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Molecule Sequencer technology (Helicos; Cambridge, MA, USA). The 
concept of cyclic-array sequencing can be summarized as the sequencing 
of a dense array of DNA features by iterative cycles of enzymatic manipu-
lation and imaging-based data collection15 (Shendure and colleagues16). 
Two reports in 2005 described the first integrated implementations of 
cyclic-array strategies that were both practical and cost-competitive with 
conventional sequencing (J.S. et al.13 and ref. 14), and other groups have 
quickly followed17,18.

Although these platforms are quite diverse in sequencing biochem-
istry as well as in how the array is generated, their work flows are 
conceptually similar (Fig. 1b). Library preparation is accomplished 
by random fragmentation of DNA, followed by in vitro ligation of 

common adaptor sequences. Alternative 
protocols can be used to generate jumping 
libraries of mate-paired tags with control-
lable distance distributions13,19. The genera-
tion of clonally clustered amplicons to serve 
as sequencing features can be achieved by 
several approaches, including in situ polo-
nies15, emulsion PCR20 or bridge PCR21,22 
(Fig. 2). What is common to these methods 
is that PCR amplicons derived from any given 
single library molecule end up spatially clus-
tered, either to a single location on a planar 
substrate (in situ polonies, bridge PCR), or 
to the surface of micron-scale beads, which 
can be recovered and arrayed (emulsion 
PCR). The sequencing process itself consists 
of alternating cycles of enzyme-driven bio-
chemistry and imaging-based data acquisi-
tion (Fig. 3). The platforms that are discussed 
here all rely on sequencing by synthesis, that 
is, serial extension of primed templates, but 
the enzyme driving the synthesis can be 
either a polymerase16,23 or a ligase13,24. Data 
are acquired by imaging of the full array 
at each cycle (e.g., of fluorescently labeled 
nucleotides incorporated by a polymerase).

Global advantages of second-generation 
or cyclic-array strategies, relative to Sanger 
sequencing, include the following: (i) in vitro 
construction of a sequencing library, followed 
by in vitro clonal amplification to generate 
sequencing features, circumvents several bot-
tlenecks that restrict the parallelism of con-
ventional sequencing (that is, transformation 
of E. coli and colony picking). (ii) Array-based 
sequencing enables a much higher degree of 
parallelism than conventional capillary-based 
sequencing. As the effective size of sequencing 
features can be on the order of 1 Mm, hundreds 
of millions of sequencing reads can potentially 
be obtained in parallel by rastered imaging of 
a reasonably sized surface area. (iii) Because 
array features are immobilized to a planar sur-
face, they can be enzymatically manipulated by 
a single reagent volume. Although microliter-
scale reagent volumes are used in practice, 
these are essentially amortized over the full set 
of sequencing features on the array, dropping 
the effective reagent volume per feature to the 

Second-generation DNA sequencing
Alternative strategies for DNA sequencing can be grouped into several 
categories (as discussed previously in ref. 4). These include (i) microelec-
trophoretic methods9 (Box 1), (ii) sequencing by hybridization10 (Box 
2), (iii) real-time observation of single molecules11,12 (Box 3) and (iv) 
cyclic-array sequencing (J.S. et al.13 and ref. 14). Here, we use ‘second-
generation’ in reference to the various implementations of cyclic-array 
sequencing that have recently been realized in a commercial product (e.g., 
454 sequencing (used in the 454 Genome Sequencers, Roche Applied 
Science; Basel), Solexa technology (used in the Illumina (San Diego) 
Genome Analyzer), the SOLiD platform (Applied Biosystems; Foster 
City, CA, USA), the Polonator (Dover/Harvard) and the HeliScope Single 
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Figure 1  Work flow of conventional versus second-generation sequencing. (a) With high-throughput 
shotgun Sanger sequencing, genomic DNA is fragmented, then cloned to a plasmid vector and 
used to transform E. coli. For each sequencing reaction, a single bacterial colony is picked and 
plasmid DNA isolated. Each cycle sequencing reaction takes place within a microliter-scale volume, 
generating a ladder of ddNTP-terminated, dye-labeled products, which are subjected to high-resolution 
electrophoretic separation within one of 96 or 384 capillaries in one run of a sequencing instrument. As 
fluorescently labeled fragments of discrete sizes pass a detector, the four-channel emission spectrum 
is used to generate a sequencing trace. (b) In shotgun sequencing with cyclic-array methods, common 
adaptors are ligated to fragmented genomic DNA, which is then subjected to one of several protocols 
that results in an array of millions of spatially immobilized PCR colonies or ‘polonies’15. Each polony 
consists of many copies of a single shotgun library fragment. As all polonies are tethered to a planar 
array, a single microliter-scale reagent volume (e.g., for primer hybridization and then for enzymatic 
extension reactions) can be applied to manipulate all array features in parallel. Similarly, imaging-based 
detection of fluorescent labels incorporated with each extension can be used to acquire sequencing 
data on all features in parallel. Successive iterations of enzymatic interrogation and imaging are used to 
build up a contiguous sequencing read for each array feature.
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Shendure et al., Nat Biotech (2008)

1 cluster ~ 1 sequence read
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TCGA Res Network, Nat Genet (2013) 
Hutter, Zenklusen, Cell (2019)
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hormonal dependencies of breast, ovarian and 
endometrial cancers and a common ‘squamous 
cell’ signature across head and neck, lung, cer-
vical and bladder cancers.

Which events actionable in one tumor lineage 
are also actionable in another tumor lineage, 
potentially increasing the range of indications 
for specific targeted therapeutics? A systematic 
evaluation of machine-learning approaches is 
needed to highlight methodological principles 
for predicting patient outcomes using inte-
grated information across tissues (H. Liang, 
personal communication).

Limitations of analysis across tumor types
Several data integration challenges place 
unavoidable limitations on cross-tumor 
analysis at the current time. A key challenge 
is the integration of data that have been gener-
ated on different platforms or updates of the 
same platform, as technologies improve. In 
the Pan-Cancer studies, for example, there 
have been transitions to much higher den-
sity DNA methylation arrays, use of differ-
ent exome capture technologies, addition of 
RNA sequencing to microarray-based RNA  

improve the ability to distinguish driver aber-
rations from passengers? A bird’s-eye view of 
genomic and epigenomic events yields a ‘fate 
map’ of the alternative routes to carcinogenesis 
in a decision tree that spans tissue boundaries37.

Can molecular subtypes be delineated to disen-
tangle tissue-specific from tissue-independent 
components of disease? Analyses of the epi-
genome, transcriptome and proteome show a 
strong influence of tissue on the state of altered 
pathways in tumor cells. For instance, analysis 
of the gene expression landscape reinforces the 
dominant tissue dependence of altered path-
ways and complements simultaneous profil-
ing of over a hundred proteins important in 
cancer38. Using all of the tumor types together 
allows for any tumor-specific signals to be 
subtracted from the data sets. Intriguingly, 
subtracting tissue-specific signal from DNA 
microarray gene expression data sets identifies 
signatures of immune stromal influence that 
transcend tumor type boundaries (R. Verhaak, 
personal communication). Further, events that 
are common across lineages become apparent 
in a cross-tumor analysis38. Examples are the 

Applicable Research to Generate Effective 
Treatments) and adult cancers (ICGC; 
International Cancer Genomics Consortium), 
as well as smaller projects by research teams 
around the world. A critical component of 
such efforts will be the functional validation 
of aberrations in individual genes in team 
science efforts such as CTD2 (Cancer Target 
Discovery and Development) and the eluci-
dation of pathway and network relationships 
in programs such as the US National Cancer 
Institute’s Integrative Cancer Biology Program.

A number of investigations that go beyond 
the single-tumor perspective are being 
addressed in the collection of Pan-Cancer 
manuscripts. Examples of the kinds of ques-
tions addressed by these investigations are 
given below.

Can increases in statistical power help to dis-
tinguish new driver mutations from the back-
ground of passenger mutations as the sample 
size is increased by aggregating the 12 tumor 
types? Assembled Pan-Cancer data have, in 
fact, enabled the identification of new pat-
terns of genomic drivers. New computational 
approaches that leverage cross-tumor princi-
ples of replication timing and gene expression 
correlated with background mutation rates 
now enable the identification of frequently 
mutated genes while eliminating many false-
positive and false-negative calls made in sev-
eral single-tumor-type projects33. Further, the 
power to identify multiple signals of positive 
selection has increased the ability to distin-
guish ‘driver’ from ‘passenger’ aberrations34.

What tissue associations underlie the major 
genomic structural changes in cancer? Improved 
methods for the analysis of structural variation 
of large chromosome segments have refined 
the ability to identify genomic and epigenetic 
regulators in multiple peak regions seen only 
by collating data across different cancer types. 
Tissue-associated patterns have now been 
established for the rate and timing of whole-
genome duplication events35.

What pathways emerge as critical and poten-
tially actionable when all mutational events 
across many tissues are considered together? 
New classes of mutations, such as those in 
chromatin-remodeling genes, are emerging 
as cancer drivers identified only by (i) collect-
ing less frequent events across tumor types, 
(ii) integrating event types such as mutations, 
copy number changes and epigenetic silencing, 
(iii) combining multiple algorithms to identify 
predicted drivers34 and (iv) aggregating genes 
using gene networks and pathways36.

Can an increase in the number of samples 
enhance analysis of the co-occurrence and 
mutual exclusivity of gene aberrations and 
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Figure 1  Integrated data set for comparing and contrasting multiple tumor types. The TCGA Pan-
Cancer project assembled data from thousands of patients with primary tumors occurring in different 
sites of the body, covering 12 tumor types (top left) including glioblastoma multiformae (GBM), 
lymphoblastic acute myeloid leukemia (LAML), head and neck squamous carcinoma (HNSC), lung 
adenocarcinoma (LUAD), lung squamous carcinoma (LUSC), breast carcinoma (BRCA), kidney renal 
clear-cell carcinoma (KIRC), ovarian carcinoma (OV), bladder carcinoma (BLCA), colon adenocarcinoma 
(COAD), uterine cervical and endometrial carcinoma (UCEC) and rectal adenocarcinoma (READ). 
Six types of omics characterization were performed creating a ‘data stack’ (right) in which data 
elements across the platforms are linked by the fact that the same samples were used for each, thus 
maximizing the potential of integrative analysis. Use of the data enables the identification of general 
trends, including common pathways (bottom left), revealing master regulatory hubs activated (red) or 
deactivated (blue) across different tissue types.

6

-omics and precision cancer medicine: TCGA initiative
2013 2019



Bioinformatics in cancer research

TCGA Res Network, Nat Genet (2013) 7

NATURE GENETICS | VOLUME 45 | NUMBER 10 | OCTOBER 2013 1115

COMMENTARY

hormonal dependencies of breast, ovarian and 
endometrial cancers and a common ‘squamous 
cell’ signature across head and neck, lung, cer-
vical and bladder cancers.

Which events actionable in one tumor lineage 
are also actionable in another tumor lineage, 
potentially increasing the range of indications 
for specific targeted therapeutics? A systematic 
evaluation of machine-learning approaches is 
needed to highlight methodological principles 
for predicting patient outcomes using inte-
grated information across tissues (H. Liang, 
personal communication).

Limitations of analysis across tumor types
Several data integration challenges place 
unavoidable limitations on cross-tumor 
analysis at the current time. A key challenge 
is the integration of data that have been gener-
ated on different platforms or updates of the 
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the Pan-Cancer studies, for example, there 
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RNA sequencing to microarray-based RNA  
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genomic and epigenomic events yields a ‘fate 
map’ of the alternative routes to carcinogenesis 
in a decision tree that spans tissue boundaries37.
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tangle tissue-specific from tissue-independent 
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strong influence of tissue on the state of altered 
pathways in tumor cells. For instance, analysis 
of the gene expression landscape reinforces the 
dominant tissue dependence of altered path-
ways and complements simultaneous profil-
ing of over a hundred proteins important in 
cancer38. Using all of the tumor types together 
allows for any tumor-specific signals to be 
subtracted from the data sets. Intriguingly, 
subtracting tissue-specific signal from DNA 
microarray gene expression data sets identifies 
signatures of immune stromal influence that 
transcend tumor type boundaries (R. Verhaak, 
personal communication). Further, events that 
are common across lineages become apparent 
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as well as smaller projects by research teams 
around the world. A critical component of 
such efforts will be the functional validation 
of aberrations in individual genes in team 
science efforts such as CTD2 (Cancer Target 
Discovery and Development) and the eluci-
dation of pathway and network relationships 
in programs such as the US National Cancer 
Institute’s Integrative Cancer Biology Program.

A number of investigations that go beyond 
the single-tumor perspective are being 
addressed in the collection of Pan-Cancer 
manuscripts. Examples of the kinds of ques-
tions addressed by these investigations are 
given below.

Can increases in statistical power help to dis-
tinguish new driver mutations from the back-
ground of passenger mutations as the sample 
size is increased by aggregating the 12 tumor 
types? Assembled Pan-Cancer data have, in 
fact, enabled the identification of new pat-
terns of genomic drivers. New computational 
approaches that leverage cross-tumor princi-
ples of replication timing and gene expression 
correlated with background mutation rates 
now enable the identification of frequently 
mutated genes while eliminating many false-
positive and false-negative calls made in sev-
eral single-tumor-type projects33. Further, the 
power to identify multiple signals of positive 
selection has increased the ability to distin-
guish ‘driver’ from ‘passenger’ aberrations34.

What tissue associations underlie the major 
genomic structural changes in cancer? Improved 
methods for the analysis of structural variation 
of large chromosome segments have refined 
the ability to identify genomic and epigenetic 
regulators in multiple peak regions seen only 
by collating data across different cancer types. 
Tissue-associated patterns have now been 
established for the rate and timing of whole-
genome duplication events35.

What pathways emerge as critical and poten-
tially actionable when all mutational events 
across many tissues are considered together? 
New classes of mutations, such as those in 
chromatin-remodeling genes, are emerging 
as cancer drivers identified only by (i) collect-
ing less frequent events across tumor types, 
(ii) integrating event types such as mutations, 
copy number changes and epigenetic silencing, 
(iii) combining multiple algorithms to identify 
predicted drivers34 and (iv) aggregating genes 
using gene networks and pathways36.

Can an increase in the number of samples 
enhance analysis of the co-occurrence and 
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Six types of omics characterization were performed creating a ‘data stack’ (right) in which data 
elements across the platforms are linked by the fact that the same samples were used for each, thus 
maximizing the potential of integrative analysis. Use of the data enables the identification of general 
trends, including common pathways (bottom left), revealing master regulatory hubs activated (red) or 
deactivated (blue) across different tissue types.

• Development of computational/statistical methods for the 
analysis of specific omics data  

• eg., aligner of sequences, identification of differentially 
expressed genes, etc. 

• Development/set-up/application of data analysis pipelines 

• Development/application of methods for the integrative analysis 
of multiple omics layers 

• Modeling of cancer initiation, evolution and progression  

• Identification of prognostic/predictive biomarkers (outcome, 
response/resistance to drugs) 

• ….
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Cell-of-origin patterns across multiple tumour types by different molecular layers

Hoadley et al., Cell (2018)

(HNSC, ESCA, LUSC, and CESC) associated closely in METH2
and METH3. Gastrointestinal adenocarcinomas (ESCA, STAD,
COAD and READ) were represented in a branch containing
METH10 through METH13.
Unsupervised consensus clustering of 10,165 tumors by

mRNA expression profiles identified 25 groups that contained
at least 40 samples (Figure 1C; Table S3). While tumor type
was a driving feature for many groups, several groups were
comprised of tumors from different organ types. Samples with
squamous morphology components (BLCA, CESC, ESCA,
HNSC, and LUSC) grouped together. Similarly, tumors with

tissue or organ similarities or proximity also grouped
together. These included neuroendocrine and glioma tumors
(GBM, LGG and PCPG), melanomas of the skin and eye
(SKCM and UVM), clear cell and papillary renal carcinomas
(KIRC and KIRP), adrenal cortical and chromophobe renal
(ACC and KICH), hepatocellular and cholangiocarcinomas
(LIHC and CHOL), a gastrointestinal group (COAD, READ,
non-squamous ESCA, READ, and STAD), a digestive system
group (PAAD, STAD, and a few ESCA), hematologic and
lymphatic cancers (LAML, DLBC, and THYM), and two mixed
lung cancer groups (LUAD and LUSC).

Figure 1. Platform-Specific Classification of 10,000 TCGA Cancer Tumor Samples across 33 Cancer Types
(A) Aneuploidy (AN). Unsupervised consensus clustering of 10,522 tumors and chromosomal arm-level amplifications or deletions.

(B) DNA hypermethylation (METH). Clustering of cancer-associated DNA methylation profiles in 10,814 tumors at 1,035 CpG sites lacking DNA methylation in

normal tissues (left) and leukocytes (right). DNA methylation b-values are represented as a color gradient from low (blue) to high (red).

(C) mRNA (MRNA). Unsupervised consensus clustering of 10,165 tumors and variably expressed genes.

(D) microRNA (MIR). Unsupervised hierarchical clustering of 743 expressed mature strands in 10,170 tumors.

(E) Protein (P). Unsupervised hierarchical clustering of 7,858 tumor samples from 32 cancer types across 216 cancer-relevant proteins and phosphoproteins.

Tumor types are color-coded as shown in the lower-right corner.

See also Tables S1–S5.

Cell 173, 291–304, April 5, 2018 293
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Chemoresistance evolution in breast cancer by single-cell sequencing

Adapted from Kim et al., Cell (2018)
Figure 3. Copy-Number Evolution in Clonal Extinction Patients
(A) t-SNE plots of single-cell copy-number profiles from the pre-treatment and mid-treatment or post-treatment samples of four clonal extinction patients with

normal cells (N) and tumor subpopulations (A, B, or C) labeled.

(legend continued on next page)

Cell 173, 879–893, May 3, 2018 883

Figure 4. Adaptive Copy-Number Evolution in Clonal Persistence Patients
(A) t-SNE plots of single-cell copy-number profiles from the pre-treatment and mid-treatment or post-treatment samples of four clonal persistence patients with tumor

subpopulations (A,B,C,D,orE) labeled.Arrows indicatepre-existingsinglecells fromthepre-treatmentsamples thatshare thepost-treatmentchemoresistantgenotypes.

(B–E) Clustered heatmaps of single-cell integer copy-number profiles and consensus profiles of clonal subpopulations P14 (B), P11 (C), P12 (D), and P15 (E).

Consensus line profiles show annotated common cancer genes, and subpopulation-specific differences are indicated with gray bars. Lower panels show

analyses of clonal dynamics calculated from optimal clustering results and maximum parsimony trees plotted in TimeScape with cancer genes and clonal

frequencies annotated. Stars indicate the chemoresistant clones that were selected and expanded in response to NAC.

See also Figure S2.

Cell 173, 879–893, May 3, 2018 885

Response Resistance (clonal expansion)
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Liquid biopsy analysis for non-invasive detection and monitoring of cancer

Siravegna et al., Nat Rev Clin Oncol (2017) 
Tie et al., Sci Transl Med (2016)  
Chen et al., Nat Commun (2020) 13



Liquid biopsy analysis for non-invasive detection and monitoring of cancer

Siravegna et al., Nat Rev Clin Oncol (2017) 
Tie et al., Sci Transl Med (2016)  
Chen et al., Nat Commun (2020)

Disease detection four years before 
conventional diagnosis

14

Detection of minimal residual disease



Radiomics

Modified from Aerts et al., Nat Commun (2014)

• Quantitative analysis of diagnostic images from CT, MRI and PET techniques

Medical imaging is one of the major factors that have
informed medical science and treatment. By assessing
the characteristics of human tissue noninvasively,

imaging is often used in clinical practice for oncologic diagnosis
and treatment guidance1–3. A key goal of imaging is ‘personalized
medicine’, where treatment is increasingly tailored on the basis of
specific characteristics of the patient and their disease4.

Much of the discussion of personalized medicine has focused
on molecular characterization using genomic and proteomic
technologies. However, as tumours are spatially and temporally
heterogeneous, these techniques are limited. They require
biopsies or invasive surgeries to extract and analyse what are
generally small portions of tumour tissue, which do not allow for
a complete characterization of the tumour. Imaging has great
potential to guide therapy because it can provide a more
comprehensive view of the entire tumour and it can be used on
an ongoing basis to monitor the development and progression of
the disease or its response to therapy. Further, imaging is
noninvasive and is already often repeated during treatment in
routine practice, on the contrary of genomics or proteomics,
which are still challenging to implement into clinical routine.

The most widely used imaging modality in oncology is X-ray
computed tomography (CT), which assesses tissue density.
Indeed, CT images of lung cancer tumours exhibit strong
contrast reflecting differences in the intensity of a tumour on
the image, intratumour texture and tumour shape (Fig. 1a).

However, in clinical practice, tumour response to therapy is only
measured using one- or two-dimensional descriptors of tumour
size (RECIST and WHO, respectively)5. Although a change in
tumour size can indicate response to therapy, it often does not
predict overall or progression free survival6,7. Although some
investigations have characterized the appearance of a tumour
on CT images, these characteristics are typically described
subjectively and qualitatively (‘moderate heterogeneity’, ‘highly
spiculated’, ‘large necrotic core’). However, recent advances in
image acquisition, standardization and image analysis allow for
objective and precise quantitative imaging descriptors that could
potentially be used as noninvasive prognostic or predictive
biomarkers.

Radiomics is an emerging field that converts imaging data into
a high dimensional mineable feature space using a large number
of automatically extracted data-characterization algorithms8,9.
We hypothesize that these imaging features capture distinct
phenotypic differences of tumours and may have prognostic
power and thus clinical significance across different diseases. Here
we assess the clinical relevance of 440 radiomic features, many of
which currently have no known clinical significance, in seven
independent cohorts consisting of 1,019 lung cancer and head-
and-neck cancer patients. Two data sets are used to assess
the stability of the features, four data sets to assess the prognostic
value of radiomic features on lung cancer patients and
head-and-neck cancer patients, and one data set for association

Tumour intensity

Tumour shape

Tumour texture

Wavelet

x

Radiomic features

a b

A A

A

B

B
B

Clinical data

Gene expression

II) Feature extractionI) CT imaging III) Analysis

Figure 1 | Extracting radiomics data from images. (a) Tumours are different. Example computed tomography (CT) images of lung cancer patients. CT
images with tumour contours left, three-dimensional visualizations right. Please note strong phenotypic differences that can be captured with routine CT
imaging, such as intratumour heterogeneity and tumour shape. (b) Strategy for extracting radiomics data from images. (I) Experienced physicians
contour the tumour areas on all CT slices. (II) Features are extracted from within the defined tumour contours on the CT images, quantifying tumour
intensity, shape, texture and wavelet texture. (III) For the analysis the radiomics features are compared with clinical data and gene-expression data.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5006

2 NATURE COMMUNICATIONS | 5:4006 | DOI: 10.1038/ncomms5006 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

Medical imaging is one of the major factors that have
informed medical science and treatment. By assessing
the characteristics of human tissue noninvasively,

imaging is often used in clinical practice for oncologic diagnosis
and treatment guidance1–3. A key goal of imaging is ‘personalized
medicine’, where treatment is increasingly tailored on the basis of
specific characteristics of the patient and their disease4.

Much of the discussion of personalized medicine has focused
on molecular characterization using genomic and proteomic
technologies. However, as tumours are spatially and temporally
heterogeneous, these techniques are limited. They require
biopsies or invasive surgeries to extract and analyse what are
generally small portions of tumour tissue, which do not allow for
a complete characterization of the tumour. Imaging has great
potential to guide therapy because it can provide a more
comprehensive view of the entire tumour and it can be used on
an ongoing basis to monitor the development and progression of
the disease or its response to therapy. Further, imaging is
noninvasive and is already often repeated during treatment in
routine practice, on the contrary of genomics or proteomics,
which are still challenging to implement into clinical routine.

The most widely used imaging modality in oncology is X-ray
computed tomography (CT), which assesses tissue density.
Indeed, CT images of lung cancer tumours exhibit strong
contrast reflecting differences in the intensity of a tumour on
the image, intratumour texture and tumour shape (Fig. 1a).

However, in clinical practice, tumour response to therapy is only
measured using one- or two-dimensional descriptors of tumour
size (RECIST and WHO, respectively)5. Although a change in
tumour size can indicate response to therapy, it often does not
predict overall or progression free survival6,7. Although some
investigations have characterized the appearance of a tumour
on CT images, these characteristics are typically described
subjectively and qualitatively (‘moderate heterogeneity’, ‘highly
spiculated’, ‘large necrotic core’). However, recent advances in
image acquisition, standardization and image analysis allow for
objective and precise quantitative imaging descriptors that could
potentially be used as noninvasive prognostic or predictive
biomarkers.

Radiomics is an emerging field that converts imaging data into
a high dimensional mineable feature space using a large number
of automatically extracted data-characterization algorithms8,9.
We hypothesize that these imaging features capture distinct
phenotypic differences of tumours and may have prognostic
power and thus clinical significance across different diseases. Here
we assess the clinical relevance of 440 radiomic features, many of
which currently have no known clinical significance, in seven
independent cohorts consisting of 1,019 lung cancer and head-
and-neck cancer patients. Two data sets are used to assess
the stability of the features, four data sets to assess the prognostic
value of radiomic features on lung cancer patients and
head-and-neck cancer patients, and one data set for association
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Figure 1 | Extracting radiomics data from images. (a) Tumours are different. Example computed tomography (CT) images of lung cancer patients. CT
images with tumour contours left, three-dimensional visualizations right. Please note strong phenotypic differences that can be captured with routine CT
imaging, such as intratumour heterogeneity and tumour shape. (b) Strategy for extracting radiomics data from images. (I) Experienced physicians
contour the tumour areas on all CT slices. (II) Features are extracted from within the defined tumour contours on the CT images, quantifying tumour
intensity, shape, texture and wavelet texture. (III) For the analysis the radiomics features are compared with clinical data and gene-expression data.
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RadAR: Radiomics Analysis with R

Benelli et al., Cancer Res (2020) 
https://github.com/cgplab/RadAR

• RadAR is a package for R to perform secondary 
analysis of radiomic features 

• Manually curated dictionary of radiomic features to 
facilitate interpretation 

• Detailed step-by-step tutorial 

• freely available under MIT license at https://github.com/
cgplab/RadAR
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RadAR: Radiomics Analysis with R

Benelli et al., Cancer Res (2020) 
https://github.com/cgplab/RadAR

• Radar was tested on the radiomic profiles 
of more than 850 cancer patients from 
publicly available datasets from The 
Cancer Imaging Archive (TCIA) 

• RadAR was able to recapitulate expected 
results based on original findings 

• Useful tool to train/assist medical 
physicists in radiomics analyses
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