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Summary. — In this talk we review some recent results concerning the occurrence
of regular solutions in local and non-local higher-derivative gravity models. We
show that, even though fourth-order gravity still has curvature singularities, any
local model with at least six derivatives in the spin-2 and spin-0 sectors has a
regular Newtonian limit, without curvature singularities, when coupled to a point-
like source. Also, we discuss the general conditions for the regularity of the higher-
order curvature invariants, in both local and non-local models, in the linearised
limit.

1. – Introduction: Higher-derivative gravity models

The main motivation for the introduction of higher derivatives in gravity theories
comes from the fact that general relativity (GR) is not perturbatively renormalisable,
and higher-derivative terms occur already in semi-classical gravity [1]. Indeed, in the
renormalisation of a quantum field theory in curved space-time, higher-derivative terms
with four derivatives of the metric appear as divergences associated with vacuum dia-
grams. Besides that, fourth-derivative gravity is a renormalisable theory, as shown by
Stelle in 1977 [2]; while higher-derivative gravity (HDG) with six and more derivatives
can be super-renormalisable [3]. As it has already been discussed in this conference,
higher derivatives bring the problem of ghosts, and a definitive answer on how to deal
with the ghosts, or how to live with them, or how to make them harmless, is still needed.
There are many proposals in these directions (some of them were already discussed in the
conference), for example, Lee-Wick gravity [4, 5] (based on HDG with complex poles),
the “fakeon” quantisation prescription by Anselmi and Piva [6,7], the possibility of hav-
ing unstable ghosts [8], and the idea of avoiding ghosts from the beginning by means of
non-locality [9-14]. We are not going to elaborate on the ghost problem here —instead,
we are going to consider only the issue of the Newtonian singularities in these models.
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The general gravitational action we are going to consider can be written in the form

(1) S = − 1

κ
2

∫
d4x

√
−g

[
2R+ CμναβF2(�)Cμναβ − 1

3
RF0(�)R

]
,

where Cμναβ is the Weyl tensor and κ
2 = 32πG. The first term corresponds to the

Einstein-Hilbert action, while the other two terms contain four or more derivatives, or
even an infinite number of them if it is to describe a non-local theory. As we are concerned
only with singularities —actually, one of the simplest singularities in Physics, that is the
Newtonian singularity (or the singularity associated with a Dirac delta source)— the
action above is the most general for this purpose. One could add, for example, a term
quadratic in the Riemann tensor, but then it is possible to recast the action in the
form (1) plus a term of order (curvature)

3
that is not relevant at the Newtonian limit,

just like other terms of higher power in curvatures.
Let us now recall some classical results regarding theories of the type (1). If the func-

tions F0,2 are constants, we have the fourth-derivative gravity, whose modified Newtonian
potential,

(2) ϕ(r) = −GM

r

(
1− 4

3
e−m(2)r +

1

3
e−m(0)r

)
,

is finite [2]. When r → 0 the combination of exponential functions converges to −1,
cancelling the singularity. In fact, the potential can be expanded as a Taylor series
around r = 0, with a constant term and higher powers on r. However, the finiteness of the
potential is not enough to prevent the occurrence of singularities in curvature invariants.
For example, still in the linear approximation, you can evaluate the Kretschmann scalar
associated with a Dirac delta source,

(3) R2
μναβ ∼

r→0

G2M2

r2
(m4

(0) +m2
(0)m

2
(2) + 7m4

(2)),

that still diverges. (These calculations are all in the linear regime. Considerations in
the non-linear regime are much more involved and have been done, e.g., by Stelle and
collaborators [15,16], and the final result is that the static spherically symmetric solutions
that couple to a delta source still have curvature singularities.)

Another result that is worth mentioning is that in the incomplete polynomial gravity
(that is, the action (1) with F2 = 0 but F0 being a polynomial) the potential is not
finite [17].

Our motivation here is to review some more recent results regarding the occurrence of
singularities in the Newtonian limit in theories of the type (1). It is very complicated to
carry out the general analysis in the full non-linear theory. So, we are going to focus on
the simplest singularities, that are related to the Newtonian limit and the field generated
by a point-like source.

2. – Newtonian limit

In the Newtonian limit we can take the metric as a small perturbation around the
Minkowski space-time, gμν = ημν + hμν , and expand the action up to second order on
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hμν . The resulting equations of motion, with a source Tμν , are

(4) Hμν,αβ hαβ = −κ
2

2
Tμν ,

with

Hμν,αβ = f2(�)
[
δμν,αβ� −

(
ηα(μ∂ν)∂β + ηβ(μ∂ν)∂α

)]
− 1

3
[f2(�) + 2f0(�)]

[
ημνηαβ� −

(
ημν∂α∂β + ηαβ∂μ∂ν

)]
+

2

3
[f2(�)− f0(�)]

∂μ∂ν∂α∂β

� ,(5)

The functions fs (s = 0, 2) are related to the form factors Fs in the action,

(6) fs(�) = 1 + Fs(�)�.

If these functions are polynomials we have a local HDG, if they are non-polynomial we
have a non-local model. The form factors usually considered in non-local HDG have the
structure [9-12]

(7) Fs(�) =
eHs(�) − 1

� ,

where Hs is an entire function. Therefore, fs is the exponential of an entire function and
does not have zeros in the complex plane.

Notice that the roots of the equations fs(k
2) = 0 define the massive poles of the

propagator associated with the wave operator (5), namely,

(8) Gμναβ(k) =
P

(2)
μναβ

k2f2(k2)
−

P
(0−s)
μναβ

2k2f0(k2)
,

where P (2) and P (0−s) are the spin-2 and spin-0 projectors [18]. Therefore, if the form
factor (7) is used, there are no other poles in the propagator besides the usual massless
graviton. On the other hand, in a local (polynomial) theory there might be many massive
degrees of freedom, depending on the order of the polynomial.

Since we are interested in evaluating the modifications owed to higher derivatives in
the Newtonian limit, we need to evaluate the field generated by a point-like mass in
rest(1). Thus, we consider a Dirac delta as source with mass M and assume the metric
to be static and spherically symmetric,

(9) ds2 = (1 + 2ϕ)dt2 − (1− 2ψ)(dx2 + dy2 + dz2).

Hence, the solution to the potentials ϕ and ψ come from solving (4). This is equivalent
to solve [21]

(10) fs(−Δ)Δχs = κsρ , with κs = 2(3s− 2)πG (s = 0, 2)

(1) For considerations regarding a collapsing null shell, see refs. [19-21].
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for χ0,2 and then substitute into the definition

(11) ϕ =
1

3
(2χ2 + χ0) , ψ =

1

3
(χ2 − χ0).

It is useful to work with the auxiliary potentials χs instead of the original potentials ϕ and
ψ of the metric because each of them only depend on the spin-s part of the propagator.

So, once the equations for χ0,2 are solved, you can obtain the usual potentials in
the original presentation. With no loss of generality, in what follows we concentrate the
discussion on the potentials χs. Using the Fourier transform method we can write the
solution to the potential,

(12) χ(r) = − κM

2π2r

∫ ∞

0

dk

k

sin(kr)

f(k2)
,

where we dropped the s-label for the sake of simplicity.
Some examples are in order. i) In the fourth-derivative gravity we have the poten-

tial [2]

(13) χ(r) = −κM

4πr
(1− e−mr),

that is the usual Newton plus a Yukawa potential correction with a certain mass m.
ii) In a polynomial-derivative gravity with N simple poles in the propagator there

appear more Yukawa-like potentials [22, 23] (see also [17]),

(14) χ(r) = −κM

4πr

(
1−

N∑
i=1

Ci e
−mir

)
,

and the constants Ci depend on the masses mi of the particles in the spectrum (the zeros
of (6)),

(15) Ci =

N∏
j=1
j �=i

m2
j

m2
j −m2

i

.

iii) In the simplest non-local gravity (with f(k2) = ek
2/m2

) the potential is related to
the error function [13,14],

(16) χ(r) = −κM

4πr
erf

(mr

2

)

It is almost easy to see that these three potentials are finite at r = 0. Maybe the only
tricky one is the polynomial case, because here we have all the coefficients Ci and, when
r = 0, you have to prove that the sum of them all is equal to 1. The proof of this general
identity can be found in the work [23], and indeed the singularity is cancelled.

The formulas above for the potential of a general polynomial-derivative gravity are
valid also if the propagator has complex poles [23], which is one of the basis of Lee-Wick
gravity [4,5]. It is interesting that these complex poles generate oscillating contributions
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to the potential, which are suppressed by Yukawa factors [23]. Some applications of these
oscillating modes can be found, e.g., in [24-26].

Using the identity
∑

Ci = 1, it was shown in [23] that the metric potentials ϕ and
ψ are finite for any complete polynomial HDG, that is, a model with higher derivatives
in both spin-0 and spin-2 sectors. However, the actual evaluation of the potential for
general models, which could include degenerate poles, was done later, in [21].

3. – Regularity of curvature invariants

The finiteness of the metric does not imply that the curvature scalars are going to be
regular. For instance, for metric potentials expanded like

ϕ(r) =ϕ0 + ϕ1r + ϕ2r
2 + ϕ3r

3 +O(r4),

ψ(r) =ψ0 + ψ1r + ψ2r
2 + ψ3r

3 +O(r4),
(17)

the Kretschmann scalar reads (c0 is a constant)

(18) R2
μναβ =

8(ϕ2
1 + 3ψ2

1)

r2
+

32(ϕ1ϕ2 + 4ψ1ψ2)

r
+ c0 +O(r).

It is cursory to realize that there are divergences depending only, basically, on the terms
linear on r in the series expansion of the potentials (17) [20]. Thus, a condition to have
the regularity of curvature-squared scalars is that χ′

0,2/r goes to a constant when r → 0.
Or, if the potential is analytic, as assumed here, that the coefficient of the terms linear
on r is null. It is possible to show that the same condition holds for C2, R2

μν , R
2 and

so on (see, e.g., [21]). So, we need to check the terms of order r to see if the singularity
appears in curvature invariants or not.

In the work [21] the potential for a general polynomial-derivative gravity was obtained
(including the cases of complex poles and/or degenerate poles; the only assumption is
the absence of tachyons),

(19) χ(r) = −κM

4πr
+

κM

4π3/2

N∑
i=1

αi∑
j=1

Ai,j

(
r

2mi

)j− 3
2

Kj− 3
2
(mir) .

Ai,j are constants depending on the masses mi, while αi is the multiplicity of each of the
N roots mi. The result of expanding this potential around r = 0 is

(20) χ(r) =
κM

4πr

[
−1 +

N∑
i=1

Ai,1

]
+ χ{0} + χ{1}r + χ{2}r2 + O(r3),

with

(21) χ{1} =
κM

8π
(S1 − S2), S1 ≡

N∑
i=1

Ai,1m
2
i , S2 ≡

N∑
i=1

Ai,2.

One can show that if f is a non-constant polynomial, i.e., if you have a theory with
at least fourth derivatives, then

∑
i Ai,1 = 1 and the potential χ is regular. Moreover, if
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f is of order larger than 1 (i.e., if you have at least six derivatives in the action), then
S1 = S2 and the linear term vanishes(2). So, if you have a complete theory with at least
four derivatives, the modified Newtonian potential is finite; and if you have at least six
derivatives the Newtonian limit is regular, without curvature singularities. This holds
independently of the exact number of poles in the propagator, nor on whether they are
degenerate or complex/real.

We are going to call a potential without these 1/r diverging terms as 0-regular (that
is, regular in the standard sense), and the potential that does not have the term linear
on r, 1-regular [27]. So, we can say that HDG with fourth-derivatives in both spin-2
and spin-0 sectors have regular potentials, and those with at least sixth derivatives have
1-regular potentials. The 1-regularity of both potentials χ0 and χ2 means that there are
no curvature singularities.

4. – Regularity in non-local models

We showed that all complete local models with more than four derivatives have re-
markable regularity properties. And now we would like to extend it to non-local models;
since they are defined by an infinite series on the d’Alembertian, they might be regarded
like a polynomial with infinite order. Of course, this is not an accurate way of thinking,
but it can be inspiring in some sense.

Some non-local ghost-free models are known to have a regular Newtonian limit, with-
out curvature singularities. There are many papers containing calculations with specific
models (see, e.g., [20, 28-30]). So, our idea was to extend the result we have for general
local models to the non-local ones. To this end, we used the effective source formalism.
The basic idea is to rewrite eq. (10) for the potentials χs in an equivalent form, namely,
as the usual Poisson equation with a modified source,

(22) Δχ = κ ρeff, with ρeff(r) =
M

2π2

∫ ∞

0

dk
k sin(kr)

rf(k2)
.

Therefore, instead of a Dirac delta source here we have a smeared distribution. In [31]
we showed that the polynomial theories with more than four derivatives have a regular
modified source ρeff, and this makes the potential to be 1-regular (i.e., without the
term linear on r). Moreover, in some classes of non-local theories, you can view the
corresponding effective source as the limit of a sequence of sources associated with local
theories [31]. This holds, for example, in the “ghost-free gravity of type N”, defined by
f(k2) = exp (k2/m2)N [28]. In short, since each order of truncation of the series of f(k2)
is a polynomial function, it is related to a regular smeared source. It is possible to show
that this sequence of sources converges uniformly, so that the limit source is also regular.
Of course, it is not true that this holds for all non-local HDG models. For example, there
are theories defined by form factors that tend to polynomials in the ultraviolet (UV) for
which the convergence may not be uniform (see, e.g., [31] for one such example).

One important conclusion at this point is that the regularity of curvature scalars is
not consequence of non-locality or ghost-free condition. There are local theories and

(2) The proof of these identities follows from using partial fraction decomposition and can be
found in the appendix of [21].
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theories with ghosts that have regular curvature invariants. Actually, it is consequence
of the propagator having an improved behaviour in the UV.

5. – Higher-order regularity

More recently we studied the higher-order regularity of the metric. This is motivated
by the observation that the absence of the linear term in the series expansion of the
potentials is enough to regularise the curvature invariants without covariant derivatives
of curvatures —but it is not enough to regularise scalars containing derivatives of the
curvatures. For example, for the metric (9) we have

(23) �nR = 2Δn+1χ0 = 2χ
(2n+2)
0 +

4(n+ 1)

r
χ
(2n+1)
0 .

As before, χ0 is the potential related to the spin-0 part of the propagator. Owed to this
relation, it is easy to see the existence of a singularity which comes from the (2n+ 1)-th

derivative of χ0. So, if χ
(2n+1)
0 (0) is non-zero, the singularity appears again, in the scalar

�nR.

The result we found in [27] is that if the action is complete with 2N +6 derivatives of
the metric, then all curvature-derivative invariants with at most 2N covariant derivatives
are regular, and there are singular scalars with 2N+2 covariant derivatives. For example,
if N = 0 (sixth-derivative gravity), the first non-zero odd term of the series expansion
of the potential is O(r3) then �R diverges. If N = 1 (eight-derivative gravity), the
potential does not have linear term, nor r3-term; there is only O(r5) and so on, so �2R
diverges, etc.

In the case of polynomial theories with only simple poles in the propagator this may
be proved directly by using partial fraction decomposition and the expression of the
potential (14) [27]. Then, one can see that the coefficients of the odd-power terms are
null, up to a certain order. In this spirit, the previous relations that we showed in sect. 3
appear as particular cases. The result is that if the action has 2N + 2 derivatives in the
spin-s sector, the potential χs is (N − 1)-regular but it is not N -regular. So, there is a
certain minimal number of derivatives that you need to apply in some curvature scalars
in order to find some singular invariants.

The general theorem reads: if the potentials χ0,2 are (p + 1)-regular, then all the
linearised curvature-derivative invariants with at most 2p-derivatives are non-singular.
The details can be found in [27].

This result can be extended to higher-derivative non-local theories (also with some
non-analytic form factors) by using the effective source formalism, which again proves
to be very convenient. But in [27] instead of taking limits and verifying the uniform
convergence of the series, we studied the conditions under which the damping caused by
form factors in the UV allowed us to interchange some limits. The conclusion is that
(see [27] for more details): if the function f(k2) asymptotically grows at least as fast as
k4N+2 for a certain N , then the effective source is at least 2N times differentiable and it
is N -regular. Then, you can extend the regularity of the source to the potential.

It follows, for example, that the potential in non-local theories which tend to polyno-
mials in the UV are not infinitely regular; the explicit example showed in the talk can be
found in [27]. See also [32] for the example of fourth-derivative gravity with logarithmic
quantum corrections.
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6. – Conclusions

In the theories with more than four derivatives in both spin-2 and spin-0 sectors we
have not only a finite modified Newtonian potential, but also a regular non-relativistic
limit, that is, without curvature singularities. Hence, in some sense, quantum and clas-
sical singularities are softened when going from 2 to 4, and then to 6 and more deriva-
tives, as we go from GR (non-renormalisable, singularity in the potential and curvature)
to fourth-derivative gravity (renormalisable, finite potential but curvature singularities)
and to sixth and higher-derivative gravity (super-renormalisable, finite potential, regular
curvature).

Concerning the scalars containing covariant derivatives of the curvature tensors,
higher-order regularity can be achieved depending on the number of derivatives in the
action. It is important to have in mind that the regularity of the curvature invariants is
not a consequence of non-locality or a ghost-free condition, but of the behaviour of the
propagator in the UV.

“Infinite-order regularity” can be achieved in some types of non-local theories (but
not in all of them). In a similar way, the effective regularisation of the Dirac delta source
can be achieved in local theories (with six or more derivatives). However, to completely
regularise the delta source (that is, to obtain a source whose derivatives are all bounded)
one needs a form factor that grows faster than any polynomial, i.e., non-locality is
necessary.

All the considerations above are valid in the linear regime, and we believe that these
findings motivate the investigation of higher-derivative theories in the full non-linear
regime. In this vein, to our best knowledge, the only work on models with six and more
derivatives is [33]. Some recent applications of higher-order regularity of regular black
holes, and some generalizations of results mentioned in sect. 5 to the non-linear regime
can be found in [34].

∗ ∗ ∗
This article is based on the transcription of the talk given by the author at the

International Online Workshop on Quantum Gravity, Higher Derivatives and Nonlocal-
ity, 8–12 March 2021. The author acknowledges the collaboration of Antonio Accioly,
Nicolò Burzillà, Leonardo Modesto, Tibério de Paula Netto and Ilya L. Shapiro in the
works [21, 24, 27, 31, 32], where some of the results presented here were obtained for the
first time.
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