Inertial Fusion Energy using Shock Ignition

A. Schiavi, A. Marocchino, S. Atzeni

Congresso SIF, Pisa, 2014
Summary

• Shock ignition concept

• Progress in target design
 - scaling
 - defining and measuring “safety” margins
 - increasing margins (i.e. robustness)

• Conclusions & directions for future work
the standard ICF approach: *central ignition*
imploding fuel kinetic energy converted into internal energy
and concentrated in the centre of the fuel

(see, e.g., S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press, 2004.)
the standard ICF approach: *central ignition*
imploding fuel kinetic energy converted into internal energy
and concentrated in the centre of the fuel

1) irradiation

(see, e.g., S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press, 2004.)
the standard ICF approach: *central ignition*
imploding fuel kinetic energy converted into internal energy
and concentrated in the centre of the fuel

1) irradiation

(see, e.g., S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press, 2004.)
the standard ICF approach: central ignition
imploding fuel kinetic energy converted into internal energy
and concentrated in the centre of the fuel

1) irradiation
driver beams
shell-target

(see, e.g., S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press, 2004.)
the standard ICF approach: *central ignition*
imploding fuel kinetic energy converted into internal energy
and concentrated in the centre of the fuel

1) irradiation

(see, e.g., S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press, 2004.)
the standard ICF approach: *central ignition*
imploding fuel kinetic energy converted into internal energy
and concentrated in the centre of the fuel

(see, e.g., S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press, 2004.)
the standard ICF approach: *central ignition*
imploding fuel kinetic energy converted into internal energy
and concentrated in the centre of the fuel

1) irradiation
 driver beams

2) implosion driven by ablation

3) central ignition

the standard ICF approach: *central ignition*
imploding fuel kinetic energy converted into internal energy
and concentrated in the centre of the fuel

(see, e.g., S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press, 2004.)
the standard ICF approach: *central ignition*
imploding fuel kinetic energy converted into internal energy and concentrated in the centre of the fuel

1) irradiation
 driver beams
 shell-target
 ablated plasma

2) implosion driven by ablation

3) central ignition

4) burn and explosion
 exploding fuel

implosion velocity for ignition:
\[u_{\text{imp}} > 300 - 400 \text{ km/s} \]
depending on the fuel mass and on the compressed fuel in-flight isentrope:
\[u_{\text{imp}} \propto m^{-0.15} \alpha_{\text{if}}^{2/9} \]
NIF point design:
\[u_{\text{imp}} = 370 \text{ km/s} \]

(see, e.g., S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press, 2004.)
Standard central ignition: capsule energy decreases strongly with increasing implosion velocity

\[E_{\text{cap}} \propto u_{\text{imp}}^{-6} \alpha_{\text{if}}^{1.8} P_{\text{abl}}^{-0.8} \] (*)

but issues as the velocity increases

- higher velocity \(\Rightarrow \) higher driving pressure \(\Rightarrow \) higher laser intensity
 \(\Rightarrow \) laser-plasma instabilities (LPI)

- higher velocity \(\Rightarrow \) hydrodynamic instabilities more dangerous

[Also, central ignition \(\Rightarrow \) isobaric compressed assembly; lower gain than from non-isobaric configurations]

(*) Herrmann, Tabak, Lindl, Nucl. Fusion 41, 99 (2001)
Pressure at stagnation is a strong function of the implosion velocity $p \sim u_{\text{imp}}^3$.

Graph showing the relationship between stagnation pressure p_{stagn} (in Tbar) and implosion velocity u_{imp} (in km/s). The graph includes data points for different masses m_{imp} and values of α_{if}. The correlation line is u_{imp}^3.

- $m_{\text{imp}} = 0.28$ mg, $\alpha_{\text{if}} = 1.2$
- $m_{\text{imp}} = 2.07$ mg, $\alpha_{\text{if}} = 1.2$
- $\alpha_{\text{if}} = 2$
- $\alpha_{\text{if}} = 2.4$
... but stagnation pressure can be amplified by a **properly tuned shock**

a) pulse generates imploding shock

b) imploding shock amplified as it converges

c) imploding shock progresses, while shock bounces from center

d) the two shocks collide, and launch new shocks; the imploding shock heats the hot spot
... but stagnation pressure can be amplified by a **properly tuned shock**

a) pulse generates imploding shock

b) imploding shock amplified as it converges

c) imploding shock progresses, while shock bounces from center

d) the two shocks collide, and launch new shocks; the imploding shock heats the hot spot
... but stagnation pressure can be amplified by a properly tuned shock

a) pulse generates imploding shock

b) imploding shock amplified as it converges

c) imploding shock progresses, while shock bounces from center

d) the two shocks collide, and launch new shocks; the imploding shock heats the hot spot
... but stagnation pressure can be amplified by a properly tuned shock

a) pulse generates imploding shock
b) imploding shock amplified as it converges
c) imploding shock progresses, while shock bounces from center
d) the two shocks collide, and launch new shocks; the imploding shock heats the hot spot
...but stagnation pressure can be amplified by a **properly tuned shock**

a) pulse generates imploding shock

b) imploding shock amplified as it converges

c) imploding shock progresses, while shock bounces from center

d) the two shocks collide, and launch new shocks; the imploding shock heats the hot spot
Shock ignition

vs

conventional direct-drive central ignition
Shock ignition
vs
conventional direct-drive central ignition
Shock ignition

vs

conventional direct-drive central ignition

![Diagram showing layers labeled as ablator, cryogenic DT, and DT vapor, with a graph showing laser power over time with a standard pulse indicated.]
Shock ignition

vs

conventional direct-drive central ignition
Shock ignition vs conventional direct-drive central ignition

Diagram showing the layers of ablator, cryogenic DT, and DT vapor, along with a graph showing Laser Power over Time, with markers for SI compression pulse, Standard pulse, and A-s picket.
Shock ignition vs conventional direct-drive central ignition

Laser Power

Time

Ignition spike
SI compression pulse
Standard pulse
A-s picket
Shock ignition of the HiPER baseline target

- Implosion velocity \(u_i = 280 - 290 \text{ km/s} \)
- \(<\alpha> = 1.2 \)
- Hydro absorption efficiency = 7% (compression pulse)
- \(<\rho R> = 1.5 \text{ g/cm}^2 \) (compression pulse only)
Shock ignition of the HiPER baseline target

- implosion velocity \(u_i = 280 - 290 \text{ km/s} \)
- \(<\alpha> = 1.2 \)
- hydro · absorption efficiency = 7% (compression pulse)
- \(<\rho R> = 1.5 \text{ g/cm}^2 \) (compression pulse only)
Shock ignition of the HiPER baseline target

- implosion velocity $u_i = 280 - 290$ km/s
- $<\alpha> = 1.2$
- hydro · absorption efficiency = 7% (compression pulse)
- $<\rho R> = 1.5$ g/cm2 (compression pulse only)
Shock ignition of the HiPER baseline target

- implosion velocity $u_i = 280 - 290 \text{ km/s}$
- $<\alpha> = 1.2$
- hydro · absorption efficiency = 7% (compression pulse)
- $<\rho R> = 1.5 \text{ g/cm}^2$ (compression pulse only)
Shock ignition of the HiPER baseline target

- implosion velocity \(u_i = 280 - 290 \) km/s
- \(< \alpha > = 1.2\)
- hydro · absorption efficiency = 7% (compression pulse)
- \(<\rho R> = 1.5 \text{ g/cm}^2\) (compression pulse only)
Shock ignition of the HiPER baseline target

- Implosion velocity $u_i = 280 - 290 \text{ km/s}$
- $\langle \alpha \rangle = 1.2$
- Hydro absorption efficiency = 7% (compression pulse)
- $\langle \rho R \rangle = 1.5 \text{ g/cm}^2$ (compression pulse only)
Shock ignition of the HiPER baseline target

- implosion velocity \(u_i = 280 - 290 \text{ km/s} \)
- \(\langle \alpha \rangle = 1.2 \)
- hydro absorption efficiency = 7\% (compression pulse)
- \(\langle \rho R \rangle = 1.5 \text{ g/cm}^2 \) (compression pulse only)
Two parameters to be adjusted to achieve ignition: implosion velocity and laser spike power

--- design flexibility

for the HiPER target gain contours in the (implosion velocity – spike power plane)
scaling to higher energy \Rightarrow flexibility and reduced risks

a) scaling at constant implosion velocity

- maximum laser intensity decreases with target scale
- peak intensity decreases with target scale; large enough targets ignite without spike driven shock

b) scaling at fixed ratio \(u_{\text{imp}} / u_{\text{ig}^*} \)

- velocity decreases with size; higher spike power; lower compression power
- **very high gain:** \(G > 200 \) at 2 MJ laser energy (caution: 1D)
Margins, eg ITF(1), for SI targets can be measured with 1D simulations(2)

- Run simulations with hot spot reactivity $<\sigma v>_{DT}$ multiplied by a factor $\xi < 1$
- Find values of ξ for $G = 1$, and for high G (eg, 80% of nominal 1D “clean” gain)
- $\text{ITF} = \text{ITF}(\xi)$
- Similarly to Anderson(3), we use $\text{ITF}^* = (\xi G_{\text{crit}})^{-3/2}$

(3) K. S. Anderson et al., LLE Review 133, 1; Phys. Plasmas 20, 056312 (2013)
Points on the previous gain curves have small ITF* (in all cases ITF* < 1.9)

- Scaled targets have nearly the same ITF*

\[\text{Gain} \]

\[\text{Total laser energy, } E_L \text{ (MJ)} \]

\[\xi_G = 0.71 \text{ (a) } \]
\[\xi_G = 0.77 \text{ (b) } \]

\[\xi_{G,\text{crit}} = 0.92 \]
\[\xi_{G,\text{crit}} = 0.97 \]

\[\lambda = 0.351 \mu m \text{, scaling b) } \]
\[\lambda = 0.351 \mu m \text{, scaling a), } S_m = 1.25 \]
\[\lambda = 0.351 \mu m \text{, scaling a), no spike} \]

\[\text{Scaled targets have nearly the same ITF*} \]

\[\Rightarrow \text{We have to define a new reference point (scale } s = 1) \]
Robustness, $\text{ITF}^*= (\xi_G^{\text{crit}})^{-3/2}$, can be increased by either increasing the implosion velocity u_{imp} or spike power. We choose to increase u_{imp}.

![Diagram showing the relationship between spike power (P_s) and implosion velocity (u_{imp}). The graph demonstrates the critical spike power (ξ_G^{crit}) at different implosion velocities. The previous reference point has a spike power of 0.70 TW at 280 km/s, while the new reference point has a spike power of 0.32 TW at 360 km/s. The region marked as "no gain" indicates a threshold for achieving gain in the experiment.]
Targets with $\text{ITF}^* = 2.8 - 3$, scaled at constant ratio $u_{\text{imp}}/u_{\text{ig}}$:

energy gain > 100

at $E_{\text{laser}} < 1 \text{ MJ}$ and implosion velocity below 300 km/s

\[
\frac{\xi_{G}}{\xi_{G}^\text{crit}} = 0.5 \quad (\text{ITF}^* = 2.8)
\]

- $s = 2.76$; $u = 243$; $P_{\text{peak}} = 586$
- $s = 2.1$; $u = 265$; $P_{\text{peak}} = 488$
- $s = 1.53$; $u = 293$; $P_{\text{peak}} = 398$
- $s = 1$; $u = 336 \text{ km/s}$; $P_{\text{peak}} = 305 \text{ TW}$
Increasing safety margin (ITF*) at given implosion velocity: bigger target, larger drive energy (but still feasible on NIF or LMJ)
higher ITF* ==> increased 2D robustness (e.g. increased tolerance to displacement)

\[\xi_G = 0.7 \]

ITF* = 1.8

scale \(s = 1.53 \)

\(E_{\text{laser-total}} = 750 \text{ kJ} \)

\(U_{\text{implo}} = 252 \text{ km/s} \)

Abs. spike \(P = 160 \text{ TW} \)

24 \(\mu \text{m} \) displacement

Yield = 0.4 MJ

\[\xi_G = 0.5 \]

ITF* = 2.9

scale \(s = 1.53 \)

\(E_{\text{laser-total}} = 826 \text{ kJ} \)

\(U_{\text{implo}} = 293 \text{ km/s} \)

Abs. spike \(P = 160 \text{ TW} \)

32 \(\mu \text{m} \) displacement

Yield = 87 MJ
Conclusions

• SI promising alternative to conventional central ignition
• Targets can be scaled; tests feasible on present facilities
• Issues: laser-plasma interaction at high intensity, cross-beam-energy transfer, low adiabat direct-drive compression, polar direct drive (for use of NIF/LMJ)
• Encouraging experiments on shock generation, LPI, small scale integrated implosion/shock
• Realistic target design in progress: robustness, margins, scalings
• Explore scaled targets robustness to target fabrication errors and laser facility parameters’ fluctuations
• Significant international cooperation