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Summary. — In this article, we discuss cosmological perturbations of scalar-
tensor theories in Palatini formalism. First we introduced an action where the
Ricci scalar is conformally coupled to a function of a scalar field and its kinetic
term and there is also a k-essence term consisting of the scalar and its kinetic
term. This action has three frames that are equivalent to one another: the original
Jordan frame, the Einstein frame where the metric is redefined, and the Riemann
frame where the connection is redefined. We calculated the quadratic action and
the sound speed of scalar and tensor perturbations in three different frames and
show explicitly that they coincide. Furthermore, we showed that for such action the
sound speed of gravitational waves is unity. Thus, this model serves as dark energy
as well as an inflaton despite the presence of the dependence of the kinetic term of a
scalar field in the non-minimal coupling, different from the case in metric formalism.
We then proceeded to construct the L3 action called Galileon terms in Palatini
formalism and compute its perturbations. We found that there are essentially 10
different (inequivalent) definitions in Palatini formalism for a given Galileon term
in metric formalism. We also saw that, in general, the L3 terms have a ghost
due to Ostrogradsky instability and the sound speed of gravitational waves could
potentially deviate from unity, in sharp contrast with the case of metric formalism.
Interestingly, once we eliminate such a ghost, the sound speed of gravitational waves
also becomes unity. Thus, the ghost-free L3 terms in Palatini formalism can still
serve as dark energy as well as an inflaton, like the case in metric formalism.

1. – Introduction

There have been long attempts to extend general relativity since the Brans-Dicke
theory. Such scalar-tensor theories have recently received renewed attention because a
scalar dynamical degree of freedom may possibly be the cause of dark energy and well
be that of inflation, both of which enjoy strong observational support. In a scalar-tensor
theory, a scalar field does not necessarily couple to gravity (a tensor field) minimally but
non-minimally. One major example is the Higgs inflation, which was originally proposed
by introducing such a non-minimal coupling of a scalar field to the Ricci scalar.
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When one introduces such a non-minimal coupling between the scalar and tensor
fields, two different approaches are commonly considered in the literature: one is called
the metric formalism and the other the Palatini formalism. In the former formalism, an
affine connection is not an independent variable in the action but given solely by the
metric, that is, one a priori decides to use the Levi-Civita connection. On the other
hand, in the latter formalism, a connection is regarded as an independent variable in
a Jordan-frame action, and is fixed or solved through Euler-Lagrange equations, which
are given by taking the variations of the action with respect to not only the metric (and
matter) but also the connection.

At present, since Einstein gravity fits observations very well, one cannot judge which
formalism is adopted by nature. Such judgment can be done only through comparing
theoretical predictions in both formalisms with the observations that may arise beyond
General Relativity.

For this purpose, people have recently constructed viable scalar-tensor theories and
made theoretical predictions for inflation in Palatini formalism and investigated the dif-
ference between those in metric and Palatini formalisms. One promising example is
Higgs inflation in Palatini formalism. In the case of Higgs inflation, where the Higgs field
directly couples to the Ricci scalar, one can always go into the Einstein frame through
a conformal transformation. Of course, the correspondence between the Einstein and
Jordan frames is different in metric and Palatini formalisms. That is, when we start
from an original action in the Jordan frame in general, the corresponding action in the
Einstein frame is different between these formalisms. By the use of the standard formulae
for inflationary predictions in the Einstein frame, one can make different predictions for
metric and Palatini formalisms.

However, in a wider class of scalar-tensor theories, the Einstein frame does not neces-
sarily exist. Therefore, it is quite useful and interesting to discuss cosmological perturba-
tions directly in the Jordan frame in the context of Palatini formalism without resorting
to the conformal transformation into the Einstein frame. Furthermore, as far as we are
aware of, nobody has yet derived quadratic actions for cosmological scalar and tensor
perturbations in the Jordan frame in the context of Palatini formalism of scalar-tensor
theory. Such quadratic actions are indispensable for determining normalizations of the
perturbations and manifestly give their sound speeds. Thus, the main purpose of this
article is to derive quadratic actions for cosmological scalar and tensor perturbations and
to discuss their properties based on the quadratic actions directly in the Jordan frame
as well as in the Einstein frame where the metric is redefined, and in the Riemann frame
where the connection is redefined, in the context of Palatini formalism.

As an example of the absence of the Einstein frame, we consider so-called the Galileon
(Kinetic Gravity Braiding) term as well as the non-minimal coupling of the Ricci scalar
and the k-essence term in our action. A term corresponding to �φ in metric formalism
is not uniquely defined in Palatini formalism due to the covariant derivative not being
compatible with the metric, i.e., the presence of non-metricity. We have found that
there are essentially 10 different (inequivalent) definitions in Palatini formalism for such
a term, and have included all of them in our action. In the case of metric formalism, it
is known that the sound speed of tensor perturbations (gravitational waves) is still unity
even if one includes the Galileon term in an action. Therefore it can serve as dark energy
even after the observation of GW170817 and GRB170817A, which strongly constrains
the sound speed of gravitational waves. We are going to address whether the Galileon
term would modify the sound speed of gravitational waves in Palatini formalism or not,
which is crucial for serving as dark energy.
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This article is based on the paper [1](1)

2. – K-essence with its non-minimal coupling to Ricci scalar

In this section, we will first consider an action that has a conformally coupled Ricci
scalar as follows:

(1) SJordan
4 :=

∫
d4x

√
−g

[
G4(φ,X)

Γ

R+K(φ,X)

]
,

with X := − 1
2g

μν∂μφ∂νφ.
In the metric formalism, in order to keep the equation of motion second-order, it is

known that one must introduce a “counter term”, namely

(2) Lmetric
4 = G4(φ,X)

g

R+G4X [(φμν)
2 − (φμ

μ)
2],

where φμ := ∂μφ and φμν :=
g

∇μ

g

∇νφ. However, for the Palatini Lagrangian (1) this
counter term is unnecessary to keep the equation of motion to be second-order. Fur-
thermore, as we will mention later, the covariantization of the counter term in Palatini
formalism may make the connection dynamical and introduce new degrees of freedom.

This action (1) can be investigated through three methods. In the first method, as
most literature considers, one can conduct a conformal transformation of the metric to
the Einstein frame and calculate everything there. This method is useful when there
exists an Einstein frame. The second way is to directly calculate within the Jordan
frame (1). Although tedious, this is the most straightforward method. Finally, another
less-known method is to solve the connection, which is non-dynamical, and substitute the
solution to the action. The resultant (on-shell) action is written fully in terms of Riemann
geometry. This results in an action that is neither Einstein nor Jordan. We shall call this
frame, where the connection rather than the metric is redefined, the Riemann frame.

Since all three frames are nothing but (invertible) redefinitions of physical variables,
one expects to see that the results of calculations in three different frames coincide. We
shall see this in the following sections.

2
.
1. Analysis in Einstein frame. – Similarly to the usual case of metric formalism,

consider the conformal transformation of the action (1) under g̃μν = G4gμν . The action
then becomes

(3) SEinstein
4 =

∫
d4x̃

√
−g̃

[
g̃μν

Γ

Rμν +
K(φ,G4X̃)

G2
4(φ,G4X̃)

]
,

where X̃ := − 1
2 g̃

μν ∂̃μφ∂̃νφ = G−1
4 X in which x̃μ is the coordinate in the Einstein frame;

see below.
This term is none other than the Einstein-Hilbert term plus a k-essence term. Thus,

since we are considering no torsion, the connection could be uniquely solved as

(4) Γλ
μν = { λ

μν}g̃ :=
1

2
g̃λσ(∂μg̃νσ + ∂ν g̃μσ − ∂σ g̃μν).

(1) See also the references and acknowledgments in ref. [1].



4 MASAHIDE YAMAGUCHI et al.

Substituting the solution, we obtain the Einstein-frame action written purely with the
conformal metric g̃μν as

(5) SEinstein
4

∣∣
Γ={}g̃

=

∫
d4x̃

√
−g̃

[
g̃μν

g̃

Rμν + K̃(φ, X̃)

]
,

where
g̃

Rμν is the Ricci tensor purely defined with the Levi-Civita connection of the new

metric g̃μν . We have also defined K̃(φ, X̃) = K(φ,X)
G4

2(φ,X)
.

Then, from the standard formulae in the metric formalism, the quadratic action for
tensor perturbations h̃ij is given as

(6) δ(2)SEinstein,tensor
4 =

1

4

∫
dt̃ d3x̃ ã3

[
h̃′2
ij −

1

ã2
(∂̃kh̃ij)

2

]
,

where the prime represents the derivative with respect to t̃, which is the cosmic time
in the Einstein frame, and δ(2) implies quadratic in perturbation. The sound speed of
tensor perturbations, i.e., the velocity of the gravitational waves, is unity. This is in
sharp contrast with the case of metric formalism where, in general, the sound speed
differs from unity due to the X dependence in G4 and the associated counter term in
eq. (2).

The quadratic action for the curvature (scalar) perturbations ζ̃ is given as

(7) δ(2)S Einstein,scalar
4 =

∫
dt̃ d3x̃ ã3

[
G̃S ζ̃

′2 − F̃S

ã2
(∂̃iζ̃)

2

]
,

with

F̃S =
6X̃KX̃

−K̃ + 2X̃K̃X̃

= 2ε̃ =
6X(2KG4X −KXG4)

(K − 2XKX)G4 + 3KG4XX
,(8)

G̃S =
6(X̃K̃X̃ + 2X̃2K̃X̃X̃)

−K̃ + 2X̃K̃X̃

(9)

=
6X

(G4 −G4XX)2{−K(G4 + 3G4X) + 2XKXG4}
×[−6X2KG3

4X +X(8K + 5KXX)G4G
2
4X + (KX + 2KXXX)G3

4

−2{K(G4X + 2G4XXX) +XKX(3G4X −XG4XX) +X2KXXG4X}G2
4],

where ε̃ := − H̃′

H̃2
and all of the quantities on the right-hand sides should be understood

as background ones. The sound speed of the curvature perturbations will thus be

c̃2S =
2ε̃

G̃S

=
K̃X̃

K̃X̃ + 2X̃K̃X̃X̃

= (G4 −G4XX)2(−2KG4X +KXG4)

× [−6X2KG3
4X +X(8K + 5XKX)G4G

2
4X + (KX + 2XKXX)G3

4

− 2[K(G4X + 2XG4XX) +XKX(3G4X −XG4XX) +X2KXXG4X)]G2
4]

−1,(10)

where all of the quantities should be understood as background ones.
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2
.
2. Analysis in Jordan frame. – Let us return to the original Lagrangian,

(11) SJordan
4 =

∫
d4x

√
−g

[
G4(φ,X)

Γ

R+K(φ,X)

]
.

By directly solving the equation of motion for the connection, the solution becomes

(12) Γλ
μν = { λ

μν}g +
1

2
gλσ(2gσ(μ∂ν)lnG4 − gμν∂σlnG4),

which indeed coincides with the solution that was obtained in the Einstein frame (4).
Notice that when ∂μφ = 0 the connection reduces to that of Levi-Civita, and G4 becomes
effectively Planck mass. As a result, when the dynamics of the scalar ends, such as after
inflation, the theory becomes that of Einstein practically.

Substituting the solutions, we obtain the quadratic action for the tensor-pertur-
bations,

δ(2)SJordan,tensor
4 = δ(2)

{∫
d4x

√
−g

(
G4

Γ

R+K

)}
,

=
1

4

∫
dtd3xG4a

3

[
ḣ2
ij −

1

a2
(∂khij)

2

]
.(13)

Therefore, the sound speed of tensor perturbation is indeed unity, which coincides with
the analysis of the earlier section in the Einstein frame. In the similar way, we obtain
the quadratic action for the scalar-perturbations as

δ(2)SJordan,scalar
4 = δ(2)

(∫
d4x

√
−gG4

Γ

R

)
=

∫
dt d3x a3

[
GS ζ̇

2 − FS

a2
(∂iζ)

2

]
.(14)

Here FS = G4(t)F̃S and GS = G4(t)F̃S while F̃S and G̃S being precisely that of (8)
and (9) and thus the sound speed cS coinciding with (10). Both of the quadratic actions
are the same with those of Einstein frame up to the conformal redefinition of

dt̃ =
√
G4(t) dt, dx̃ = dx, ã(t̃) =

√
G4(t) a(t), h̃ij = hij , ζ̃ = ζ.

Since the quadratic action of tensor and scalar perturbations of the Jordan frame are
precisely that of the Einstein frame, the observables are the same.

2
.
3. Analysis in Riemann frame. – Instead of considering the Einstein or Jordan

frame, one may transform the connection and analyze in a frame where the dynamics of
the metric and scalar are equivalent to that in the Jordan frame but written instead in
Riemann geometry, i.e., the connection is fixed as Levi-Civita. We shall call this frame
the Riemann frame.

First noticing that the connection is not dynamical, one may substitute the solution
of the connection (12) to the action (1) This results in

LRiemann
4 =

√
−g

⎡
⎣G4

g

R+
3

2

(
g

∇G4)
2

G4
+K

⎤
⎦

=
√
−g

[
G4

g

R− 3

2G4
(2G2

4φX + 2G4φG4Xφαφαβφ
β −G2

4Xφαφαβφ
βγφγ) +K

]
.(15)
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This action is dynamically equivalent to (1). In other words, the metric and the scalar
follows the same equation of motion for both Lagrangians (1) and (15). Interestingly,
this action is a qDHOST of class 2N -I/Ia.

By defining the following functions:

f = G4,

K̄ = K −
3G2

4φX

G4
+6X

∂

∂φ

∫
G4φG4X

G4
dX,

Q = −3

∫
G4φG4X

G4
dX,

A4 =
3G2

4X

2G4
,

the action (15) reduces to the DHOST action considered in as

(16) L = fRg + K̄ +Q�gφ+A4φ
μφμνφ

νρφρ.

We find that the quadratic action for tensor perturbations in Riemann frame is

(17) δ(2)LRiemann,tensor
4 =

1

8

∫
dtd3xM2a3

[
ḣ2
ij −

1

a2
(∂khij)

2

]
= δ(2)LJordan,tensor

4 ,

which indeed coincides with the analysis of the Jordan frame. Similarly, the quadratic
action for scalar perturbations becomes

δ(2)L Riemann,scalar
4 = a3

M2

2
{−6(ζ̇ − β1α̇)

2 + 12H[(1 + αB)ζ̇ − β1α̇]α

+H2(αK − 6− 12αB)α
2 + 4[ζ̇ − β1α̇−H(1 + αB)α]β

+
1

a2
[2(∂ζ)2 + 4(1 + αH∂iζ∂iα+ β3(∂iα)

2)]}.(18)

Variation of β gives α =
˙̃
ζ

H(1+αB−β̇1)
with ζ̃ being the redefined variable of ζ̃ = ζ − β1α.

This results in the quadratic action of

(19) δ(2)SRiemann,scalar
4 =

∫
d2xdta3

M2

2

[
Aζ̃

˙̃
ζ2 +Bζ̃

(∂iζ̃)
2

a2

]
,

with

Aζ̃ =
1(

1 + αB − β̇1

H

)2

[
αK + 6α2

B − 6

a3H2M2

d

dt
(a3HM2αBβ1)

]
,(20)

Bζ̃ = 2− 2

aM2

d

dt

[
aM2(1 + αH + β1)

H(1 + αB)− β̇1)

]
.(21)

After some lengthy computation, we see that this indeed coincides with (8) and (9),

i.e., M2

2 Aζ̃ = GS and M2

2 Bζ̃ = FS . Furthermore, we see that indeed the computation
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done in the Riemann frame is precisely that in the Jordan frame since the quadratic
action above is precisely that of the Jordan frame (14).

To conclude, we have seen that the calculations in all frames, namely Einstein, Jor-
dan, and Riemann frames, give the same quadratic actions, power spectra, and sound
velocities for both the scalar and tensor perturbations. In the literature, perturbations in
the Einstein frame are heavily investigated, due to it being simple and straightforward.
However, one may wonder what could be said for theories that do not have an Einstein
frame. This we will investigate in the next section.

3. – Possible Galileon terms in Palatini formalism

In this section we will re-think the covariantization of the flat space-time action

(22) Lflat
3 = G3η

μν∂μ∂νφ,

with G3 = G3(φ,− 1
2η

μν∂μφ∂νφ).
In the usual metric formalism, the covariant action is straightforwardly obtained and

unique, which is,

(23) Lmetric
3 = G3g

μν
g

∇μ

g

∇νφ.

However, in Palatini formalism, due to the metric incompatibility of the connection,
one need to consider additional terms such as

(24) LPalatini
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G3g
μν

Γ

∇μ

Γ

∇νφ,

G3

Γ

∇μ(g
μν

Γ

∇νφ),

G3

Γ

∇μ{
Γ

∇ν(g
μνφ)},

G3g
μνgαβ

Γ

∇μ(gαβ
Γ

∇νφ),
...

One may wonder how many possible terms there could emerge, or even if it is finite at
all. To write down the possible terms, one must note the following three points.

Firstly, one notices that the covariant derivative
Γ

∇ acting on any rank tensor relates

to the one of Levi-Civita
g

∇ as

(25)
Γ

∇ =
g

∇+ terms containing Q μν
λ ,

since any (torsionless) affine connection can always be rewritten as

(26) Γλ
μν = { λ

μν}g +
1

2
(Q λ

μν +Q λ
νμ −Qλ

μν)

with Qσ
μν :=

Γ

∇σg
μν . Secondly, the covariantized terms can be schematically written as

(27) G3 ·
Γ

∇ ·
Γ

∇ · φ,
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with · representing an arbitrary number of metrics. The first derivative acts either on a
metric, a covariant derivative, or φ, whereas the second derivative acts on a metric or φ.
All of the space-time indices must be contracted to make the resultant terms scalars.

With the above in hand, the covariantization in Palatini formalism of the flat ac-

tion (22) is constructed through all the possible contractions in the form of
g

∇
g

∇φ, Q×∂φ,

Q×Q,
g

∇Q, which are the following 1+9 terms:

1)
g

�φ,

2) Qμ∂μφ, Q̃
μ∂μφ,

3) φQαβγQ
αβγ , φQαβγQ

βγα, φQμQμ, φQμQ̃
μ, φQ̃μQ̃

μ,

4) φ
g

∇μQ
μ, φ

g

∇μQ̃
μ,

where we have defined the Weyl vector and the other trace vector of non-metricity as

(28) Qμ :=
1

4
Qμν

ν , Q̄μ := Qν
νμ.

Thus the most general Palatini L3 action consists of 10 different terms and is given as

LJordan
3 := G3,0

g

�φ+G3,1Q
μ∂μφ+G3,2Q̄

μ∂μφ(29)

+G3,3φQαβγQ
αβγ +G3,4φQαβγQ

βγα +G3,5φQ
μQμ +G3,6φQμQ̄

μ

+G3,7φQ̄μQ̄
μ +G3,8φ

g

∇μQ
μ +G3,9φ

g

∇μQ̄
μ

=:

9∑
i=0

G3,i

Γ

�(i)φ,(30)

where the arguments of all the functions are φ and X, i.e., G3,i = G3,i(φ,X), etc. Under
the flat space-time limit of gμν → ημν and Γλ

μν → 0, the Palatini L3 action (30) indeed
reduces to the flat space-time action (22).

Furthermore, recall that the Riemann tensor is the form of
Γ

R ∼ ∂Γ + ΓΓ. Similarly,

the terms Q×Q and
g

∇Q also inhere such structure of ΓΓ and ∂Γ respectively. One then
might guess that these terms might affect the results of the cosmological perturbations
significantly, such as the speed of gravitational waves. Especially, one may wonder if the
speed of gravitational waves could deviate from unity, different from the case of metric
formalism. We shall investigate these issues in the next section.

4. – Tensor and scalar perturbations with the Galileon terms in Palatini
formalism

Here, noting the previous section, we consider the following Lagrangian:

(31) LJordan
3+4 := LJordan

3 + LJordan
4 = G4

Γ

R+K +

9∑
i=0

G3,i

Γ

�(i)φ,
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where G4, K, G3,i are understood to be functions of φ and X = − 1
2g

μν∂μφ∂νφ.
Unlike what was considered in sect. 2, the conformal transformation of this La-

grangian, due to the existence of the L3 term and its connection dependence, does not
lead to the Einstein frame. Similarly, analysis in the Jordan frame will be tedious. We
therefore shall resort to analysis in the Riemann frame.

The connection for this Lagrangian (31) can be solved as

(32) Γλ
μν = { λ

μν}g +
1

D
[{AX∂λX +Aφ∂λφ}gμν + 2{BX∂(μX +Bφ∂(μφ}δλν)],

where A,AX , Bφ, BX , D are some functions of φ and X, and their explicit forms are
given in ref. [1]. When G3,i = 0, this indeed reduces to (12). Again notice that under
∂μφ = 0 the connection reduced to that of Levi-Civita.

Substituting the solutions of the connection to (31) the Riemann frame of this action
after some calculation becomes

(33) LRiemann
3+4 = G4

g

R+K +G3,0

g

�φ+ Eφφ + EφXφαφαβφ
β + EXXφαφαβφ

γδφδ,

where Eφφ, EφX , EXX are some functions of φ and X, and their explicit forms are given
in ref. [1]. Again, indeed under G3,i = 0, this reduces to the action (15).

Unlike the action (1) we previously considered, this action, in general, will have ghost
degrees of freedom, namely the Ostrogradsky instability. To eliminate this Ostrogradsky
ghost, one must impose the condition

(34) EXX =
3G2

4X

2G4
.

As a result, the theory (31) will have at most 2 tensor and 1 scalar degrees of freedom.
This again falls into the qDHOST class of 2N-I/Ia. Thus, similar to sect. 2 the tensor
perturbation of this theory, under the condition (34), has the sound velocity of unity,
which coincides with that in metric formalism. Thus, contrary to the naive expectation,
once one removes the ghost degree of freedom, the L3 terms in Palatini formalism can
still serve as dark energy as well as an inflaton.

Furthermore, again, under the redefinition of functions

(35) f = G4, Q = G3,0 +

∫
EφXdX, A4 =

3G2
4X

2G4
= EXX ,

the action (33) reduces to the DHOST action (16) which can then be used to estimate
the scalar perturbations. Due to tediousness, we shall omit the explicit form of the sound
speed of scalar perturbations, however it can be computed from (20) and (21) following
the lines of sect. 2

.
3.

5. – Conclusion and discussions

In this article, we considered the cosmological perturbations of scalar-tensor theories
in the Palatini formalism. First of all, we discuss the action (1), where the Ricci scalar is
conformally coupled to a function of a scalar and its kinetic term, and there is k-essence
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action consisting of a scalar and its kinetic term. We have found that for such a non-
minimally coupled theory of (1), there are three (classically) equivalent frames, Jordan,
Einstein, and Riemann; have computed their quadratic formulae for tensor and scalar
perturbations; and have shown their equivalence. Notably, the tensor modes propagate
with the sound velocity of unity, which is different from the metric formalism counterpart.
Thus, this model can serve as dark energy as well as an inflaton despite the presence of
X dependence in the G4 term.

Next we considered the extension of the L3 terms called Galileon terms to the Palatini
formalism as in (31), which does not have an Einstein frame. A term corresponding to
�φ in metric formalism is not uniquely defined in Palatini formalism due to the covariant
derivative not being compatible with the metric, that is, non-metricity. We found that
there are essentially 10 different (inequivalent) definitions in Palatini formalism for such
a term. By including all of them in our action, we have also computed its perturbations.
One might expect that the L3 terms can generate a ghost due to Ostrograsky instability
and the sound speed of gravitational waves could potentially deviate from unity, in sharp
contrast to the case of metric formalism. However, imposing the ghost-free conditions
leads to the speed of the tensor modes to be unity, whereas the scalar-perturbations
differ in general. This fact is quite interesting because the ghost-free L3 terms in Palatini
formalism can still serve as dark energy as well as an inflaton.

Similar to sect. 3, one may want to consider higher terms associated with the scalar

such as (
Γ

∇
Γ

∇φ)2 to implement L4 terms or L5 terms. This, however, introduces the kinetic
term for the connection in general. Thus the theory will exhibit more than 3 degrees of
freedom. This implies that one cannot analyze neither in the Einstein frame nor in the
Riemann one. Furthermore, one can say that such theory is similar to quadratic gravity
in Palatini/metric-affine formalism, which also has gained increasing interest in recent
years. However, these are left for future work.

Finally, we would also like to comment that scalar-tensor theories in Palatini for-
malism are yet to be fully analyzed. Up to our knowledge, neither generalized scalar-
tensor theories with a dynamical nor a non-dynamical connection that admit second-order
equations of motion are known. It will be interesting to follow Lovelock’s and Horndeski’s
footsteps to find such a theory. However, this is also left for future work.
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