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Summary. — In this work, we present an analytical solver for neutron diffusion in
a rectangular two-dimensional geometry by a two-step integral transform procedure.
To this end, we consider a regionwise homogeneous problem for two energy groups,
i.e. fast and thermal neutrons, respectively. Each region has its specific physical
properties, specified by cross-sections and diffusion constants. The problem is set
up by two coupled bi-dimensional diffusion equations in agreement with general
perturbation theory. These are solved by integral transforms Laplace transform
and generalized integral transform technique yielding analytical expressions for the
scalar neutron fluxes. The solutions for neutron fluxes are presented for fast and
thermal neutrons in the four regions.

PACS 28.20.Gd – Neutron transport: diffusion and moderation.
PACS 82.56.Lz – Diffusion.

1. – Introduction

The renaissance of nuclear power brought up innovative reactor conceptions, which in
its design state need to be tested by means of simulations. In the present work we focus
on the specific task of neutron transport calculations. Although those shall start from a
genuine transport equation, many approaches reduce the problem to diffusion equations,
since the Boltzmann equation for neutron transport is still considered a challenge (see
for instance [1, 2] and references therein). A detailed motivation for the use of the
diffusion equation is given in ref. [2]. Our principal concern here is an effective analytical
method for the neutron diffusion equation by an integral transform technique, that may
be directly cast into a symbolic manipulation code in order to determine the scalar
neutron fluxes for any number of energy groups and any rectangular segmentation of
the volume into regions with different physical properties (cross-sections and diffusion
coefficients). The project, that is behind the present discussion, has as one of its aims
to prepare a symbolic solution library for coupled diffusion equations, which needs as
input only the physical and geometrical parameters and returns an analytical expression
as solution with negligible error. The strong convergence in the whole domain (space)
is controlled and proven by the Cardinal Theorem of Interpolation Theory [3]. To this
end we present a procedure that allows to construct an analytical solution of the multi-
group neutron diffusion equation in segmented Cartesian geometry using an integral
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transform procedure [4]. Once the general structure of the solution is determined one
may calculate directly the scalar neutron flux as an analytical expression, which we
apply to a simple example and show that the symbolic procedure works. Due to the fact
that the geometrical extension of the reactor core is typically very much larger in one
dimension if compared to the other two length scales we simplify the calculation and cast
the diffusion problem into a two-dimensional description.

2. – The multi-group diffusion equation with constraints

The general multi-group diffusion problem in two dimensions is given by LΦ = S,
where L represents the local non-homogeneous diffusion operator including particle mul-
tiplication from fission, Φ = (φ1(x, y), . . . , φG(x, y))T signifies the local multi-group neu-
tron flux (in vector representation) and S = (S1(x, y), . . . , SG(x, y))T a local multi-group
neutron source, for energy groups g ∈ {1, . . . , G}. Note that the scalar flux signifies here
the flux integrated over the third coordinate. This does not alter the original equation to-
gether with its boundary conditions, since they are scale invariant. The diffusion operator
may be decomposed further into group-preserving and group-mixing terms L = LP +LM ,
respectively. The diagonal elements contain a local diffusion operator, absorption and
fission of the same energy group.

(1) LP = diag
(
∇ · (D1∇) + Σc1 −

χ1

keff
νΣf1, . . . ,∇ · (DG∇) + ΣcG − χG

keff
νΣfG

)
.

The non-diagonal elements of LM contain fission and scattering terms.

(2) (LM )gg′ = − χg

keff
νΣfg′ + Σgg′ .

Here Dg = Dg(x, y) represents the local diffusion coefficient for energy group g, Σcg(x, y),
Σfg′(x, y) and Σgg′(x, y) the macroscopic position-dependent capture, fission and scat-
tering cross-section, respectively. The weight factor ν is due to neutron multiplication
from the microscopic fission process, χg is the integrated neutron spectrum from fission
of group g and keff is the effective multiplication factor, which for a stationary case shall
be unity by definition.

The solutions shall obey the piecewise open surface boundary conditions defined by
the neutron current density and scalar flux at the contours of the sheet. If Γ denotes the
(2D) volume and ∂Γ the boundary, then the conditions read with ∂Γxy the boundary
pieces according to fig. 1.

(3)
∂φg

∂x

∣∣∣∣
∂Γ0y

=
∂φg

∂y

∣∣∣∣
∂Γx0

= 0 and φg|∂Γx̄y
= φg|∂Γxȳ

= 0.

Since the problem has mirror symmetry with respect to the coordinate axes with ei-
ther x = 0 or y = 0 it is sufficient to determine only the solution in the section with
x, y ≥ 0 and may be completed using the afore mentioned reflection operations. A fur-
ther constraint breaks scale invariance of the non-homogeneous diffusion equation upon
introduction of the energy release ERg per fission induced by group g of the sheet, which
relates the power to the total neutron flux P =

∫
Γ

∑
g ERgΣfgφg dΓ.
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Fig. 1. – The two-dimensional sheet with boundaries, internal interfaces and locally homogeneous
physical coefficients.

The diffusion equation system as it stands is unlikely to be solved exactly in closed and
finite analytical form. In order to introduce a simplification which nevertheless permits
to control convergence in a strict mathematical sense, one may make use of the physical
resolution scale set by the inverse of the largest macroscopic cross-section value of the
problem in consideration and segment the sheet into several regions r ∈ {1, . . . , R}, with
linear dimensions smaller than the mean free path.

We suppose that in a stationary regime the only neutron source is that from fission
and consequently ignore the source term (S(x, y) → 0). Besides the dependence on
the specific energy group, the physical coefficients are now “locally” homogeneous, i.e.
constant in a specific region r (Dg(x, y) → Dr

g,Σcg(x, y) → Σr
cg, Σfg′(x, y) → Σr

fg′ and
Σgg′(x, y) → Σr

gg′). The only quantity that preserves its original dependence on the
coordinates is the scalar neutron flux, which is determined in its analytical form for each
region (Φ(x, y) → Φr(x, y)). Taking into account the modifications from above and
upon multiplication of the operator L from the left by the matrix (Dr)−1 that contains
the inverse multi-group diffusion constants of a respective region, allows to rewrite the
equation system in a more compact form for each homogeneous region, i.e. a multi-
component Poisson equation. Here W

r signifies the cross-section terms divided by the
respective diffusion constant of region r.

(4) (Dr)−1 (LΦr) = (Δ − W
r)Φr = (Δ − W

r
P + W

r
M )Φr = 0.

In addition to the boundary conditions, there appear the piecewise open interface con-
ditions, that combine the solutions of adjacent regions (r and r′, respectively) to one
unique solution of the whole problem.

(5) D
r∇Φr|∂Γxy

= D
r′∇Φr′

∣∣∣
∂Γxy

and Φr|∂Γxy
= Φr′

∣∣∣
∂Γxy

.

Except for the interface conditions one may consider the total problem divided into
smaller similar rescaled problems, each of them having the same solution structure but
with different coefficients. Equation (4) together with the boundary and interface con-
ditions (5) define the problem to be solved analytically.
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3. – An analytical solution

The constant approximation for the physical parameters of each region together with
a combination of a limited Laplace transform and a method denoted as Generalised
Integral Transform Technique (GITT) [5, 6], which cast the differential operator into
eigenvalues and polynomials, allow to apply standard methods of linear algebra and
determine the analytical structure of the solution. For convenience we expand the scalar
flux φr

g =
∑∞

i=0 ξr
gi(x)ηr

gi(y) where without restrictions we apply the limited Laplace
transform along the y-axis and use Sturm-Liouville theory for the x degree of freedom
to decouple the diffusion equation into a simpler equation system and determine the ξgi

and ηgi. Henceforth ηi denotes the vector containing the elements ηgi.
If one had only one energy group, and the problem was one dimensional, then eq. (4)

assumes the form of a Sturm-Liouville problem. Hence one may think of the terms
ξr
gi(x) representing a linear independent functional base which because of similarity of

the structure of the equations may be determined from the auxiliary problem, i.e. Sturm-
Liouville. The principal idea of GITT is then to substitute differential operators by
eigenvalues of that auxiliary problem with known analytical solutions. This auxiliary
problem shall obey the same boundary conditions as the original problem in order to
minimise the dimension (truncation) of the functional base (the eigenfunctions it supplies
for each eigenvalue). More specifically the solutions of the Sturm-Liouville with non-
zero eigenvalues λi = (2i−1)π

2(ar′−ar) �= 0 obey the same boundary conditions as the total
problem (∂x)2ξr

i + λ2
i ξ

r
i = 0 with ∂xξr

i |ar
= 0 and ξr

i |ar′ = 0. In order to adjust the
solutions at the interface and take into account deviations of the interface conditions from
the boundary conditions of the total problem, a non-orthogonal but linear independent
solution of the Sturm-Liouville problem with zero eigenvalue (λ0 = 0) is added (ξ(r)

0 =
αr(ar′ − x) + βr). Thus the structure of the solution is the same as the one for a
totally homogenised problem except for an additional linear function with coefficients to
be determined from the boundary or interface conditions. Note that by this procedure
interfaces and boundaries are determined with the same procedure. The orthogonality
property of the base of the subspace (with non-zero eigenvalue) opens a pathway to
decouple the equation into a set of independent equations. Further, the orthogonal
base is the same for all energy groups, so that the coefficients that differentiate the
solutions for each energy group are absorbed in the η functions. In other words, the
η
(r)
i functions contain all the physics of the problem whereas ξ

(r)
i contains geometrical

information.
The differential operator with respect to y may be eliminated by the use of the

limited Laplace transform Lr[η(y)] = η̃r(s), defined within the limits of each region.
The derivative term reads then Lr[(∂y)2η(y)] = s2η̃r + Υr, where Υr are the boundary
terms from partial integration and play an analogue role to the linear functions of the
Sturm-Liouville problem, i.e. they take care of the matching of the solutions at the
boundaries and interfaces. Upon insertion of the expansion and application of Laplace
one gets the following equation:

(6)
∞∑

i=0

(((
s2 − (λr

i )
2
)

I + W
r
)

η̃r
i + Υr

i

)
ξr
i = 0.

One may use now the projection operator
∫ ar′

ar
dx[ξr

j ] to decompose eq. (4) into a set of
linear independent equations, which depend only on the y-dual variable s. For conve-
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nience we introduce the following shorthand notation δ̄ij = (1 − δij) and

(7)
∫ ar′

ar

ξr
j ξr

i dx = δ̄i0δ̄j0δijI(r)
δ + δ̄j0δi0I(r)

i0 + δi0δj0I(r)
00 ,

where all the integrals are known in symbolic form. Note that except for Iδ = ar′−ar

2 =
Δar

2 the remaining integrals depend on the unknown coefficients of the λ0 = 0 terms

I(r)
i0 = αr

λ
(r)2
i

+ (−1)i+1 βr

λ
(r)
i

and I(r)
00 = α2

r

3 Δa3
r + αrβrΔa2

r + β2
rΔar. The decoupled

equation system reads then with M
(r)
i = (−λ

(r)
i + s2)I + W

(r)

I(r)
i0

(
M

(r)
0 η̃

(r)
0 + Υ(r)

0

)
+ I(r)

δ

(
M

(r)
i η̃

(r)
i + Υ(r)

i

)
= 0,(8)

I(r)
00

(
M

(r)
0 η̃

(r)
0 + Υ(r)

0

)
+

∞∑
i=1

I(r)
i0

(
M

(r)
i η̃

(r)
i + Υ(r)

i

)
= 0.(9)

Upon reshuffling terms in such a way that expressions with M
(r)
0 η̃

(r)
0 , Υ(r)

0 and Υ(r)
i

constitute an inhomogeneity, eq. (8) may be solved by Cramer’s rule which yields

(10) η̃
(r)
i =

∣∣∣M(r)
i

∣∣∣−1 (
F(r)

i η̃
(r)
0 + P(r)

i

)
,

where the matrix F(r)
i contains the factors that go with η̃

(r)
0 and P(r)

i the respective

expressions with Υ(r)
0 . One may verify the following identities M

(r)
i

|M(r)
i |

F(r)
i = −I(r)

i0

I(r)
δ

M
(r)
0

and M
(r)
i

|M(r)
i |

P(r)
i = −I(r)

i0

I(r)
δ

Υ(r)
0 − Υ(r)

i , so that eq. (9) reduces to M
(r)
0 η̃

(r)
0 + Υ(r)

0 = 0,

which can be solved symbolically. In order to solve the equations for all η
(r)
gi , one may

make use of the inversion procedure by Heaviside, where one needs the zeroes of the
respective determinants in the denominator. It is noteworthy that the eigenvalue of
the Sturm-Liouville problem shifts the pole of the Laplace transformed solution that
determines the solution of the second dimension η

(r)
gi for i ∈ {0, 1, . . . , n}. This is probably

a manifestation of linking the geometric information of the problem taken care of by ξ
(r)
i

to the physics which was contemplated in η
(r)
gi .
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The explicit solution for an example considering two energy groups is

η
(r)
10 =

∑4
j=1

Υ
(r)
10

“

s2+W
(r)
22

”

−W
(r)
12 Υ

(r)
20

4s3+2(T r[W(r)])s
esy

∣∣∣∣
s=sr

j

,(11)

η
(r)
20 =

∑4
j=1

“

s2+W
(r)
11

”

Υ
(r)
20 −W

(r)
21 Υ

(r)
10

4s3+2(T r[W(r)])s
esy

∣∣∣∣
s=sr

j

,

η
(r)
1i =

∑4
j=1

“

−s2+λ
(r)
i

2−W
(r)
22

”

 

2
I(r)

i0

I(r)
δ

Υ
(r)
10 +Υ

(r)
1i

!

+W
(r)
12

 

2
I(r)

i0

I(r)
δ

Υ
(r)
20 +Υ

(r)
2i

!

4s3+2
“

−2λ
(r)
i

2
+T r[W(r)]

”

s
esy

∣∣∣∣∣∣∣
s=sr

j

,

η
(r)
2i =

∑4
j=1

W
(r)
21

 

2
I(r)

i0

I(r)
δ

Υ
(r)
10 +Υ

(r)
1i

!

+
“

−s2+λ
(r)
i

2−W
(r)
11

”

 

2
I(r)

i0

I(r)
δ

Υ
(r)
20 +Υ

(r)
2i

!

4s3+2
“

−2λ
(r)
i

2
+T r[W(r)]

”

s
esy

∣∣∣∣∣∣∣
s=sr

j

,

where sr
j are the zeroes of the determinant |M (r)

i | and

(12) sr
j = ±

√
λ

(r)
i

2
− 1

2
T r[W(r)] ±

√
1
4
(T r[W(r)])2 − |W(r)| .

Recalling that Υ(r)
i =

(
sη

(r)
i (br′) + ∂yη

(r)
i (br′)

)
e−sbr′ −

(
sη

(r)
i (br) + ∂yη

(r)
i (br)

)
e−sbr

contain the solution η
(r)
i and derivative at the boundaries, respectively, the previously

determined solutions may be used to set up an equation system to determine these
coefficients from eqs. (5). By virtue of eq. (11) the analytical expressions for η

(r)
i contain

the still unknowns αr and βr in a linear fashion, so that the following equation system
combining all boundary matches suffices to determine these coefficients:

(13) βrη
(r)
g0 = (αr′Δar′ + βr′) η

(r′)
g0 +

n∑
j=1

η
(r′)
gj αrη

(r)
g0 = αr′η

(r′)
g0 +

n∑
j=1

λ
(r′)
i η

(r′)
gi .

Note that the boundary with the same index as the region refers to the lower boundary.
For instance in region r the lower boundary along the x-axis is ar, the higher boundary
is ar′ .

In fig. 2 we show the numerical solution of the scalar neutron flux for the parameters
shown in table I. One clearly sees the expected maximum for thermal neutrons in the
transition region between the nuclear fuel-loaded segment and the outer one without fuel.
The fast neutron scalar flux has its maximum in the region where fission occurs.

4. – Conclusion

This paper presented a new method, which generates analytical solutions for the
globally heterogeneous problem of neutron diffusion in two dimensions. These solutions
are in future incorporated into a program library and serve as generic solutions for
multi-group neutron flux in a multi-region geometry. The principal steps employed are
Laplace transform and the generalised integral transform technique. Motivated by recent
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0 0

x x
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Fig. 2. – Fast (left) and thermal (right) scalar neutron flux for a reactor core sheet 17.5 cm×14 cm
and a reflector with outer border 37.5 cm × 34 cm.

developments in reactor concepts we developed an effective procedure which permits to
analyse in an analytical way the neutron flux behaviour for a variety of core geometries
and fuel compositions in order to optimise the set-up.

The quality of the solution is controlled by a genuine mathematical convergence cri-
terion. Note that for the y coordinate the Laplace inversion considers only differentiable
functions in y-space as well as in the dual (s-space), which defines then a unique rela-
tion between the original function and its Laplace transform. This makes the transform
procedure manifest exact and the only numerical error comes from truncation, which is
determined from the Sturm-Liouville problem. Recalling that the structure of the scalar
flux is essentially determined by neutron interaction, present in form of cross-sections,
means that between two successive neutron interactions neutrons behave in the average
like free particles compatible with a homogeneous flux. Thus one may conclude that with
decreasing length ((mΣt)−1 and m increasing) variations in the solution become spuri-
ous. Here Σt is the total cross-section and m an integer number. One may now employ

Table I. – Physical parameters used to calculate the neutron fluxes, where Dg are the diffusion
constants for the two energy groups (g = 1: fast, g = 2: thermal), Σcg the respective capture
cross-sections, νΣfg the microscopic reproduction factor weighted fission cross-sections and Σsgg′

the scattering cross-sections.

Symbol Units Core Reflector

D1 cm 1.614 1.522

D2 cm 0.282 0.210

Σc1 cm−1 0.002 0.001

Σc2 cm−1 0.050 0.017

νΣf1 cm−1 0.002 0.000

νΣf2 cm−1 0.074 0.000

Σs12 cm−1 0.035 0.056

Σs21 cm−1 0.000 0.000
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the Cardinal Theorem of Interpolation Theory [3] in order to find the truncation n in
the series Φ =

∑n
i=0 ηiξi that leaves the analytical solution almost exact, i.e. introduces

only functions that vary significantly in length scales beyond the mentioned limit.
The square integrable function χ =

∫
r
Φdy ∈ L2 with spectrum {λi} which is bounded

by mΣt has an exact solution for a finite expansion. This statement expresses the Car-
dinal Theorem of Interpolation Theory for our problem. Since the cut-off mΣt defines
some sort of sampling density, its introduction is an approximation and is related to
convergence of the approach and Parseval’s theorem may be used to estimate the error.
For example, if m = 10, then the Scattering-Matrix Formalism [7] tells us that the error
in the spectral integral is less than 10−2%. In order to keep the solution error within the
same order of magnitude, the expansion in the region of interest has to contain n + 1
terms, with n = int

{
mΣtΔr

2π + 1
2

}
. For the bounded spectrum and according to the theo-

rem the solution is then exact. In our approximation, if m is properly chosen such that
the cut-off part of the spectrum is negligible, then the found solution is almost exact.

Although algebraic manipulations are typically slower in execution than numerical
procedures, the symbolic computation has to be executed only once. Moreover, in the
present approach the fact that the homogenised global problem has the same solution
as the rescaled smaller problem, restricted to a specific region except for the differences
imposed by the interface conditions, which are taken care of by a linear correction of the
solution. The structure of the solution is the same for all regions and can also be applied
to the outer regions which are limited partially by the outer boundary ∂Γ. Once the
number of energy groups and regions are defined, further the truncation of the expansion
is determined, then one may prepare a library of solutions using the proposed method.
The only task to be executed for applications is to determine numerically the GITT
eigenvalues and substitute the physical parameters into the stored solutions which may
be calculated directly. In order to get a comparable precision with numerical or stochastic
procedures, they will be more time consuming, because they have to execute a numerical
algorithm in comparison to function calls for each energy group and region, respectively.
This is a clear advantage, if modifications in geometry and material composition are to
be examined.
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