model for automated planning of volumetric modulated arc therapy for prostate cancer. The experience of the German RapidPlan Consortium

Carolin Schubert¹, Oliver Waletzko², Christian Weiss³, Dirk Voelzke⁴, Sevda Toperim¹, Arnd Roeser⁵, Silvia Puccini⁴, Marc Piroth⁵, Christian Mehrens⁶, Jan-Dirk Kueter⁷, Kirsten Hierholz³, Karsten Gerull⁷, Antonella Fogliata⁸, Andreas Block⁶, Luca Cozzi⁸*

PlosOne 2017

Evaluation of multiple institutions' models for knowledge-based planning of volumetric modulated arc therapy (VMAT) for prostate cancer Yoshihiro Ueda¹, Jun-ichi Fukunaga², Tatsuya Kamima³, Yumiko Adachi⁴, Kiyoshi Nakamatsu⁵ and Hajime Monzen^{6*}

Radiat Oncol 2018

Experience of national RapidPlan consortia: UK, Germany, Japan, Italy,...

The frontier: large-scale, multi-institutional KB planning

Promises and pitfalls.....open issues

- Inter-Institute protocols variability (dose, fractionation, technique...)
- Inter-Institute OARs/CTV/PTV definition and contouring variability
- Inter-changeability/esportability of a model from an institute to another
- Meta-models incorporating Inter-Institute variability
- Generating/adapting benchmark models

 Measuring plan quality Inter-Institute variability

Opportunities.....

- Clinical trials
- Education/Tutorial
- Tools to compare your performance against the community and to improve/change practice
- To guarantee high quality plans in case of limited skill available (for instance: «cancer epidemy» in the less developed countries....)

Warnings/dangers....

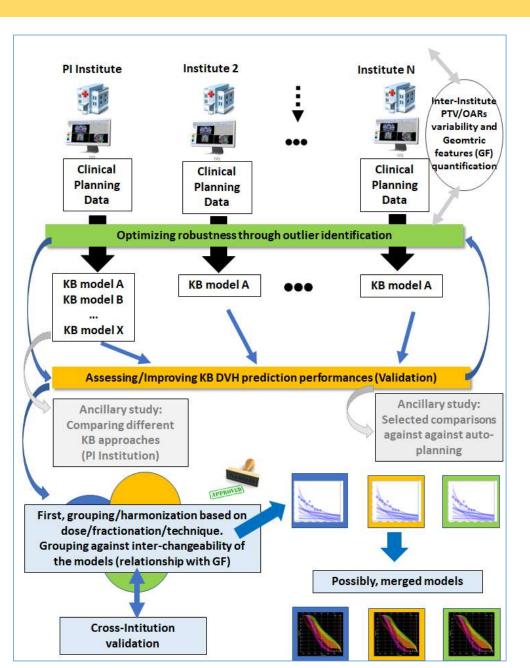
- Planning as a mere technical service, sold with the machine
- Risk of malpractice, gradual elimination of planners
- Knowledge-based kills the local knowledge ?
- Risks of forced adaptation with poor interchangeability (for instance: robustness against contouring....)

MIKAPOCO: Multi-Institutional Knowledge-based Approach for Plan Optimization for the Community

A 5-year national funded project

- 9 Institutes involved
- «Open Access» (to other Institutes*)
- AIFM official support
- Expected to generate «community tools» for plan QA, remote plan support, tutorial/education, technique selection, benchmarking (?),....

Improving the quality of Radiotherapy by multi-Institution Knowledge-Based planning optimization models AIRC IG-23150



*contact: fiorino.claudio@hsr.it

Grazie

- R. Castriconi, P Esposito, A Tudda, S Broggi, P Mangili, L Perna, GM Cattaneo
- N Di Muzio, C Cozzarini, A Fodor (RT OSR)
- Gli amici di MIKAPOCo
- M Stasi (AIFM)
- E Lanzi & M Acerbi (Varian Italia)

Un mare calmo non ha mai fatto un buon marinaio. (Proverbio inglese)

Non esiste vento favorevole per il marinaio che non sa dove andare. (Lucio Anneo Seneca)