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To apply fracture mechanics on mathematical planes
representing the fault surfaces;

To numerically simulate the spontaneous rupture
nucleation, propagation, healing and arrest in dynamic
earthquake models;

To model seismic wave propagation in the surrounding
medium;

To predict ground shaking.



Stochastic (or statistic) models: several aspects of the 
phenomenon under study are out of range, and they are 
replaced by unknowable, and hence random, processes, 
whose behavior cannot be predicted exactly but can be 
described in probability terms:
- Gutenberg–Richter law
- Omori law

Deterministic (or physical) models: aim to understanding 
(and hence to predict) all the details of the considered 
phenomenon which does not include random 
components.



Quantitative ( instrumental ) seismology is a relatively 
juvenile discipline  

Contrary to other fields of science, we can not plan 
natural ( i.e., at real–world scale ) experiments ( like 
biology, chemistry, etc. )…  

… and we do know the PHYSICS, i.e., what are the exact 
equations which completely describe the complex fault 
systems ( on the contrary, climatologists, e.g., know the 
equations to be solved through numerical experiments )… 

… and we do not know the initial conditions. 



Tullis et al. (2007, MIT Press)



10s - 100s mm
(containing the 
principal
slipping zone, 
which is much 
thinner, typically
< 5 mm)

1 - 10 m
(foliated gouge or
gouge)

30 - 100 m
(Damage ≈ highly 
cracked rock)

Chester et al. (1993, J. Geoph. Res.)
Sibson (2003, BSSA)
Chester and Chester (2004, SSA, SCEC meetings)





From Ohnaka (2003, JGR)

Nucleation

Propagation

Imposed hypocenter

Sketch of an expanding bilateral rupture

Rupture speed, 
vr



Bizzarri (2010, INTECH)



- In full of generality we can express the constitutive ( or 
governing ) as:

τ = µ(u, v, Ψ, T, H, λc, h, g, Ce) σn
eff(σn, pf)

where:
u is the slip ( i. e. displ. disc. ) modulus,
v is the slip velocity modulus ( its time der. ),
Ψ = (Ψ1, …, ΨΝ) is the state variable vector,
T is the temperature ( related to ductility, plastic flow, 

melting and vaporization ),
H is the humidity,
λc is the characteristic length of surface ( accounting for

roughness and topography of asperity contacts ), 
h is the hardness,
g is the gouge ( accounting for surface consumption and 

gouge formation ),
Ce is the chemical environment

1st – order 
dependencies



We follow the logical principle of simplicity ( i.e., the 
Occam’ s razor ):

The simplest way to describe the fault complexity is to 
start from the beginning ( i.e., from the canonical
formulations of the governing equations ) and then add to
the model one by one all additional phenomena until the 
empirical ( instrumentally recorded ) evidence can be
explained.  



Tullis et al. (2007, MIT Press)



TowardsTowards realreal –– world conditionsworld conditions
utot ~ several m

v ~ several m/s

σn
eff = 100 – 200 MPa

From Ohnaka (2003)

Classical laboratory utot up to 1.4 mm

stick – slip experiments v up to 25 µm/s

( Dieterich, 1981 ) σn
eff = 10 MPa



High velocity rotary friction apparatus
utot = infinite

v = 0.1 µm/s – 10 m/s

σn
eff < 20 MPa

Shimamoto and Tsutumi (2004, 
Str. Geol.)



High velocity rotary friction apparatus @ INGV
utot = infinite

v = 1 µm/s – 9 m/s

σn
eff < 70 MPa

Niemeijer et al. (2009, AGU Fall
Meeting)



ijiji fU      , +=σρ &&We solve fully dynamic, spontaneous problem ( the 
fundamental elasto–dynamic equation ), without body forces f

We consider a truly 3–D problem, for 
which the solutions are in the form      
u = (u1(x1,x3,t), 0,u3(x1,x3,t)), and so on

The fault plane Σ can be governed by
different constitutive laws

The solution of the elasto–dynamic 
problem is obtained numerically,       
by using 2nd–order accurate, finite–
difference code

Bizzarri and Cocco (2005, Ann. Geophys.); Bizzarri and  
Spudich (2008, JGR)



I.  I.  ThermalThermal pressurizationpressurization
of  of  porepore fluidsfluids



MathematicalMathematical backgroundbackground
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Coupling of temperature T with pore fluid pressure pfluid:

where χ is the thermal diffusivity, c the heat capacity for
unit volume, αfluid the coefficient of thermal expansion, βfluid
the compressibility coefficient, Φ the porosity and          
ω = k/ηfluidβfluidΦ the hydraulic diffusivity (being k the 
permeability of the medium and ηfluid the dynamic fluid
viscosity). Analytical solutions at ζ = 0 are:   

Bizzarri and Cocco (2006a, 2006b, JGR)



ResultsResults withwith SW SW lawlaw
Dry fault ( σn

eff = const ) Wet fault ( σn
eff varies ) 
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ResultsResults withwith DR DR lawlaw
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The The breakdownbreakdown zonezone
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II.  Flash  II.  Flash  heatingheating
of  of  micromicro –– asperity  contactsasperity  contacts



RUINA RUINA –– DIETERICH WITH FLASH HEATINGDIETERICH WITH FLASH HEATING
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a weakening velocity above which
flash heating is activated, Tweak is a 
weakening temperature, τac is the        
( average ) shear strength of asperity
contacts and Dac their ( average ) size.  
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MathematicalMathematical backgroundbackground

Bizzarri (2009, GRL)



Crack Crack -- likelike ruptures or slip ruptures or slip pulsespulses? ? 



The The prominentprominent importanceimportance of 2of 2ww

Localized shear (2w ≤ 10 mm): 
self–healing pulses



III.  III.  MeltingMelting of  of  rocksrocks
and  and  gougegouge



MathematicalMathematical backgroundbackground

Bizzarri (2010, JGR)



c

MathematicalMathematical backgroundbackground

Bizzarri (2010, JGR)



MathematicalMathematical backgroundbackground
Coulomb friction is no longer valid
and we then consider a Newtonian
fluid (e.g., Fialko, 2004):  

Bizzarri (2010, JGR)



MeltingMelting enhancesenhances supershear supershear EQsEQs



TransitionTransition toto a a viscousviscous rheology rheology 



IV.  IV.  MechanicalMechanical lubricationlubrication



MathematicalMathematical backgroundbackground

Effective normal stress Sommerfeld
number

In the special case of (temporally) constant gap height (<2w> = <2w0>) 

Brodsky and 
Kanamori (2001)

Bizzarri (2012, JGR, 117, B05304)



ViscousViscous rheology after rheology after SoSo = 1 = 1 



Many different physical and chemical mechanisms may
occur during faulting

… produce a nearly complete stress drop ( heat paradox )

They strongly affect the overall dynamics of the fault, the 
radiated energy and the resulting ground motions

Thermal pressurization of pore fluids, flash heating, 
melting and mechanical lubrication tend to enhance
supershear ruptures…

In some cases the weakening behavior becomes
exponential, as suggested by laboratory observations

… increase the ( equivalent ) slip–weakening distance 
and thus the “fracture” energy 



Different competing mechanisms can significantly affect
the recurrence time of an eartquake sequence…

… and they can make the concept itself of the seismic 
cycle meaningless



1) Theoretical results will predict a nearly complete stress 
drop and therefore we should find a signature of these 
high stress drop values in the recorded seismograms. 
Seismological estimates of stress drop do not support 
such an evidence; 

the estimation of stress drop from seismic waves is
biased ( for instance by the difficulties in analyzing high 
frequency radiation ) 

or 

the effects of pressurization, melting and so on on the 
dynamic traction evolution are less pronounced



2) We need to test theoretical predictions against laboratory 
evidence; numerical results definitively represent an input 
for the development of next–generation machines 

Current high velocity lab. experiments only deal with 
friction ( of pre–cut surfaces ) and not with fracture ( of 
intact rocks )   

We need to reproduce real–world conditions in terms of 
BOTH high sliding velocity and confining stress



3) Do real data (recorded during natural earthquakes) 
contain signatures of the specific friction law governing 
the sesimogenic fault? 

We know from numerical models that, for ruptures having 
exactly the same energetics ( namely, the same fracture 
energy density ), the resulting ground motions are 
virtually indistinguishable    



Theoretical models

of the fault constitutive
behavior based on rock 
physics

Inferences from data

recorded during a real event
and analysis of some specific
signatures of the rupture
dynamics (e.g., kinematic 
inversions, spectral analysis
of ground motions, etc.)

Laboratory experiments

conducted in “realistic” 
conditions on rock (or gouge) 
samples

Geological observations

conducted in the field 
(exhumed faults) and by
analyzing samples in the 
laboratory

Numerical models

of the fault response, given
some hypotheses on the fault 
geometry, governing eqts., 
initial conditions, …



Thank you!



This slide  is empty intentionally.
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WhyWhy ““ trulytruly ““ 3 3 –– D ? D ? 

2 – D Mode II ( pure in – plane ): u = (u1(x1,t), 0, 0) 

2 – D Mode III ( pure anti – plane ): u = (0, u2(x1,t), 0) 

3 – D Mixed mode: u = (u1(x1,t), u2(x1,t), 0)

3 – D having only one non null component: u = (u1(x1,x2,t), 0, 0) 

TTrruullyy 3 – D: u = (u1(x1,x2,t), u2(x1,x2,t), 0) 
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( 1972 ), Andrews ( 1976a, 1976b ),
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DIETERICH DIETERICH –– RUINA WITH VARYING NORMAL STR.RUINA WITH VARYING NORMAL STR.
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