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Summary. — Separation of scales in quantum field theories is essential when
studying the low-energy phenomenology of a given UV model. To this end, it is
necessary to construct an effective field theory containing only the light degrees of
freedom and matching it to the full theory, ensuring that both describe the same
low-energy dynamics. Performing this matching beyond the leading order is crucial,
as a great number of observables, like FCNC, only appear at the loop level in the
Standard Model and in many new physics scenarios. One possibility to obtain the
low-energy theory is by integrating out the heavy particles from the full theory using
path integral techniques. We review this functional matching procedure at the one-
loop level and discuss common challenges involved in determining the matching
conditions for effective theories. Due to the great diversity of beyond the Standard
Model theories and the complexity of the matching computations, an automation of
this procedure is desirable. On this matter, we present the ongoing effort to develop
the Mathematica package Matchete facilitating the fully automatic matching for a
broad range of theories. When completed, this will significantly simplify the analysis
of the low-energy phenomenology of beyond the Standard Model physics.

1. – Introduction

Effective Field Theory (EFT) is a powerful tool to study the low-energy dynamics
of quantum field theories involving particles of different mass scales. Consider a theory
containing heavy particles ηH with masses mH and light particles ηL with masses mL

with a large scale separation mL � mH . If an experiment is performed at low ener-
gies E ∼

√
q2 ∼ mL, where q is the typical momentum scale of the light particles in

that process, the heavy degrees of freedom do not contribute as on-shell states, and thus
their effects can be considered as sub-leading corrections to the measurements. In this
scenario, due to the resummation of large logarithms, it is required to construct an EFT
containing only the light particles, where the effects of the heavy particles are encoded
in a tower of higher-dimensional operators built out of ηL fields, that are suppressed by
appropriate powers of 1/mH . An example for such a model is Fermi’s theory, where
the heavy particle removed from the theory is the W boson, and the interactions at low
energies are described by four-fermion contact interactions that are suppressed by 1/m2

W .
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There are two main challenges for the construction of EFTs: i) Finding all higher-
dimensional operators that have to be considered such that the EFT can describe the
same low-energy phenomenology as the corresponding UV theory; ii) Determining the
values of the coefficients of all effective operators in terms of the UV Lagrangian param-
eters. The latter is often referred to as matching the EFT to the UV. Traditionally, this
is done by computing all Feynman diagrams that contribute to the effective action Γ[ηL],
as a function of the light fields only, in both theories and equating these ΓEFT = ΓUV,
where ΓUV has to be expanded as a power series in 1/mH (see, e.g., [1]). This method
is called diagrammatic matching. In the following, however, we will consider a different
approach to EFT matching based on the path integral. When we construct an EFT it
is often important to do this at the loop level, meaning we have to consider effective op-
erators whose coefficients get a non-vanishing value when the matching is performed at
the loop level. The reason is that many interesting phenomena, such as FCNCs, do not
appear at tree level in the Standard Model (SM) and many New Physics (NP) scenarios.

Effective theories also play a crucial role in the analysis of Beyond-the-SM (BSM)
theories. The absence of direct signals of NP at the experiments at the LHC indicate that
the mass scale of the potential new particles is far above the electroweak scale v � mH ,
although light NP is not fully excluded. In the case of heavy NP, the effects of the BSM
particles can be described at lower energies by the so-called Standard Model Effective
Field Theory (SMEFT) [2, 3], which allows to study the NP effects at the electroweak
scale v in a model independent way. To analyze the effects of a UV theory at even
lower energies, we can first match it to the SMEFT, then use the renormalization group
equations (RGE) of the SMEFT [4] to evolve the coefficients to lower scales, and then
match the SMEFT to another EFT, often called LEFT [5], where the heaviest particles
of the SM (i.e., the top quark, W/Z boson, and the Higgs) are removed. This EFT is
then appropriate to compare the theory to the low-energy experiments.

These multi-step matching scenarios can be computationally very challenging, as all
matching steps have to be performed at the loop level, and the RGE of all EFTs need to be
determined. Therefore, an automation of this procedure is important to allow for analyses
of the vast variety of different BSM theories. In these proceeding, which are based on
refs. [6] and [7], we review the functional method for EFT matching developed, e.g., in
refs. [8-13], which both derives the effective operators and their matching conditions.
The method is particularly suited for an automation and we present the ongoing effort
in the development of the Mathematica code Matchete [7] – matching effective theories
efficiently – which will, when released, fully automate the EFT matching at one loop,
thus significantly simplifying the analysis of BSM theories.

2. – Functional methods for EFT matching

In this section we review the functional matching procedure based on the path integral
formalism and the background field method, for which we will mostly follow refs. [6,13].

2
.
1. Functional formalism and tree-level matching . – Consider a general UV the-

ory described by the Lagrangian LUV containing both heavy ηH and light ηL particles
with a mass gap mH � mL. The corresponding fields can be grouped in a multiplet
η = (ηH , ηL). Using the background field method we split all fields by η → η̂+η, where η̂
is the background field configuration satisfying the classical equations of motion (EOM),
and η are the quantum fluctuations. In Feynman diagrams tree-level lines thus arise from
the background fields η̂, whereas lines in loops arise from the quantum fluctuations η.
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Therefore, to capture all effects up to one loop, it is sufficient to expand the Lagrangian
up to quadratic order in the fluctuations η

LUV[η̂ + η] = LUV[η̂] +
1
2 η̄i

δ2LUV

δη̄i δηj

∣∣∣
η=η̂

ηj +O(η3) ,(1)

where the functional derivative with respect to the quantum fluctuations is denoted δ/δηi.
The linear terms in the expansion above vanish due to the EOM, and higher-order terms
only contribute at higher loop orders.

The effective action of the theory can be expressed as a path integral by

exp (iΓUV[η̂]) =
∫
Dη exp

(
i
∫
ddxLUV[η̂ + η]

)
.(2)

Combining eqs. (1) and (2) we find the tree-level effective action Γ
(0)
UV[η̂] =

∫
ddxLUV[η̂].

At energies far below the heavy mass, i.e., for q2 ∼ m2
L � m2

H , we can solve the
EOM for η̂H by expanding in inverse powers of mH , thus obtaining a solution of the
form η̂H = η̂H(η̂L) as a perturbative series in 1/mH . This yields the tree-level EFT
Lagrangian

L(0)
EFT[η̂L] = LUV[η̂L, η̂H(η̂L)] ,(3)

which only depends on light background fields.

2
.
2. One-loop matching . – Similarly the one-loop effective action is given by

exp
(
iΓ

(1)
UV

)
=

∫
Dη exp

(
i
2

∫
ddx η̄iOijηj

)
, where Oij =

δ2LUV

δη̄i δηj

∣∣∣
η=η̂

.(4)

The operator Oij is dubbed the fluctuation operator. The one-loop effective action is
thus determined by a Gaussian path integral which can be readily solved

Γ
(1)
UV = i

2 log SDetO = i
2STr logO .(5)

Here, we introduced the superdeterminant SDet and the supertrace STr, which are gen-
eralizations of the determinant and the trace, respectively, to matrices with both Grass-
mann and ordinary elements, where, e.g., STr carries opposite sign for fermionic and
bosonic entries. The supertrace is a trace over all internal degrees of freedom including
momenta, and thus also contains a loop integral

STr logO = ±
∫

ddk
(2π)d

〈k|tr logO|k〉 ,(6)

where to regulate divergences we use dimensional regularization with the MS-scheme.
We split the fluctuation operator into a propagator Δi and an interaction part Xij

Oij = δijΔ
−1
i −Xij = Δ−1

ij (δij −ΔiXij) , where Δ−1
i =

⎧⎨
⎩

−(D2 +m2
i )

i /D −mi

gμν(D2 +m2
i )

(7)

for scalars, fermions and vector bosons, respectively. For simplicity, we work in the
Feynman gauge for the propagators of the quantum fluctuations. Notice that this does
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not imply a particular gauge choice for the light background fields which remain in a
general Rξ gauge (see ref. [8] for more details). The one-loop effective action thus reads

Γ
(1)
UV = i

2STr logΔ
−1 + i

2STr log (1−ΔX) .(8)

To further simplify Γ
(1)
UV we apply the method of expansion by regions [14, 15]. The

loop integrals can depend in principle on the scales mH , mL, and q, where all external
momenta q are assumed to be of order q2 ∼ m2

L. Thus we separate all loop integrals
coming from eq. (6) into a hard and soft region, where the loop momentum k is assumed
to be hard k ∼ mH and soft k ∼ mL, respectively. We then expand each region in the
quantities that are small, i.e., mL/k for the hard region and k/mH in the soft region, and
consequently integrate both regions over the full d-dimensional space of loop momenta.
Summing both expanded integrals then yields the full original loop integral.

Following this procedure we can write

Γ
(1)
UV = Γ

(1)
UV

∣∣∣
hard

+ Γ
(1)
UV

∣∣∣
soft

.(9)

An essential simplification arrises by realizing that Γ
(1)
UV

∣∣
soft

contains the same contribu-
tions as one-loop contributions by the tree-level effective Lagrangian L(0)

EFT. Therefore,
the one-loop contributions to the EFT Wilson coefficients in L(1)

EFT are entirely encoded
in the hard region of the effective action

Γ
(1)
UV

∣∣∣
hard

=
∫
ddxL(1)

EFT .(10)

Thus, only supertraces with at least one heavy propagator in the loop can contribute

to L(1)
EFT, since loops without heavy propagators only contribute to the soft region.

Combining our results in eqs. (8) and (10) we obtain the one-loop EFT matching
condition

∫
ddxL(1)

EFT = i
2 STr logΔ−1

∣∣
hard

− i
2

∑∞
n=0

1
n STr [(ΔX)

n
]|hard ,(11)

where we expanded the logarithm in the latter term since in the hard region ΔX is at

most O(m−1
H ). We find that L(1)

EFT is obtained by computing two types of supertraces:

• Log-type supertraces only depend on heavy particle propagators Δi as the light par-
ticles only contribute to the soft region. Furthermore, they are model independent
as they do not depend on the interactions Xij .

• Power-type supertraces contain contributions by both heavy and light fields, but at
least one of the propagators in (ΔX)n must correspond to a heavy particle for it to
contribute to the hard region. Since ΔX is at most O(m−1

H ) only a finite number
of STr has to be computed in eq. (11) when working up to a fixed EFT order.

The supertraces can be evaluated in a manifestly gauge covariant form using a covari-
ant derivative expansion [8, 10]. A detailed description of the calculation of supertraces
is beyond the scope of these proceedings and we refer to refs. [6, 13,18] for more details.
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3. – Matchete – matching effective theories efficiently

Due to the great variety of UV models, and due to complexity of the evaluation of all
supertraces necessary for the matching of a particular model, an automation is required.
In recent years there was an increased effort in the community to built tools automating at
least partially the EFT matching [6,16-19]. Here we show a preview of the Mathematica
package Matchete [7], that we are currently developing. Matchete implements the func-
tional matching procedure outlined in sect. 2 and is built upon SuperTracer [6] which
handles the identification and evaluation of the suptertraces. However, when made public,
Matchete will offer further functionalities such as tree-level matching, automatic deriva-
tion of the fluctuation operator, and EFT operator simplification, providing a complete
software suite for fully automatic one-loop matching.

The functional matching procedure is well suited for this task, as it can be applied to
generic weakly coupled UV theories, which have a mass power counting that allows for
the construction of the corresponding low-energy effective theory. Thus, Matchete can
be used with a wide range of theories that can, but do not necessarily have to, match to
the SMEFT. Furthermore, the matching can be performed to in principle arbitrary EFT
dimension. However, in practice the procedure is limited by computation time.

The workflow of Matchete is illustrated in fig. 1 and a working example is presented
in sect. 4. The starting point is a UV Lagrangian LUV that has to be provided by
the user. This must include the specification of all symmetries, the field content, the
interactions, and the power counting of the theory. Starting from this input and by
applying functional derivatives on LUV, the code derives and solves the EOMs for the
heavy fields, thus obtaining the tree-level EFT Lagrangian. The program then derives
the fluctuation operator Oij , and with that all propagators Δi and interaction terms Xij

of the theory, as defined in eq. (7). These are then passed on to the routines of the
SuperTracer [6] package (1) which identify and evaluate all relevant supertraces.

The one-loop EFT Lagrangian thus obtained includes, in general, redundant opera-
tors, i.e., operators that can be related to other operators present in the Lagrangian by
operations like: integration by parts, field redefinitions, Fierz identities, Dirac algebra
identities, etc. These identities and relations are implemented in Matchete, allowing for
a further simplification of the Lagrangian obtained from the supertraces. The eventual
goal is to obtain the EFT Lagrangian in a minimal basis without any redundancies.

To our knowledge, so far there is only one other fully automatic matching tool avail-
able called Matchmakereft [16]. This code performs the matching of effective theories
based on the conventional diagrammatic matching procedure. Since Matchmakereft and
Matchete are based on different techniques, having two programs available will allow
for a more precise validation of both, although Matchmakereft and SuperTracer have
already been checked against results available in the literature such as, e.g., refs. [20,21].

A well-known advantage of the functional matching prescription is that the EFT
operators are directly obtained by evaluating the supertraces in eq. (11). Thus, contrary
to the diagrammatic matching procedure, no a priori knowledge of an EFT basis is
required for the matching calculation. This can significantly simplify the matching in
the case where the UV theory does not match onto an EFT with a well known basis for
matching, such as the SMEFT, since the construction of a basis can be a non-trivial task.

(1) SuperTracer will be fully integrated into Matchete, and not be available as a standalone
after the release of Matchete.
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Fig. 1. – Illustration of the functional EFT matching procedure. The blue (red) box show the
parts of the procedure that are handled by the Matchete [7] (SuperTracer [6]) program.

4. – One-loop matching of a vectorlike fermion toy model

In this section we reconsider a toy model with vectorlike fermions, already discussed
in ref. [6], to illustrate the functional matching procedure. However, here we will focus
on the application of Matchete to this example. Notice that the code examples shown
below are preliminary and can be subject to change in the version published eventually.

Consider a theory with a U(1) gauge symmetry, where the gauge bosons is labeled Aμ.
In addition we include two vectorlike fermions that both have charge 1 under the U(1)
group. One of the fermions is heavy Ψ with mass M , whereas the other fermion ψ is
massless. Furthermore, we add a massless real scalar singlet φ to the theory that interacts
with the fermions through a Yukawa interaction with coupling y. The Lagrangian of this
UV theory reads

LUV = − 1
4AμνA

μν + 1
2 (∂μφ)(∂

μφ) + iψ̄ /Dψ(12)

+iΨ̄ /DΨ−MΨ̄Ψ− (yψ̄LφΨR + h.c.) ,

with the covariant derivative Dμ = ∂μ − igAμ, and the field-strength tensor Aμν =
∂μAν − ∂νAμ. This theory is specified in Matchete with the commands outlined below.

We can define the U(1) gauge group labeled U1e by

In[1]:= DefineGaugeGroup[U1e, U[1], e, A]

which also defines the associated coupling e, gauge field and field-strength tensor la-
beled A. The remaining fields can then be defined with the commands

In[2]:= DefineField[Ψ, Fermion, Charges -> {U1e[1]}, Mass -> {Heavy, M}]
DefineField[ψ, Fermion, Charges -> {U1e[1]}, Mass -> 0]

DefineField[φ, Scalar, Mass -> 0, SelfConjugate -> True]

Finally, we define the Yukawa coupling y, which is of order O(m0
L), by

In[3]:= DefineCoupling[y, EFTorder -> 0]

After these specifications Matchete can automatically construct the free Lagrangian of
the theory with the routine FreeLag which needs to be combined with the Yukawa
interactions to obtain the full Lagrangian shown in eq. (12)
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In[4]:= LUV = FreeLag[] - PlusHc[y[] φ[] Bar[ψ[]]**PR**Ψ[]];
LUV // NiceForm

Out[4]= -
1

4
Aμν2+

1

2
(Dμφ)

2+i(ψ̄·γμ·Dμ·ψ)+i(Ψ̄·γμ·Dμ·Ψ)-M(Ψ̄·Ψ)-
(
yφ(ψ̄·PR·Ψ)+h.c.

)

where PR is a right-chirality projector, the Hermitian conjugate is included through
PlusHc, and all objects carrying spinor indices must be contracted using **, due to
their non-commutativity. In the second line the Lagrangian is printed in a readable
format using the NiceForm routine.

The dimension-six tree-level EFT Lagrangian can be derived with the Match routine

In[5]:= LEFT0 = Match[LUV, LoopOrder -> 0, EFTorder -> 6];

LEFT0 // NiceForm

Out[5]= -
1

4
Aμν2+

1

2
(Dμφ)

2+i(ψ̄·γμ·Dμ·ψ)+i
_
yy

M2
φDμφ(ψ̄·γμPL·ψ)+i

_
yy

M2
φ2(ψ̄·γμPL·Dμ·ψ)

The contribution by the last two terms vanishes on-shell, as can be shown using integra-
tion by parts and field redefinitions. These redundancies are removed in Matchete by

In[6]:= LEFT0min = EoMSimplify[IBPSimplify[LEFT0]];

LEFT0min // NiceForm

Out[6]= -
1

4
Aμν2 +

1

2
(Dμφ)

2 +i(ψ̄·γμ·Dμ·ψ)

where the EFT contribution vanishes since ψ is massless leading to the equation of
motion /Dψ = 0. Integrating out the heavy fermion Ψ at one loop and dimension six in
the EFT, can be achieved similarly

In[7]:= LEFT1 = Match[LUV, LoopOrder -> 1, EFTorder -> 6];

LEFT1min = EoMSimplify[IBPSimplify[LEFT1]];

LEFT1min // NiceForm

Out[7]= -
1

4
Aμν2 +

1

2
(Dμφ)

2 +i(ψ̄·γμ·Dμ·ψ)

-2�
_
yyM2

(
1+Log

[μ2

M2

])
φ2-�

_
y
2
y2Log

[μ2

M2

]
φ4+

1

3
�

_
y
3
y3

M2
φ6+

1

3
�

_
yye2

M2
φ2Aμν2

-
2

15
�
e4

M2
(ψ̄ · γμ · ψ)2+ 7

36
�
ȳye2

M2
(ψ̄ · γμ · ψ)(ψ̄ · γμPL · ψ)

where we directly applied the simplification routines. Here � represents a loop factor,
i.e., � → �

16π2 . This gives the final matching result for the EFT Lagrangian at one
loop. The results of this computation have been partially cross checked in ref. [6] with
a diagrammatic by hand calculation. The automatic implementation, however, is con-
siderably less time consuming and also less prone to errors than the derivation by hand,
showing clearly the advantages of using codes such as Matchete for one-loop matching
computations, even for fairly simple models such as the one considered here.
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5. – Conclusions

The construction of EFTs describing the same low-energy dynamics as a given NP
model is a common problem when studying BSM theories. Since EFT matching often has
to be performed at the one-loop level and even several matching steps might be involved,
this derivation is a challenging although very technical task. Thus, an automated solution
for these calculations would significantly simplify the analyses of possible BSM theories.
In these proceeding we presented and summarized the functional matching procedure, in
which the heavy particles of a theory are removed from the theory by integrating over
them in the path integral. This method is particularly suited for an automation in a
computer algebra code, as the path integral yields both the effective operators and their
coefficients, removing the need to first derive the EFT operator basis before starting the
matching calculation, as is necessary for the diagrammatic matching procedure. The
functional method is currently being implemented in the Mathematica code Matchete

and we illustrated the functionalities of this package, by performing the fully automatic
one-loop matching for a toy model with vectorlike fermions in this talk. When released,
Matchete will significantly simplify the analysis of a wide range of different BSM theories.
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