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Summary. — To a line bundle over a noncommutative space there is naturally
associated a Fock module. The algebra of corresponding creation and annihilation
operators is the total space algebra of a principal U(1)-bundle over the noncommu-
tative space. We describe the general construction and illustrate it with examples.
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1. – Introduction

Algebraically, a vector bundle M → X over a (compact finite-dimensional) mani-
fold M is completely characterized by its smooth sections Γ(M,X). In this context,
the space of sections is a (right) module over the algebra C∞(X) of smooth functions
over M . Indeed, by the Serre-Swan theorem (initially stated for continuos functions and
sections [22], and extended to the smooth case [8]), finite-rank complex vector bundles
over a compact Hausdorff space M correspond canonically to finite projective modules
over the algebra C∞(X). Indeed, by this theorem a C∞(X)-module E is isomorphic to
a module Γ(M,X) of smooth sections, if and only if it is finite projective.

For a Hermitian bundle there is extra structure: the Hermitian inner product 〈·, ·〉x
on each fiber Mx, x ∈ X, gives a C∞(X)-valued Hermitian map on the module Γ(M,X),

(1.1) 〈·, ·〉 : Γ(M,X) × Γ(M,X) → C∞(X), 〈ξ, η〉(x) =: 〈ξ(x), η(x)〉x,
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for any ξ, η ∈ Γ(M,X). By its definition, this map satisfy the properties:

〈ξ, ηb〉 = 〈ξ, η〉b, 〈ξ, η〉∗ = 〈η, ξ〉,(1.2)
and 〈η, η〉 ≥ 0, 〈η, η〉 = 0 ⇔ η = 0, for b ∈ C∞(X), ξ, η ∈ Γ(M,X).

Next, let End(M) → X be the endomorphism bundle with corresponding sections
Γ(End(M),X). The latter is an algebra under composition and there is an identification

Γ(End(M),X) 	 EndC∞(X)(Γ(M,X)),

with the algebra of C∞(X)-endomorphisms of the module Γ(M,X). By its definition
EndC∞(X)(Γ(M,X)) acts on the left on the module Γ(M,X). Moreover, in parallel
with (1.1) there is a EndC∞(X)(Γ(M,X))-valued Hermitian product on Γ(M,X)

(1.3) |·〉〈·| : Γ(M,X) × Γ(M,X) → EndC∞(X)(Γ(M,X)),

where, for any ξ, η ∈ Γ(M,X), the endomorphism ξ〈η| is defined by

(1.4) |ξ〉〈η|(ξ) := ξ〈η, ξ〉 for ξ ∈ Γ(M,X).

This Hermitian product has properties analogous to the one in (1.2), with linearity now
in the first entry, that is, for T ∈ EndC∞(X)(Γ(M,X)) and ξ, η ∈ Γ(M,X):

|Tξ〉〈η| = T 〈ξ, η〉, (|ξ〉〈η|)∗ = |η〉〈ξ|,(1.5)
and |η〉〈η| ≥ 0, |η〉〈η| = 0 ⇔ η = 0.

The fact that Γ(M,X) is a (EndC∞(X)(Γ(M,X)), C∞(X))-bimodule and is endowed
with two Hermitian products which are compatible in a sense that generalises the rela-
tion (1.4), put it in the context of Morita equivalence that we shall describe in sect. 2.

On the other hand, one sees that the vector bundle M → X is a line bundle if and
only if EndC∞(X)(Γ(M,X)) 	 C∞(X). This motivates calling noncommutative line
bundle over the noncommutative algebra B (having the role of C∞(X)), a self-Morita
equivalence bimodule for B, that is a B-bimodule E (having the role of (Γ(M,X)) with
extra structures (roughly, two compatible B-valued Hermitian products on E).

In the present paper we illustrate how to naturally associate a Fock module over the
(noncommutative) algebra B to any such a noncommutative line bundle over the algebra
B of the base space. The algebra of corresponding creation and annihilation operators
acting on a Hilbert module (or rigged Hilbert space) can then be realised as the total
space algebra of a noncommutative principal U(1)-bundle over the algebra B.

2. – Hilbert modules and Morita equivalence

Hilbert modules generalize Hilbert spaces, with the complex algebra of scalars C

replaced by a complex ∗-algebra B. Geometrically (and in the light of Gel’fand-Naimark
and Serre-Swan theorems), as allude to in the previous section, a Hilbert module over
B is the module of sections of a noncommutative Hermitian vector bundle over the
noncommutative space “dual” to the algebra B.

We recall here some of the definitions and results that we need later on in the
paper. Our main references for this section are [14, 19]. Typically, we let B denote a
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pre-C∗-algebra, that is a normed ∗-algebra, whose closure is a C∗-algebra denoted B;
the algebra B has the role of smooth functions while its closure B that of continuous
functions.

2.1. Hilbert-modules. – A right pre-Hilbert-module over B is a right B-module E with
a B-valued Hermitian product 〈·, ·〉B : E × E → B satisfying the conditions:

〈ξ, ηb〉B = 〈ξ, η〉Bb, 〈ξ, η〉B = (〈η, ξ〉B)∗ ,

and 〈ξ, ξ〉B ≥ 0, 〈ξ, ξ〉B = 0 ⇔ ξ = 0,

for all ξ, η ∈ E and for all b ∈ B. In fact, the element 〈ξ, ξ〉B is required to be positive in
the completion B. An alternative name for E is a right B-rigged Hilbert space.

By Lemma 2.16 of [19], a pre-Hilbert-module E over B can be completed to a Hilbert-
module E over B, where E is the completion of E in the norm ‖ · ‖E on E defined by

(2.1) ‖ξ‖E = (‖〈ξ, ξ〉B‖B)1/2,

using the norm ‖ · ‖B on B. One says that the pre-Hilbert-module E (or better the
Hilbert-module E) is full if the ideal 〈E , E〉B := SpanB{〈ξ, η〉B | ξ, η ∈ E} is dense in B.
There are analogous definitions for left modules, with Hermitian product denoted B〈, 〉
and taken to be B-linear in the first entry. Clearly, when B = C a Hilbert module is a
usual Hilbert space. To lighten notations we write 〈·, ·〉 = 〈·, ·〉B whenever possible and
use the name Hilbert B-module to mean a (pre-)Hilbert module over the ∗-algebra B.

The simplest example is the algebra B itself with respect to the Hermitian product
〈a, b〉 = a∗b. The Hilbert module Bn consists of n-tuples of elements of B, with
component-wise operations, and with Hermitian product defined by

〈(a1, . . . , an), (b1, . . . bn)〉 =
∑n

j=1
〈aj , bj〉.

A Hilbert B-module E is (algebraically) finitely generated if there exists a finite col-
lection {ηi}n

j=1 of elements of E such that every ξ ∈ E is of the form ξ =
∑n

j=1 ηjbj for
some bj ’s in B. A Hilbert B-module E is projective if it is a direct summand in the free
module Bm for some positive integer m. By 15.4.8 of [24], every algebraically finitely
generated Hilbert-module over a unital algebra is projective.

If E ,F are two Hilbert B-modules over the same algebra B, one says that an operator
T : E → F is adjointable if there exists an operator T ∗ : F → E such that

〈Tξ, η〉 = 〈ξ, T ∗η〉, for all ξ ∈ E , η ∈ F .

An adjointable operator is automatically B-linear and bounded. The collection of ad-
jointable operators from E to F is denoted LB(E ,F). A bounded B-linear operator need
not be adjointable, thus the need for the definition. Clearly, if T ∈ LB(E ,F), then
T ∗ ∈ LB(F , E). In particular, LB(E) := LB(E , E) is a ∗-algebra.

There is an important class of operators which is built from “finite rank” operators.
For any ξ ∈ F and η ∈ E one defines the operator θξ,η : E → F as

(2.2) θξ,η(ζ) = ξ〈η, ζ〉, for all ζ ∈ E .
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In a Dirac ket-bra notation this could be denoted θξ,η(ζ) = |ξ〉〈η|. Every such θξ,η is
adjointable, with adjoint θ∗ξ,η := θη,ξ : F → E . The closed linear subspace of LB(E ,F)
spanned by {θξ,η | ξ, η ∈ E} is denoted by KB(E ,F). In particular KB(E) := KB(E , E) ⊆
LB(E); this is a closed ideal, whose elements are referred to as compact endomorphisms.
One should remark that both LB(E) and KB(E) are C∗-algebras for the operator norm.
When possible we write L(E) = LB(E) and K(E) = KB(E).

The dual of E , denoted by E∗, is defined as the space

(2.3) E∗ := {φ ∈ HomB(E ,B)|∃ξ ∈ E such that φ(η) = 〈ξ, η〉 ∀η ∈ E},

that is E∗ := KB(E ,B). Thus, with ξ ∈ E , and λξ : E → B the operator defined by
λξ(η) = 〈ξ, η〉, for all η ∈ E , every element of E∗ is of the form λξ for some ξ ∈ E .
The module E is called self-dual if all elements of LB(E ,B) are of this form, i.e. if the
module map E � ξ �→ λξ ∈ LB(E ,B), is surjective, so that E∗ coincides with the whole
of LB(E ,B). If B is unital, then Bn is self-dual for any n ≥ 1. As a consequence, every
finitely generated projective Hilbert module over a unital algebra is also self-dual.

2.2. Morita equivalence. – Given a right Hilbert B-module E , by construction, compact
endomorphisms act from the left on E . Then, by defining:

K(E)〈ξ, η〉 := θξ,η,

we obtain a natural K(E)-valued Hermitian product on E . Note the it is left linear
over K(E), that is K(E)〈T · ξ, η〉 = T · (K(E)〈ξ, η〉) for T ∈ K(E). With the notation
θξ,η(ζ) = |ξ〉〈η| this Hermitian product reads just like the one in (1.3) and (1.4). Thus
E is a left Hilbert K(E)-module and by the very definition of K(E), E is full over K(E).
One readily checks the compatibility condition

(2.4) K(E)〈ξ, η〉ζ = ξ〈η, ζ〉B, for all ξ, η, ζ ∈ E .

By its definition, K(E) acts by adjointable operators on the right B-module E . On the
other hand, with b ∈ B and ξ, η, ζ ∈ E , one computes

K(E)〈ξb, η〉ζ = (ξb)〈η, ζ〉B = ξ〈ηb∗, ζ〉B = K(E)〈ξ, ηb∗〉ζ,

that is, B acts by adjointable operators on the left K(E)-module E .
This example motivates the following definition:
Let A and B, be pre-C∗- algebras with C∗- algebra closures A and B. An (A,B)-

equivalence bimodule E is a right pre-Hilbert B-module with B-valued Hermitian product
〈 , 〉B, which is also a left pre-Hilbert A-module with A-valued Hermitian product A〈 , 〉
(〈 , 〉B is right B-linear, while A〈 , 〉 is left A-linear) with the additional properties that:

1. the Hermitian products are compatible, that is

ξ〈η, ζ〉B =A 〈ξ, η〉ζ, for all ξ, η, ζ ∈ E .
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2. A〈E , E〉 and 〈E , E〉B span dense ideals of the completions A and B respectively.

3. for all ξ, η ∈ E and a ∈ A, b ∈ B, it holds that

〈aξ, η〉B = 〈ξ, a∗η〉B and A〈ξb, η〉 = A〈ξ, ηb∗〉.

The compatibility of the two Hermitian products yields that the corresponding B-valued
and K(E)-valued norms as in (2.1) coincide (see [19], Lemma 2.30). Then by Prop. 3.12
of [19], the (A,B)-equivalence bimodule E can be completed to a (A,B)-equivalence
bimodule E where E is the completion of E in this norm.

If there exist an (A,B)-equivalence bimodule one says that the two pre-C∗-algebras
A and B are Morita equivalent (to be precise rather the C∗-algebras A and B). From the
considerations above on the algebra K(E) of compact endomorphisms and in particular
the compatibility condition (2.4), it is not surprising that the algebra K(E) has a central
role for Morita equivalence. Indeed, one shows (see [19], Prop. 3.8) that every full Hilbert
B-module E is a (K(E),B)-equivalence bimodule with K(E)-valued Hermitian product
given by K(E)〈ξ, η〉 = θξ,η. Conversely, if E is an (A,B) equivalence bimodule, then there
exists an isomorphism φ : A → K(E) such that

φ (A〈ξ, η〉) =K(E) 〈ξ, η〉, for all ξ, η ∈ E .

Thus, two pre-C∗- algebras A and B are Morita equivalent if and only if A 	 KB(EB) for
a full right pre-Hilbert B-module EB, or equivalently, if and only if B 	 AK(AE) for a
full left pre-Hilbert A-module AE . In fact, Morita equivalence is an equivalence relation,
with transitivity obtained by taking the interior tensor product of bimodules. We do not
dwell upon the details of the construction here while referring to §3.2 of [19], for instance.

For B = C so that E = H is a Hilbert space, the algebra K(E) is the algebra of
compact operators K(H) and K(H)〈ξ, η〉 = |ξ〉〈η| = ξ∗ ⊗ η. The Hilbert space H is a
Morita equivalence bimodule between K(H), acting on the left, and C, acting on the left.

2.3. Frames. – Suppose A,B are two unital pre-C∗-algebras, and let E be a finitely
generated (A,B)-equivalence bimodule. Since A 	 K(E), there exists a finite collection
of elements η1, . . . , ηn ∈ E with the property that

∑
j
A〈ηj , ηj〉 = 1A.

As a consequence, one can reconstruct any element ξ ∈ E as

(2.5) ξ =
∑

j
A〈ηj , ηj〉ξ =

∑
j
ηj〈ηj , ξ〉B,

using the compatibility condition of point 1. before. This motivates the following [20]:
With the algebra B unital, a finite standard module frame for the right Hilbert

B-module E is a finite family of elements {ηj}n
j=1 of E so that, for all ξ ∈ E , the reconstruc-

tion formula (2.5) holds true. The existence of a finite frame is a geometrical condition.
Whenever one has a right Hilbert B-module E with a finite standard module frame, E is
algebraically finitely generated and projective as a right module, with the frame explic-
itly providing a projection for E : the matrix p = (pjk) with entries pjk = 〈ηj , ηk〉B is a
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projection in the matrix algebra Mn(B). By construction (pjk)∗ = pkj and, using (2.5),

(p2)jl =
∑

k
〈ηj , ηk〉B〈ηk, ηl〉B =

∑
k
〈ηj , ηk〈ηk, ηl〉B〉B = 〈ηj , ηl〉B = pjl.

This establishes the finite right B-module projectivity of E and identifies E 	 pBn.
Furthermore, E is self-dual for its Hermitian product.

More generally, the module E is finitely generated projective whenever there exist two
finite sets {ηj}n

j=1 and {ζj}n
j=1 of elements of E with the property that

(2.6)
∑

j
K(E)〈ηj , ζj〉 = 1K(E).

Then, any element ξ ∈ E is reconstructed as ξ =
∑

j ηj〈ζj , ξ〉B, and one gets an idempo-
tent matrix ejk = 〈ζj , ηk〉B in Mn(B), (e2)jk = ejk, and E 	 eBn as a right B-module.

3. – Noncommutative line bundles

From sect. 1 we know that the module of sections Γ(M,X) of a vector bundle M → X
is a Morita equivalence between the algebra C∞(X) acting on the right, and the endo-
morphism algebra EndC∞(X)(Γ(M,X)) acting on the left. As already mentioned, the
vector bundle is in fact a line bundle if and only if EndC∞(X)(Γ(M,X)) 	 C∞(X).

Based on this, one could define a noncommutative line bundles over the noncommu-
tative algebra B to be the same as a self-Morita equivalence bimodule for B, that is a pair
(E , φ) with E a full right (pre-)Hilbert B-module E and φ : B → K(E) an isomorphism.

If (E , φ) is a noncommutative line bundle over B, the dual E∗ as defined in (2.3), is
made into a noncommutative line bundle over B as well. Firstly, E∗ is given the structure
of a (right) Hilbert module over B via φ. Recall that elements of E∗ are of the form λξ

for some ξ ∈ E , with λξ(η) = 〈ξ, η〉, for all η ∈ E . The right action of B on E∗ is then

λξ b := λξ ◦ φ(b) = λφ(b)∗ξ.

The B-valued Hermitian product on E∗ uses the K(E)-valued Hermitian product on E :

〈λξ, λη〉 := φ−1(θξ,η),

and E∗ is full as well. Next, define a ∗-homomorphism φ∗ : B → L(E∗) by

φ∗(b)(λξ) := λξ·b∗ ,

which is in fact an isomorphism φ∗ : B → K(E∗). Thus, the pair (E∗, φ∗) is a noncom-
mutative line bundle over B as well.

More generally, one considers tensor products of noncommutative line bundles starting
from the interior tensor product E ⊗̂φE of E with itself over B; this is naturally a right
B-module and can be made into a noncommutative line bundle over B. The construction
can be iterated yielding for n > 0, the n-fold interior tensor power of E over B,

E b⊗φn := E ⊗̂φE ⊗̂φ · · · ⊗̂φE , n-factors;
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again a noncommutative line bundle over B. Details are in ref [14], chapt. 4 and in
ref [14], sect. 2.3.

The collection of (isomorphic classes of) noncommutative line bundles over B has a
natural group structure with respect to the interior tensor product. The inverse of the
noncommutative line bundle (E , φ) is the dual noncommutative line bundle (E∗, φ∗). This
group is the Picard group of B, denoted Pic(B) in analogy with the classical Picard group
of a space, — the group of isomorphism classes of line bundles with group operation just
tensor product. For a commutative unital C∗-algebra B = C(X) the Picard group is the
semidirect product of the classical Picard group of X with the group of automorphisms
of the algebra B (which is the same as the group of homeomorphisms of X) [2].

4. – Fock modules and Pimsner algebras

With a noncommutative line bundle as a self-Morita equivalence bimodule, one con-
structs an algebra of (creation and annihilation) operators acting on a “Fock module”. It
has a natural role as the total space algebra of a noncommutative U(1)-bundle. To avoid
entangling in technical details we give it at the continuous level that is with C∗-algebras.

4.1. The Pimsner algebra. – To every pair (E, φ), where E is a right Hilbert B-module,
for a C∗-algebra B, and φ : B → LB(E) is an isometric ∗-homomorphism, Pimsner
associates in [18] a very natural and universal C∗-algebra. This important work has
attracted a lot of attention and has been meanwhile generalized in several directions.
We shall not work in full generality here, but rather under the assumption that the pair
(E, φ) is a noncommutative line bundle for B, that is φ is an isomorphism.

Given a noncommutative line bundle (E, φ) for the C∗-algebra B, in sect. 3 we de-
scribed the interior tensor product E ⊗̂φE, itself a noncommutative line bundle and,
more generally, the tensor product E b⊗φn, for n > 0. To lighten notation, we denote

E(n) :=

⎧⎪⎨
⎪⎩

E b⊗φn, n > 0,

B, n = 0,

(E∗) b⊗φ∗ (−n), n < 0.

Clearly, E(1) = E and E(−1) = E∗ and from the definition of these Hilbert B-modules,
one has isomorphisms K(E(n), E(m)) 	 E(m−n). Out of them, one constructs a two-sided
Fock module, as the Hilbert B-module E∞ given by a direct sum

E∞ :=
⊕

n∈Z

E(n).

As on usual Fock spaces, one defines creation and annihilation operators. Firstly, for
each ξ ∈ E one has a bounded adjointable operator (a creation operator) Sξ : E∞ → E∞,
shifting the degree by +1, defined on simple tensors by

Sξ(b) := ξ · b, b ∈ B,

Sξ(ξ1 ⊗ · · · ⊗ ξn) := ξ ⊗ ξ1 ⊗ · · · ⊗ ξn, n > 0,

Sξ(λξ1 ⊗ · · · ⊗ λξ−n
) := λξ2·φ−1(θξ1,ξ) ⊗ λξ3 ⊗ · · · ⊗ λξ−n

, n < 0.
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The adjoint of Sξ (an annihilation operator) is found to be Sλξ
:= S∗

ξ : E∞ → E∞ as

Sλξ
(b) := λξ · b, b ∈ B,

Sλξ
(ξ1 ⊗ · · · ⊗ ξn) := φ( 〈ξ, ξ1〉 )ξ2 ⊗ ξ3 ⊗ · · · ⊗ ξn, n > 0,

Sλξ
(λξ1 ⊗ · · · ⊗ λξ−n

) := λξ ⊗ λξ1 ⊗ · · · ⊗ λξ−n
, n < 0.

In particular, Sξ(λξ1) = φ−1(θξ,ξ1) ∈ B and Sλξ
(ξ1) = 〈ξ, ξ1〉 ∈ B.

The Pimsner algebra OE associated with the pair (E, φ) is the smallest C∗-subalgebra
of LB(E∞) containing the creation operators Sξ for all ξ ∈ E.

There is an injective ∗-homomorphism i : B → OE . This is induced by the injective
∗-homomorphism φ : B → LB(E∞) defined by

φ(b)(b′) := b · b′,
φ(b)(ξ1 ⊗ · · · ⊗ ξn) := φ(b)(ξ1) ⊗ ξ2 ⊗ · · · ⊗ ξn,

φ(b)(λξ1 ⊗ · · · ⊗ λξn
) := φ∗(b)(λξ1) ⊗ λξ2 ⊗ · · · ⊗ λξn

= λξ1·b∗ ⊗ λξ2 ⊗ · · · ⊗ λξn
,

whose image is in OE . In particular, for all ξ, η ∈ E it holds that SξS
∗
η = i(φ−1(θξ,η)),

that is the operator SξS
∗
η on E∞ is right-multiplication by the element φ−1(θξ,η) ∈ B.

A Pimsner algebra is universal in the following sense (see ref. [18], Thm. 3.12): Let
C be a C∗-algebra and σ : B → C a ∗-homomorphism. Suppose there exist elements
sξ ∈ C such that, for all ξ, η ∈ E, b ∈ B and α, β ∈ C it holds that:

αsξ + βsη = sαξ+βη,

sξσ(b) = sξb and σ(b)sξ = sφ(b)(ξ),

s∗ξsη = σ(〈ξ, η〉) and sξs
∗
η = σ

(
φ−1(θξ,η)

)
.

Then, there is a unique ∗-homomorphism σ̃ : OE → C so that σ̃(Sξ) = sξ for all ξ ∈ E.

4.1.1. Examples. The first example was already in [18]. Consider a C∗-algebra B
with an automorphism α : B → B. Then (B,α) is naturally a self-Morita equivalence
for B. The right Hilbert B-module structure is the standard one, with right B valued
Hermitian product 〈a, b〉B = a∗b. The automorphism α is used to define the left action
as a · b = α(a)b and the left B-valued Hermitian product by B〈a, b〉 = α(a∗b). For all
n ∈ Z, the module E(n) is isomorphic to B as a vector space,

E(n) � a · (x1 ⊗ · · · ⊗ xn) �−→ αn(a)αn−1(x1) · · ·α(xn−1)xn ∈ B,

and the module E∞ is isomorphic to a direct sum of copies of B. The corresponding
Pimsner algebra OE coincides with the crossed product algebra B �α Z.

As a second example, take the B-module E to be finitely generated and projective,
so that it admits a finite frame {ηj}n

j=1. Then, the reconstruction formula (2.5) yields

φ(b)ηj =
∑

k
ηk〈ηk, φ(b)ηj〉B, for any b ∈ B.

The C∗-algebra OE can be realised in terms of generators and relations [13]. It is indeed
the universal C∗-algebra generated by B together with n operators S1, . . . , Sn, satisfying

S∗
kSj = 〈ηk, ηj〉B,

∑
j
SjS

∗
j = 1, and b Sj =

∑
k
Sk〈ηk, φ(b)ηj〉B,(4.1)
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for b ∈ B, and j = 1, . . . , n. The generators Sj are partial isometries if and only if the
frame satisfies 〈ηk, ηj〉 = 0 for k �= j. For B = C and E a Hilbert space of dimension n,
one recovers the original Cuntz algebra On of [7].

4.2. Generalized crossed products. – In the present paper we consider algebras endowed
with a U(1)-action and their relation with Pimsner algebras. For this a somewhat better
framework is that of generalized crossed products. These were introduced in [1] and are
naturally associated with Hilbert bimodules via the notion of a covariant representation.

Let E be a Hilbert (B,B)-bimodule (not necessarily full). A covariant representation
of E on a C∗-algebra C is a pair (π, T ) where

1. π : B → C is a ∗-homomorphism of algebras,

2. T : E → C satisfies, or all b ∈ B and ξ, η ∈ E,

T (ξ)π(b) = T (ξb), π(b)T (ξ) = T (bξ)
and T (ξ)∗T (η) = π(〈ξ, η〉B), T (ξ)T (η)∗ = π(B〈ξ, η〉).

If E is a Hilbert (B,B)-bimodule, the generalized crossed product B �E Z of B by E is
the universal C∗-algebra generated by the covariant representations of E.

A generalized crossed product need not be a Pimsner algebra in general, since the
representation of B giving the left action need not be injective. However, by the uni-
versality of a Pimsner algebra, one shows that for a self-Morita equivalence bimodule
the two constructions yield the same algebra OE = B �E Z. The advantage of using
generalized crossed products is that a C∗-algebra carrying a U(1)-action that satisfies a
suitable completeness condition, can be re-obtained as a generalized crossed product.

5. – Algebras and U(1)-actions

A Pimsner algebra OE carries a natural U(1)-action. The map

Sξ → αz(Sξ) := z∗Sξ, for z ∈ U(1),

extends to an automorphism of OE by universality (with C = OE , σ = i the injection of
B into OE , and sξ := z∗Sξ). The degree n part of OE for this action is defined as usual,
as the weight space (OE)n := {x ∈ OE : αz(x) = z−nx}.

In general, let A be a C∗-algebra and {σz}z∈U(1) be a strongly continuous action of
the group U(1) on A. For each n ∈ Z, one defines the spectral subspaces

An :=
{

x ∈ A | σz(x) = z−n x for all z ∈ U(1)
}
.

Clearly, the invariant subspace A0 ⊆ A is a C∗- subalgebra of A, with unit whenever
A is unital; this is the fixed-point subalgebra. Moreover, the subspace AnAm, meant as
the closed linear span of the set of products xy with x ∈ An and y ∈ Am, is contained
in An+m. Thus, the algebra A is Z-graded and the grading is compatible with the
involution, that is A∗

n = A−n for all n ∈ Z.
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In particular, for any n ∈ Z the space A∗
nAn is a closed two-sided ideal in A0. Thus,

each spectral subspace An has a natural structure of Hilbert A0-bimodule (not necessarily
full) with left and right Hermitian products:

(5.1) A0〈x, y〉 = xy∗, 〈x, y〉A0 = x∗y, for all x, y ∈ An.

It was shown in ref. [1], Thm. 3.1, that a C∗-algebra A with a strongly continuous
U(1)-action is isomorphic to the generalized crossed product A0 �A1 Z if and only if
A is generated, as a C∗-algebra, by the fixed point algebra A0 and the first spectral
subspace A1 of the U(1)-action. When this is the case, one says that the action is semi-
saturated [10]. This condition is fulfilled in a large class of examples, like crossed product
by the integers, and noncommutative principal circle bundles, as we shall see in sect. 6
below.

We see that the module A1 has a central role. If it is a full bimodule, that is if

(5.2) A∗
1A1 = A0 = A1A

∗
1,

the action σ is said to have large spectral subspaces (cf. [17], §2), a slightly stronger
condition than semi-saturatedness (cf. [5], Prop. 3.4).

Now, the condition (5.2) is equivalent to the condition that all bimodules An are full,
that is A∗

nAn = A0 = AnA∗
n for all n ∈ Z. When this happens, all bimodules An are

noncommutative line bundles for A0, with isomorphism φ : A0 → KA0(An) given by

(5.3) φ(a)(ξ) := a ξ, for all a ∈ A0, ξ ∈ An.

Combining the result above with the fact that for a self-Morita equivalence the gen-
eralized crossed product is the same as a Pimsner algebra, one has that (see ref. [5],
Thm. 3.5):

Let A be a C∗-algebra with a strongly continuous action of the circle. Suppose that
the first spectral subspace A1 is a full and countably generated Hilbert bimodule over A0.
Then the Pimsner algebra OA1 of the self-Morita equivalence (A1, φ), with φ as in is (5.3),
is isomorphic to A. The isomorphism is given by Sξ �→ ξ for all ξ ∈ A1.

6. – Principal bundles and Pimsner algebras

At an algebraic level noncommutative (or quantum) principal circle bundles are in-
timately related to Z-graded ∗-algebras. When completing with natural norms one gets
continuous U(1)-actions on a C∗-algebra with Z-grading given by spectral subspaces,
that is the framework described in sect. 5, and the total space algebras are indeed ex-
amples of Pimsner algebras. For commutative algebras this was already in Prop. 5.8 of
ref. [11]:

Let A be a unital, commutative C∗-algebra carrying a U(1)-action. Suppose that the
first spectral subspace E = A1 is finitely generated and projective over B = A0. Suppose
furthermore that E generates A as a C∗-algebra. Then: 1) B = C(X) for some compact
space X; 2) E is the module of sections of some line bundle L → X; 3) A = C(P ), where
P → X is the principal U(1)-bundle over X associated with the line bundle L, and the
U(1)-action on A comes from the principal U(1)-action on P .
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6.1. Principal circle bundles and line bundles. – We aim at exploring the connections
between (noncommutative) principal U(1)-bundles, frames for modules as described in
sect. 2.3, and Z-graded algebras. The U(1)-action is dualized in a coaction of the dual
group Hopf algebra. Thus, we need to consider the unital complex algebra

O(U(1)) := C[z, z−1]/〈1 − zz−1〉,

where 〈1 − zz−1〉 is the ideal generated by 1 − zz−1 in the polynomial algebra C[z, z−1]
on two variables. The algebra O(U(1)) is a Hopf algebra by defining, for any n ∈ Z, the
coproduct Δ : zn �→ zn ⊗ zn, the antipode S : zn �→ z−n and the counit ε : zn �→ 1.

Let A be a complex unital algebra and suppose in addition it is a right comodule
algebra over O(U(1)), that is A carries a coaction of O(U(1)),

ΔR : A → A⊗O(U(1)),

— a homomorphism of unital algebras. Let B := {x ∈ A | ΔR(x) = x⊗ 1} be the unital
subalgebra of A made of coinvariant elements for ΔR.

One says that the datum (A,O(U(1)),B) is a noncommutative (or quantum) principal
U(1)-bundle when the canonical map,

can : A⊗B A → A⊗O(U(1)), x ⊗ y �→ xΔR(y),

is an isomorphism. In fact, this is the statement that the right comodule algebra A is a
O(U(1)) Hopf-Galois extension of B, and this is equivalent (in the present context) by
Prop. 1.6 of ref. [12], to the bundle being a noncommutative principal bundle for the
universal differential calculus in the sense of [6].

Next, if A = ⊕n∈ZAn is a Z-graded unital algebra, the unital algebra homomorphism,

ΔR : A → A⊗O(U(1)), x �→ x ⊗ z−n, for x ∈ An.

turns A into a right comodule algebra over O(U(1)). The unital subalgebra of coinvariant
elements coincides with A0. A necessary and sufficient condition for the corresponding
canonical map to be bijective is given in Thm. 4.3 of ref. [5] (cf. also [21], Lem. 5.1).
It is more manageable in general, and in particular it can be applied for examples like
the quantum lens spaces as principal circle bundles over quantum weighted projective
lines [5, 9]:

One shows that the triple (A,O(U(1)),A0) is a noncommutative principal U(1)-
bundle if and only if there exist finite sequences

(6.1) {ξj}N
j=1, {βi}M

i=1 in A1 and {ηj}N
j=1, {αi}M

i=1 in A−1

such that one has identities:

(6.2)
∑N

j=1
ηjξj = 1A =

∑M

i=1
αiβi.
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Out of the proof in Thm. 4.3 of ref. [15], we just report the explicit form of the inverse
map can−1 : A⊗O(U(1)) → A⊗A0 A, given by the formula

(6.3) can−1 : x ⊗ zn �→

⎧⎪⎪⎨
⎪⎪⎩

∑N
jk=1

x ξj1 · . . . · ξjn
⊗ ηjn

· . . . · ηj1 , n > 0,

x ⊗ 1, n = 0,∑M
ik=1

xαi1 · . . . · αi−n
⊗ βi−n

· . . . · βi1 , n < 0.

Now, conditions (6.2) are exactly the frame relations (2.6) for A1 and A−1, which
imply that they are finitely generated and projective over A0 (see ref. [5], Cor. 4.5).

Explicitly, with the ξ’s and the η’s as above, one defines the module homomorphisms

Φ(1) : A1 → (A0)N , Φ(1)(ζ) = (η1ζ, η2 ζ, · · · , ηN ζ)tr

and Ψ(1) : (A0)N → A1, Ψ(1)(x1, x2, · · · , xN )tr = ξ1 x1 + ξ2 x2 + · · · + ξN xN .

It then follows that Ψ(1)Φ(1) = idA1 . Thus e(1) := Φ(1)Ψ(1) is an idempotent in MN (A0),
and A1 	 e(1)(A0)N . Similarly, with the α’s and the β’s as above, one defines

Φ(−1) : A1 → (A0)M , Φ(−1)(ζ) = (β1ζ, β2 ζ, · · · , βM ζ)tr

and Ψ(−1) : (A0)M → A1, Ψ(−1)(x1, x2, · · · , xM )tr = α1 x1 + α2 x2 + · · · + αM xM ,

again module homomorphisms, with Ψ(−1)Φ(−1) = idA−1 . Then e(−1) := Φ(−1)Ψ(−1) is
an idempotent in MM (A0) and A−1 	 e(−1)(A0)M .

We see that the modules A1 and A−1 emerge as line bundles over the noncommutative
space dual to the algebra A0. In the same vein all modules An for n ∈ Z are line bundles
as well. Firstly, given any natural number d consider the Z-graded unital algebra

(6.4) AZd := ⊕n∈ZAdn,

which can be seen as a fixed point algebra for an action of Zd := Z/dZ on the starting
algebra A. Suppose (A,O(U(1)),A0) is a noncommutative principal U(1)-bundle. Then,
for all d ∈ N, the datum

(
AZd ,O(U(1)),A0

)
is a noncommutative principal U(1)-bundle.

The proof of this result goes by showing that the right modules Ad and A−d are
finitely generated projective over A0 for all d ∈ N. For this, let the finite sequences
{ξj}N

j=1, {βi}M
i=1 in A1 and {ηj}N

j=1, {αi}M
i=1 in A−1 be as in (6.1) and (6.2). Then, for

each multi-index J ∈ {1, . . . , N}d and each multi-index I ∈ {1, . . . , M}d the elements

ξJ := ξj1 · . . . · ξjd
, βI := βid

· . . . · βi1 ∈ Ad

and ηJ := ηjd
· . . . · ηj1 , αI := αi1 · . . . · αid

∈ A−d,

are clearly such that
∑

J∈{1,...,N}d ξJ ηJ = 1AZd =
∑

I∈{1,...,M}d αI βI . These allow one,
as before, to show principality and to construct idempotents e(−d) and e(d), thus showing
the finite projectivity of the right modules Ad and A−d for all d ∈ N.
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6.2. Strongly graded algebras. – The relevance of graded algebras for noncommutative
principal bundles was already shown in [23]. If G is any (multiplicative) group with unit
e, an algebra A is a G-graded algebra if its admits a direct sum decomposition labelled
by elements of G, that is A = ⊕g∈GAg, with the property that AgAh ⊆ Agh, for all
g, h ∈ G. If H := CG denotes the group algebra, it is well know that A is G-graded if
and only if A is a right H-comodule algebra for the coaction δ : A → A⊗H defined on
homogeneous elements ag ∈ Ag by δ(ag) = ag ⊗ g. Clearly, the coinvariants are given by
AcoH = Ae, the identity components. One has then the following result (cf. [15], 8.1.7):
The datum (A,H,Ae) is a noncommutative principal H-bundle for the canonical map

can : A⊗Ae
A → A⊗H, a ⊗ b �→

∑
g
abg ⊗ g,

if and only if A is strongly graded, that is AgAh = Agh, for all g, h ∈ G.
For the proof, one first notes that A is strongly graded if and only if AgAg−1 = Ae,

for all g ∈ G. Then one constructs an inverse of the canonical map pretty much as
in (6.3). Since, for each g ∈ G, the unit 1A ∈ Ae = Ag−1Ag, there exists ξg−1,j in Ag

and ηg,j ∈ Ag−1 , such that
∑

j ηg,jξg−1,j = 1A. Then, can−1 : A ⊗ H → A ⊗Ae
A, is

given by

can−1 : a ⊗ g �→
∑

j
a ξg−1,j ⊗ ηg,j .

For the particular case of G = Z = Û(1), so that CG = O(U(1)), this translates the
result above on the principality of the bundle into the following:

The datum (A,O(U(1)),A0) is a noncommutative principal U(1)-bundle if and only
if the algebra A is strongly graded over Z, that is AnAm = An+m, for all n,m ∈ Z.

In the context of strongly graded algebras, the fact that all right modules An for all
n ∈ Z are finite projective is a consequence of (see ref. [16], Cor. I.3.3).

6.3. Pimsner algebras from principal circle bundles. – From the considerations above
— and in particular, if one compares (5.2) and the strongly graded condition —, it is
clear that a C∗-algebra A is strongly Z-graded if and only if it carries a U(1)-action
with large spectral subspaces. One is then led to consider Pimsner algebras coming from
principal circle bundles. As mentioned, for commutative algebras this is (see ref. [11],
Prop. 5.8).

More generally, let us start with A = ⊕n∈ZAn a graded ∗-algebra. Denote by σ the
U(1)-action coming from the grading. In addition, suppose there is a C∗- norm on A,
and that σ is isometric with respect to this norm:

(6.5) ‖σz(a)‖ = ‖a‖, for all z ∈ U(1), a ∈ A.

Denoting by A the completion of A, one has that the action {σz}z∈U(1) extends by
continuity to a strongly continuous action of U(1) on A §3.6 of ref [15]. Furthermore,
each spectral subspace An for the extended action agrees with the closure of An ⊆ A.

The left and right Hermitian product as in (5.1) will make each spectral subspace An

a (not necessarily full) Hilbert module over A0. These become full exactly when A is
strongly graded. The result at the end of sect. 5 leads then to:

Let A = ⊕n∈ZAn be a strongly graded ∗-algebra. Then, its C∗-closure A is generated,
as a C∗-algebra, by A1, and A is isomorphic to the Pimsner algebra OA1 over A0.
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7. – Examples

In this section, we describe some examples. We shall give them only at the algebraic
level while referring to [4] for more details, in particular on how to extend them to the
continuous category thus getting Pimsner algebras. Additional examples are quantum
lens spaces over quantum weighted projective spaces of [3] and [5]. They are obtained
by twisting the product of the algebras of a given principal bundle by an automorphism.

7.1. Twisting of graded algebras. – Let A = ⊕n∈ZAn be a Z-graded unital ∗-algebra.
And let γ be a graded unital ∗-automorphism of A. A new unital graded ∗-algebra
(A, �γ) =: B =

⊕
n∈Z

Bn is defined as follows: as a vector space Bn = An, the involution
is unchanged, and the product is

(7.1) a �γ b = γn(a)γ−k(b), for all a ∈ Bk, b ∈ Bn,

where the product on the right hand side is the one in A.
It is indeed straightforward to check that the new product satisfies

i) associativity: for all a ∈ Ak, b ∈ Am, c ∈ An it holds that
(a �γ b) �γ c = a �γ (b �γ c) = γm+n(a)γn−k(b)γ−k−m(c),

ii) (a �γ b)∗ = b∗ �γ a∗, for all a, b.

Furthermore, the unit is preserved, that is: 1 �γ a = a �γ 1 = a for all a and the degree
zero subalgebra has undeformed product: B0 = A0. Finally,

a �γ ξ = γn(a)ξ, ξ �γ a = ξγ−n(a) , for all a ∈ B0, ξ ∈ Bn.

Thus, the left B0-module structure of Bn is the one of An twisted with γn, and the right
B0-module structure is the one of An twisted with γ−n. We write this as Bn =γn (An)γ−n .

When A is commutative, from the deformed product (7.1) one has commutation rules:

(7.2) a �γ b = γ−2k(b) �γ γ2n(a), for all a ∈ Bk, b ∈ Bn.

Assume the datum
(
A,O(U(1)),A0

)
is a noncommutative principal U(1)-bundle.

Then, the datum
(
B,O(U(1)),A0

)
is a noncommutative principal U(1)-bundle as well.

With the notation of (6.1), denoting αγ
i = γ−1(αi), βγ

i = γ−1(βi), ξγ
i = γ(ξi) and

ηγ
i = γ(ηi), the collections {ξγ

i }N
i=1, {β

γ
i }M

i=1 ⊂ B1 and {ηγ
i }N

i=1, {α
γ
i }M

i=1 ⊂ B−1 obey:

∑N

i=1
ξγ
i �γ ηγ

i =
∑N

i=1
ξiηi = 1,

∑M

i=1
αγ

i �γ βγ
i =

∑M

i=1
αiβi = 1,

which is what is needed for principality.
An isomorphism of bimodules γn(An)γ−n 	 γ2n(An)id, is implemented by the map

a �→ γn(a), for a ∈ An. This map intertwines the deformed product �γ with the product

a �′γ b = γ2n(a)b, for all a ∈ Bk, b ∈ Bn,

and the undeformed involution with a new involution,

a† = γ−2n(a∗), for all a ∈ Bn.
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By construction (A, �γ) is isomorphic to (A, �′γ) with deformed involution.
If A is dense in a graded C∗-algebra A and γ extends to a C∗-automorphism, the

completion En of γ2n(An)id is a self-Morita equivalence A0-bimodule (with φ = γ2n) and,
by sect. 6.3, the completion of B is the Pimsner algebra over A0 for E1 = γ2(A1)id.

Examples of the above construction are noncommutative tori and related θ-deformed
spheres and lens spaces, which we recall next.

7.2. The noncommutative torus. – Being a crossed product, the noncommutative
torus C(T2

θ) 	 C(S1) �α Z can be naturally seen as a Pimsner algebra over C(S1). The
automorphism α of C(S1) is the one induced by the Z-action generated by a rotation by
2πiθ on S1. As a preparation for the examples of next section, let us see how it emerges
from the deformed construction considered in the previous section.

Let A = A(T2) be the commutative unital ∗-algebra generated by two unitary ele-
ments u and v. This algebra is graded by assigning to u, v degree +1 and to their adjoints
degree −1. The degree zero part is A0 	 A(S1), generated by the unitary u∗v. Let θ ∈ R

and γ be the graded ∗-automorphism given by

γθ(u) = e2πiθu, γθ(v) = v.

From (7.2) we get
u �γθ

v = e2πiθv �γθ
u,

together with the relations u �γθ
u∗ = u∗ �γθ

u = 1 and v �γθ
v∗ = v∗ �γθ

v = 1. Thus the
deformed algebra B := (A, �γθ

) = A(T2
θ) is the noncommutative torus algebra.

7.3. θ-deformed spheres and lens spaces. – Let A = A(S2n+1) be the commuta-
tive unital ∗-algebra generated by elements z0, . . . , zn and their adjoints, with relation∑n

i=0 z∗i zi = 1. This is graded by assigning to z0, . . . , zn degree +1 and to their adjoints
degree −1. For this grading the degree zero part is A0 	 A(CP

n).
Any matrix (uij) ∈ U(n + 1) defines a graded ∗-automorphism γ by

γu(zi) =
∑n

j=0
uijzj , i = 0, . . . , n.

Since a unitary matrix can be diagonalized by a unitary transformation, one can assume
that (uij) is diagonal. Denote λij = u2

iiū
2
jje

2πiθij ; the matrix Θ = (θij) is real (since
λij λ̄ij = 1), and antisymmetric (since λ̄ij = λji). From (7.2) one gets

zi �γu
zj = λij zj �γu

zi, zi �γu
z∗j = λ̄ij z∗j �γu

zi, for all i, j,

together with the conjugated relations, (and each zi is normal for the deformed product,
since λii = 1), and a sphere relation

∑n
i=0 z∗i �γ zi = 1. As it is customary, we denote by

A(S2n+1
Θ ) the algebra A(S2n+1) with deformed product �γ .

With the same notation as in (6.4), for any natural number d, consider the algebra

(7.3) A(L2n+1
θ (d; 1)) := A(S2n+1

Θ )Zd = ⊕n∈Z

(
A(S2n+1

Θ )
)
dn

,

which we think of as the coordinate algebra of the Θ-deformed lens spaces. From the
general construction, it follows that the datum

(
A(L2n+1

θ (d; 1)),O(U(1)),A(CP
n)

)
is a

noncommutative principal U(1)-bundle. Clearly, for d = 1 we get back the algebra
A(S2n+1

Θ ) and the noncommutative principal U(1)-bundle
(
A(S2n+1

Θ ),O(U(1)),A(CP
n)

)
.
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Finally, let C(CP
n), C(S2n+1

θ ) and C(L2n+1
θ (d; 1)) denote the universal enveloping

C∗-algebras for the coordinate algebras and let E1 be the completion of the spectral
subspace B1. Since the U(1)-action extended to C(S2n+1

θ ) has large spectral subspaces
—being the one in (7.3) a strong grading— the d-th spectral subspace Ed agrees with
(E1)⊗d. With ∗-homomorphism φ : A0 → K(E) the left multiplication one has:

For all integers d ≥ 1, the C∗-algebra C(L2n+1
θ (d; 1)) is a Pimsner algebra over C(CP

n)
for the Hilbert bimodule Ed.

∗ ∗ ∗
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