
DOI 10.1393/ncc/i2009-10401-1

Colloquia: CSFI 2008

IL NUOVO CIMENTO Vol. 32 C, N. 2 Marzo-Aprile 2009

A possible solution for dinamically managing virtual environments

M. R. Cefalà(1), M. Mariotti(2) and L. Servoli(1)

(1) INFN, Sezione di Perugia - Perugia, Italy
(2) Dipartimento di Fisica, Università di Perugia - Perugia Italy

(ricevuto il 22 Giugno 2009; pubblicato online il 16 Settembre 2009)

Summary. — In modern distributed computer systems (clusters and computing
GRIDs) a new class of problems, due to the increasing heterogeneity of users’ needs,
have to be tackled by the administrators. One possible solution is to create on-
demand virtual working environments tailored on the user’s requirements. Hence
the need for an architecture to manage dynamically such environments. In this
work we propose a possible solution based on the use of Virtual Machines (Xen),
the implementation of a Virtual Machine Manager, capable of creation, destruction
and migration of the virtualized working environments. The information will be
collected using a client-server mechanism, to allow the manager to deploy preconfig-
ured Virtual Machines on the available hardware resources. When a new execution
environment became active, it is automatically recognized by the Batch System
Manager and is then ready to be used.

PACS 07.05.Bx – Computer systems: hardware, operating systems, computer lan-
guages, and utilities.
PACS 07.05.Kf – Data analysis: algorithms and implementation; data management.

1. – Introduction

In recent years the evergrowing need from several scientific communities for greater
computing capability has led to the formation, at Departmental level of common clusters,
often belonging to a computing GRID, where the hardware has been acquired by several
research groups, each one with its own requirements in terms of operating systems,
compilers, libraries and applications.

The drawback of this approach is the unavoidable growth of resources heterogeneity
due to both the geographically dispersed nature of the organizations, and their spe-
cific needs, requirements and update schedules. Furthermore, there is the insurgence
of classes of applications requiring mutually incompatible execution enviroments. This
problem becomes much more difficult for those cases where resource management poli-
cies are subjected also to centralized organization as in computing grids: the adoption
of operating systems and/or software packages and their updates are imposed by global

c© Società Italiana di Fisica 179



180 M. R. CEFALÀ, M. MARIOTTI and L. SERVOLI

Fig. 1. – Illustration of the resource partitioning problem: three groups (A, B, C) with mutually
exclusive needs have put in a common infrastructure their statically partitioned resources to
ensure the availability at the expense of optimal use. Some limited management gains are still
possible.

policies, but these are often not compatible with local constraints. As an example, ap-
plications developed by some of the local user groups may need long validation times
before being safely ported to a new operating system or use a new library version.

The following use-case could be used to illustrate the architectural problem: three
different user groups have put into a common infrastructure all their computing resources,
in order to gain in maintenance manpower. Because of mutually exclusive software
requests the resources have been assigned in a mutally exclusive way (fig. 1) into three
sub-domains, managed by the same batch system. Since one class is not able to execute
the tasks intended for another one, when there is an imbalanced workload, the resources
assigned to this class are heavily loaded and can rapidly become insufficient, while the
resources belonging to the other classes may be in an idle state. Beside the sub-optimal
use of shared resources, there are also the management complications due to the different
queues that should be set-up for the different user groups.

The desirable goal would then be to form a pool of resources that could be used by
all the groups allowing them to have access to at least their share of resources and if
possible, to a greater part because the time profile usage differs usually from one group
to another.

2. – The Prototype’s Architecture

For the reasons described previously the possibility to implement a solution, using
the Virtual Machine technology, assuring to each research group its own independent
working environment detached from the underlying operating system of the real machine,
is becoming very attractive.

From the system administrator point of view this solution offers also the possibility
to decouple the execution enviroments from the hardware resources, thus allowing to
solve the problem of installing new hardware in a computing grid site where the common
operating system cannot be upgraded at will to a version containing the appropriate
drivers for the new harwdare.

We propose to develop a Virtual Machine Manager able to monitor the system re-



A POSSIBLE SOLUTION FOR DINAMICALLY MANAGING VIRTUAL ENVIRONMENTS 181

Fig. 2. – Architecture of the prototype: the Clients collect information and send it to the
Manager (Server) who decides the actions to be performed, and will then send the appropriate
commands back to the Clients on the various cluster resources.

sources status and to manage the Virtual Machines (create, destroy) in all the real
machines of the cluster [1].

The prototype will work asynchronously in respect of the pre-existing Resource Man-
agement System of the cluster in order to do not interfere with the already existing
scheduling algorithm.

In fig. 2 the Client/Server architecture of the prototype is described. The Client
components will be installed on every resource, real or virtual, playing the double role of
gathering information, to be passed to the Server (Manager), and of executing commands
coming from the Manager. One of such resources will be the node where the Batch
System/Scheduler is installed.

The information will be received by the Manager either at scheduled times or triggered
by events. The information will then be analysed to check the current status of the system
and the subsequent needs in terms of jobs waiting in the various queues. At the end of
this phase one or more decisions would then be taken and the relevant commands (or
sequence of commands) would be sent to the Clients in order to be executed, e.g., the
creation of a Virtual Machine tailored for group A in a real node B, where other Virtual
Machines may already be running.

One last characteristic sought for the prototype is the use of OpenSource software,
so we chose Xen [2] as the virtualization tool, Phyton as scripting language and Spread
Toolkit [3] as communication system.

3. – The Communication Protocol

A crucial role in this schema will be played by the protocol that links the Manager
and the Clients, because it must be robust, capable of passing the information to all
Clients, with efficient and in-order guaranteed delivery capabilities.

The last point is essential because the Manager could send a sequence of commands to
the same Client to have them executed in a specific order. Instead of developing ourselves
the protocol we have decided to use an existing OpenSource group communication system,
the Spread Toolkit, because of its properties that match nicely our requests. In fig. 3 a



182 M. R. CEFALÀ, M. MARIOTTI and L. SERVOLI

Fig. 3. – Schema of the Spread network implemented in the prototype.

schema of the Spread network to be implemented is shown; several daemons could be
used if it is needed to ensure the scalability of the architecture.

Since the application is written in python, to implement the protocol we used the
SpreadModule wrapper that allows an high level abstraction of the underlaying Spread
sub-system. Two sets of messages are provided by the protocol:

– Membership messages generated by the Spread sub-system and received by the
Manager when a Client joins or leaves a group or when it disconnects. The Manager
is then able to react to status changes.

– Regular Messages used for properties and commands exchange. The semantic of
the informative content is recognized from the msg type field of the message. The
Manager is able to query the Clients which will then reply sending the requested
properties or the return values of the issued commands.

The content of a message (payload) could be anything that we want, allowing a high
degree of customization that could be exploited to accommodate for future unforeseen
needs.

4. – The Manager

The Manager is written in multithreaded python (fig. 4) and various threads are
used to optimize the execution and avoid dead times: two threads for communication
(Listener, Sender) and one for decision logic (TriggerWatch). The information extraction
and the commands definition is done through property and command plugins, so there’s
no limitation to the type of extracted information and commands.

The Manager listens to the Spread network, and updates its data structures with the
status of the Client groups; it also periodically sends to Clients requests for properties
and aggregated data. Properties could be almost anything that we want to know; this is
possible because of the flexible implementation of the protocol we discussed above.



A POSSIBLE SOLUTION FOR DINAMICALLY MANAGING VIRTUAL ENVIRONMENTS 183

Fig. 4. – Architecturs of the Manager: the relations between the data repositories, the commu-
nication parts and the core components are shown.

An example of property definition, made of just few lines of code:

[ram free]

command = ram

parameters = MemFree

return type = int

ticks = 60

Ticks is the time interval between two consecutive collections of that property. An
event-based mechanism, implemented through the use of programmable Triggers, defines
the decision logic used by the Manager to choose the commands and the requests to be
sent to the Clients. A Trigger definition is made of two parts:

– An event expression.

– An event-handling command.

An example:

[client query]

expr = { len(manager.clients) != 0 }

cmd = { sender.send get property() }

ticks = 30

on update check = no

The Manager will base its decisions using the received data within a set of custom defined
rules, again providing maximum flexibility to the system. The commands will then be
sent to the relevant Clients to be executed on their hosts.



184 M. R. CEFALÀ, M. MARIOTTI and L. SERVOLI

Fig. 5. – Architecture of the Client: the reletions between running environment, communication
part and the two core components (Properties Fetching and Command Executor) are shown.

5. – The Client

The Client side is again written in python with a multithreaded architecture as shown
in fig. 5; it is executed either in the Dom0 or DomU machines to collect all the relevant
information. An interface module implements the communication protocol, while the
Runner module allows the execution of commands issued by the manager and the asyn-
cronous extraction of properties from the host system under the control of the Reader
module.

6. – The Testbed

The prototype has been implemented on the University of Perugia Physics Depart-
ment Computer Science Laboratory. The 35 diskless workstations (fig. 6) were equipped
with Xen 3.x using a shared NFS root filesystem hosted on the boot server virtdom.

The Manager is set up to run on virtdom as well as the Spread Daemon. Each
workstation is capable to run at least 50 Clients (depending on the size of RAM) for
testing purposes. The interconnecting network is a standard 100 Mbit/s Ethernet.

Fig. 6. – Schema of the testbed to be used for the performance tests.



A POSSIBLE SOLUTION FOR DINAMICALLY MANAGING VIRTUAL ENVIRONMENTS 185

Some tests have already been performed in order to evaluate:

– the basic functionality of the messaging system and of the prototype;

– the messaging protocol efficiency;

The results presently obtained shows no problems in the architecture of the proto-
type, all the basic functionalities having been tested. No signs of possible bottlenecks in
resource usage due the communication protocol have been observed.

7. – Conclusion

A prototype to manage the creation of Virtual Environments in a middle-sized com-
puting cluster with eterogeneous users has been designed and implemented. The driving
idea of having an asynchronous system with respect to the Batch System has been ex-
plored, identifying the protocol system as one of the most important components. An
implementation using the Spread Toolkit has been carried out and some tests on the
scalability of the system have been performed on a dedicated testbed. The main func-
tionalities of the prototype have been tested and no bottlenecks or unforeseen problems
have been found.

More exhaustive tests concerning the scalability of the prototype will be carried out
during the next months, followed by the definition of evaluation metrics in order to es-
timate the impact on job queue times and on the aggregated throughtput of the batch
system of the prototype. A fully working prototype will be implemented in the afore-
mentioned INFN GRID site by the end of the year 2008.

∗ ∗ ∗
The authors would like to thank the Physics Department of Università degli Studi di

Perugia for the use of the Computer Science Laboratory.

REFERENCES

[1] Cefalà M. R., Studio di un prototipo per la gestione dinamica di ambienti virtuali, Tesi di
Laurea, Università degli Studi di Perugia (2008).

[2] www.xen.org Official Xen web site.
[3] www.spread.org Official Spread web site.


