
DOI 10.1393/ncc/i2015-15161-7

Colloquia: VILASIFEST

IL NUOVO CIMENTO 38 C (2015) 161

On Kaup-Kupershchmidt–type equations
and their soliton solutions

V. S. Gerdjikov

Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences
72 Tzarigradsko chaussee, Blud., 1784 Sofia, Bulgaria

received 11 January 2016

Summary. — We start with the Lax representation for the Kaup-Kupersschmidt
equation (KKE). We outline the deep relation between the scalar Lax operator
and the matrix Lax operators related to Kac-Moody algebras. Then we derive the
MKdV equations gauge equivalent to the KKE. Next we outline the symmetry and
the spectral properties of the relevant Lax operator. Using the dressing Zakharov-
Shabat method we demonstrate that the MKdV and KKE have two types of one-
soliton solutions and briefly comment on their properties.

PACS 03.75.Lm – Tunneling, Josephson effect, Bose-Einstein condensates in
periodic potentials, solitons, vortices, and topological excitations.
PACS 42.65.Tg – Optical solitons; nonlinear guided waves.
PACS 52.35.Sb – Solitons; BGK modes.
PACS 71.15.Ap – Basis sets (LCAO, plane-wave, APW, etc.) and related
methodology (scattering methods, ASA, linearized methods, etc.).

1. – Introduction

In 1980 D. Kaup and Satsuma [19,26] analyzed integrable NLEE related to the scalar
third-order operator:

(1) Lψ ≡ ∂3ψ

∂x3
+ 6Q(x, t)

∂ψ

∂x
+ (6R(x, t) − λ3)ψ = 0,

and demonstrated that it allows two interesting reductions each giving rise to an inter-
esting generaliztion of KdV [7]:

(2) A) R = 0, B) R =
1
2

∂Q

∂x
.
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In the first case the operator LA combined with

(3) MAψ ≡ ∂ψ

∂t
−

(
9λ3 − 18

∂2Q

∂x2

)
∂2ψ

∂x2
− 6

(
∂2Q

∂x2
− 6Q2

)
∂ψ

∂x
− 36λ3Qψ = 0,

leads to the Sawada-Kotera equation [26,19,27]

(4)
∂Q

∂t
+

∂5Q

∂x5
+ 30

(
∂3Q

∂x3
Q +

∂2Q

∂x2

∂Q

∂x

)
+ 180

∂Q

∂x
Q2 = 0.

Here and below we have replaced Kaup’s spectral parameter λ by λ3. In the second case
the Lax operator LB with
(5)

MBψ ≡ ∂ψ

∂t
− 9λ3 ∂2ψ

∂x2
+ 3

(
∂2Q

∂x2
+ 12Q2

)
∂ψ

∂x
− 3

(
∂3Q

∂x3
+ 12λ3Qλ + 24

∂Q

∂x
Q

)
ψ = 0,

provide the Lax representation for

(6)
∂Q

∂t
+

∂5Q

∂x5
+ 30

(
∂3Q

∂x3
Q +

5
2

∂2Q

∂x2

∂Q

∂x

)
+ 180

∂Q

∂x
Q2 = 0,

known today as the Kaup-Kuperschmidt equation [19,20].
It is easy to check that there is no elementary change {ψ, x, t} → {ψ̃, x̃, t̃} which

could transform eq. (4) into (6). Both these equations are inequivalent also to the KdV5
equation, which takes the form

(7)
∂Q

∂t
+

∂5Q

∂x5
+ 30

(
∂3Q

∂x3
Q + 2

∂2Q

∂x2

∂Q

∂x

)
+ 270

∂Q

∂x
Q2 = 0.

The answer to the question why these three equations, so similar, are inequivalent
was soon discovered. It can be traced back to two seminal papers. The first one is
by Mikhailov [21] who introduced the notion of the reduction group and discovered the
integrability of the 2-dimensional Toda field theories (TFT). In fact, the eqs. (4) and (6)
belong to the hierarchies of NLEE containing 2-dimensional TFT related to the algebra
sl(3) but requiring different inequivalent reductions.

In the other important paper Drinfeld and Sokolov [9] demonstrated the deep rela-
tions between the scalar operators of the form (1) and the first-order matrix ordinary
differential operators with deep reductions:

(8) Lψ ≡ i
∂ψ

∂x
+ U(x, t, λ)ψ(x, t, λ) = 0, U(x, t, λ) = (q(x, t) − λJ),

related to the Kac-Moody algebras. In fact, imposing the condition that U(x, t, λ) =
q(x, t)−λJ belongs to a certain Kac-Moody algebra is equivalent to imposing on U(x, t, λ)
the relevant reduction in the sense of Mikhailov. However, even until now the KKE and
Sawada-Kotera equations still attract attention, especially concerning the construction
and the properties of their solutions, see [1, 5, 8, 10,11,22-25]

The paper is organized as follows. In sect. 2 we describe the gauge transformations
that underly the deep relation between the scalar Lax operator (1) and its equivalent (14)
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and (22). In sect. 3 we construct the Lax representation for the MKdV equations gauge
equivalent to KKE. In the next sect. 4 we introduce the fundamental analytic solutions
(FAS) of L (14) and the relevant Riemann-Hilbert problem which underlies the inverse
scattering problem for L. In sect. 5 we apply the dressing Zakharov-Shabat method [35]
for deriving the soliton solutions of the MKdV. In sect. 6 we demonstrate that the poles
of the dressing factor and its inverse are in fact discrete eigenvalues of the Lax operator L.
We end with discussion and conclusions.

2. – Preliminaries

2.1. From scalar to matrix operators. – First we will demonstrate how one can relate
to a scalar ordinary differential operator a first-order matrix ordinary operator [9]. We
will work this out on the example of the operator L (1). Indeed, let us consider the 3-
component vector ψ̃(x, t, λ) = (ψxx +6Qψ,ψx, ψ)T and let us differentiate it with respect
to x. Using eq. (1) one easily finds that the third order scalar operator L is equivalent to

L̃(1)ψ̃(x, t, λ) =
∂ψ̃

∂x
+ Ũ(1)(x, t, λ)ψ̃(x, t, λ) = 0, Ũ(1)(x, t, λ) = q̃(1)(x, t) − J(1)(λ),(9)

q̃(1)(x, t) =

⎛
⎝ 0 0 6(R − Qx)

0 0 6Q

0 0 0

⎞
⎠ , J(1)(λ) =

⎛
⎝ 0 0 λ3

1 0 0
0 1 0

⎞
⎠ .

Similarly any ordinary scalar differential operator of order n can be rewritten as a
first order n × n operator of special type: all x-dependent coefficients occupy just the
last column of q̃(1)(x, t), see [9].

2.2. The relation between the matrix operators and Kac-Moody algebras. – The next
important step was proposed by Drinfeld and Sokolov [9]. They proposed to apply to L̃
a gauge transformation [34] so that the new operator L acquires canonical form from the
point of view of Kac-Moody algebras.

This we will do in two steps. The first step takes L̃(1) to the operator L̃(2) with
potential

(10) Ũ(2)(x, t, λ) = g−1Ũ(1)(x, t, λ)g + g−1gx,

where g(x, t) is a 3 × 3 upper-triangular matrix of the form

(11) g(x, t) =

⎛
⎝ 1 q1 c

0 1 q2

0 0 1

⎞
⎠ .

The constraints that we impose on q1, q2 and c require that

(12) Ũ(2)(x, t, λ) = q(2)(x, t) − J(1)(λ),
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where q(2)(x, t) is a diagonal matrix. This can be achieved imposing:

c(x) = q1q2 − q2
1 −

∂q1

∂x
, 6Q(x) = −∂q1

∂x
− ∂q2

∂x
− q2

1 − q2
2 + q1q2.,(13)

6R(x) = q1q2(q1 − q2) +
∂q1

∂x
q2 − 2q2

∂q2

∂x
− ∂2q2

∂x2

With this choice for Q and R we find q(2)(x, t) = diag (q1,q2 − q1,−q2). Note that
tr (q(x, t)) = 0, i.e. it belongs to the Cartan subalgebra of the Lie algebra sl(3).

The second step is to apply to L̃(2) a similarity transformation by the diagonal matrix
C2(λ) = diag (λ−1, 1, λ). Thus we obtain the operator

L̃ = C2(λ)L̃(2)C
−1
2 (λ) ≡ ∂

∂x
+ Ũ(x, t, λ), Ũ(x, t, λ) = q̃(x, t) − λJ̃,(14)

q̃(x, t) =

⎛
⎝ q1 0 0

0 q2 − q1 0
0 0 −q2

⎞
⎠ , J̃ =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ .

Similar transformations can be applied also to the M -operator in the Lax pair.

2.3. Relation to Kac-Moody algebras. – Let us now explain the relation of the above
operator L̃ (14) to the Kac-Moody algebras [18]. Skipping the details we will outline
the construction of the Kac-Moody algebras. Here we will assume that the reader is
familiar with the theory of simple Lie algebras [17]. In fact it will be enough to know the
Cartan-Weyl basis of the algebra sl(3), in Cartan classification this algebra is denoted
as A2.

The algebra sl(3) has rank 2 and its root system contains three positive roots: Δ+ =
{e1 − e2, e2 − e3, e1 − e3} and three negative roots Δ− = {−e1 + e2,−e2 + e3,−e1 + e3}.
The first two positive roots α1 = e1 − e2 and α2 = e2 − e3 form the set of simple roots
of sl(3). The third positive root is αmax = e1 − e3 is the maximal one. We will say that
the simple roots are of height 1, the maximal root αmax = α1+α2 is of height 2. Similarly,
the negative roots −α1 and −α2 have height −1 and the minimal root αmin = −αmax

has height −2 = 1 mod (3).
The Cartan-Weyl basis of sl(3) is formed by the Cartan subalgebra h and by the Weyl

generators Eα and E−α, α ∈ Δ+. In the typical 3 × 3 representation these are given by

Hα1 =

⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠ , Hα2 =

⎛
⎝ 0 0 0

0 1 0
0 0 −1

⎞
⎠ , Eα1 =

⎛
⎝ 0 1 0

0 0 0
0 0 0

⎞
⎠ ,(15)

Eα2 =

⎛
⎝ 0 0 0

0 0 1
0 0 0

⎞
⎠ , Eαmax =

⎛
⎝ 0 0 1

0 0 0
0 0 0

⎞
⎠ , E−α = ET

α .

The main tool in constructing the Kac-Moody algebra based on sl(3) is the grading,
which according to [18] must be performed with the Coxeter automorphism. In our case
the grading consists in splitting the algebra sl(3) into the direct sum of three linear
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subspaces as follows:

sl(3) � g(0) ⊕ g(1) ⊕ g(2), g(0) ≡ span {Hα1 ,Hα2},(16)

g(1) ≡ span {Eα1 , Eα2 , Eαmin}, g(2) ≡ span {E−α1 , E−α2 , Eαmax}.

In other words if we assume that the Cartan generators have height 0, then each of the
subspaces g(k) consists of elements of height k modulo 3, which is the Coxeter number
of sl(3). The important property of the subspaces g(k) is provided by the relation: if
Xk ∈ g(k mod 3) and Xm ∈ g(m mod 3) then

(17) [Xk,Xm] ∈ g(k+m mod 3).

Next the elements of the Kac-Moody algebra based on this grading of sl(3) consists
of finite or semi-infinite series of the form

(18) X(λ) =
∑

p�N

Xpλ
p, Xp ∈ g(p mod 3).

The subspaces g(p) are in fact the eigensubspaces of the Coxeter automorphism C̃0 which
in this case is an element of the Cartan subgroup of the form

(19) C̃0 = exp
(

2πi

3
Hρ

)
, ρ = e1 − e3; i.e. C̃0 = diag (ω, 1, ω−1).

Indeed, it is easy to check that C̃0EαC̃−1
0 = ωkEα, where ω = e2πi/3 and k = ht (α).

Obviously C̃3
0 = �.

Remark 1. In fact we will use also an alternative grading, used also in [9] in which the
subspaces g(1) and g(2) are interchanged. It is generated by an equivalent realization of
the Coxeter automorphism: C̃−1

0 EαC̃0 = ω−kEα, where k = ht (α).

Remark 2. The gauge transformation described above is the analogue of the famous Miura
transformation, which maps the KdV equation into the modified KdV (MKdV) equation.
Therefore the Lax pair (23) will produce not the KKE, but rather a system of MKdV eqs.
that are gauge equivalent to KKE.

In order to understand the interrelation between the Kac-Moody algebras and the
ordinary differential operators it remains to note that the potential Ũ(x, t, λ) in (14) is
an element of the Kac-Moody algebra A

(1)
2 with the the alternative grading, see Remark 1.

2.4. Factorized ordinary differential operators. – In fact the matrix operator L̃ (14)
can be brought back to scalar form. Indeed, the matrix scattering problem L̃χ(x, t, λ) = 0
can be written down as

∂χ1

∂x
+ q1(x, t)χ1(x, t, λ) = λχ3(x, t, λ),(20)

∂χ2

∂x
+ (q2(x, t) − q1(x, t))χ2(x, t, λ) = λχ1(x, t, λ),

∂χ3

∂x
− q2(x, t)χ3(x, t, λ) = λχ2(x, t, λ),
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which can easily be rewritten as the following scalar eigenvalue problem:

L̃χ3 = λ3χ3(x, t, λ),(21)
L̃ = (Dx + q1(x, t))(Dx + (q1(x, t) − q2(x, t))(Dx − q2(x, t)),

which is a factorized third-order differential operator L̃. Thus the gauge transforma-
tion (10) effectively takes the scalar operator L (1) into the factorized one L̃ (21).

3. – Lax representation of MKdV equations

3.1. The generic two-component MKdV’s equations . – Now we have the tools to con-
struct the Lax pair of the MKdV equation which is gauge equivalent to KKE. In this
section we will derive the Lax representation of the fifth order MKdV equations. This
derivation, as well as the direct and inverse scattering problems for these Lax operators
are more conveniently executed if the term λJ̃ is taken in diagonal form. This is easily
achieved by a similarity transformation with the constant matrix w0:

(22) L = w−1
0 L̃w0, w0 =

1√
3

⎛
⎝ ω 1 ω2

1 1 1
ω2 1 ω

⎞
⎠

Thus we construct the Lax pair for the MKdV eqs. as follows:

Lψ(x, t, λ) ≡ i
∂ψ

∂x
+ (q(x, t) − λJ) ψ(x, t, λ) = 0,(23)

Mψ(x, t, λ) ≡ i
∂ψ

∂t
+

(
V (x, t, λ) − λ5K

)
ψ(x, t, λ) = 0,

V (x, t, λ) =
4∑

s=0

Vs(x, t)λs, J = diag (ω, 1, ω2), K = diag (ω2, 1, ω),

where the basis in the algebra sl(3) is given in the Appendix. Below we use the notations:

q(x, t) = i
√

3(q1B
(0)
1 + q2B

(0)
2 ), J = ω2B

(1)
3 , K = aωB

(2)
3 ,(24)

q1 = ωq1 + ω−1q2, q2 = −(ω−1q1 + ωq2),

and ω = exp(2πi/3).

3.2. Solving the recurrent relations and Λ-operators. – The condition [L,M ] = 0 must
hold true identically with respect to λ. This leads to a set of equations:

λ5 [K, q] = [J, V4],(25)

λk i
∂Vk

∂x
+ [q, Vk] = [J, Vk−1], k = 1, . . . , 4;

λ0 i
∂V0

∂x
− i

∂q

∂t
= 0.

Equations (25) can be viewed as recurrent relations which allow one to determine Vk in
terms of q and its x-derivatives. This kind of problems have been thoroughly analyzed,
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see [14, 31], so below we just briefly mention the effects of the Z3 reductions we have
imposed.

Obviously we need to split each od the coefficients Vk ∈ g(k) into diagonal and offdi-
agonal parts:

(26) Vk = V f
k + wkB

(k)
3 , k = k mod 3.

From the appendix it is clear that only B
(1)
3 and B

(2)
3 are non-vanishing, while, for

example, V0 and V3 do not have diagonal parts, so V0 ≡ V f
0 and V3 ≡ V f

3 .
The linear mapping ad J · ≡ [J, ·] is also playing an important role. The diagonal and

the off-diagonal parts of the matrices in fact provide the kernel and the image of ad J .
So in the space of off-diagonal matrices we can define also the inverse ad−1

J . In addition
ad J and ad−1

J map the linear spaces g(k) as follows:

(27) ad J : g(k) → g(k+1), ad−1
J : g(k) → g(k−1).

The formal solution of the recurrent relations (25) is most conveniently written down
with the help of the recursion operators:

Λ0Y = ad−1
J

(
i
∂Y

∂x
+ [q, Y ]f

)
, Y ∈ g(0),(28)

ΛkX f
k = ad−1

J

(
i
∂X f

k

∂x
+ [q,X f

k]f +
i

3
[q,B(k)

3 ]
∫ x

dy
〈
[q(y),X f

k], B(3−k)
3

〉)
,

where Xk ∈ g(k). Thus the formal solution of the recurrent relations provides the follow-
ing answer for Vk:

V4 = ad−1
J [K, q], V f

3 = Λ0V4,(29)

V f
2 = Λ2V

f
3 +

i

3
w2B

(2)
3 , V f

1 = Λ1V
f
2 +

i

3
w1B

(1)
3 , V f

0 = Λ0V
f
1 ,

where

(30) wk =
∫ x

dy
〈
[q(y), V f

k ], B(3−k)
3

〉
.

At the end we get also the formal expression for the corresponding NLEE:

(31) i
∂q

∂t
+ a

∂

∂x
ΛΛ0ad−1

J [K, q] = 0, Λ = Λ0Λ1Λ2.

Obviously, one can consider as a potential to the M -operator polynomial V(N) =∑N
p=0 Vpλ

p of any power N as long as N + 1 �= 0 mod 3. The corresponding NLEE
will be generated by a relevant polynomial of the recursion operators Λk.



8 V. S. GERDJIKOV

3.3. The explicit form of the M -operator . – Let us now do the calculations for the Vk

explicitly. Skipping the details we have

V4(x, t) = −ia
√

3(q1ω
2B

(1)
1 + q2B

(1)
2 ),(32)

V3(x, t) = a(v3,1B
(0)
1 − v3,2B

(0)
2 , v3,1 =

∂q1

∂x
+ 3q2

2 , v3,2 =
∂q2

∂x
− 3q2

1 ,(33)

V2(x, t) =
ia
√

3
9

(v2,1ωB
(2)
1 + v2,2B

(2)
2 + v2,3B

(2)
3 ),(34)

v2,1 =
∂2q1

∂x2
+ 6q2

∂q2

∂x
, v2,2 =

∂2q2

∂x2
− 6q1

∂q1

∂x
,

v2,3 = 3q1
∂q2

∂x
− 3q2

∂q1

∂x
+ 6(q3

1 + q3
2).

V1(x, t) =
a

3
(−v1,1ω

2B
(1)
1 + v1,2B

(1)
2 + v1,3ω

2B
(1)
3 ),(35)

v1,1 =
∂3q1

∂x3
+ 3q2

∂2q2

∂x2
+ 6

(
∂q2

∂x

)2

+ 27q1q2
∂q1

∂x
− 9q2

1

∂q2

∂x
18q1(q3

1 + q3
2),

v1,2 = 3
∂3q2

∂x3
− 3q1

∂2q1

∂x2
− 6

(
∂q1

∂x

)2

+ 27q1q2
∂q2

∂x
− 9q2

2

∂q1

∂x
− 18q2(q3

1 + q3
2),

v1,3 = 3
(

q2
∂2q1

∂x2
+ q1

∂2q2

∂x2
− ∂q1

∂x

∂q2

∂x
− 3q2

1

∂q1

∂x
+ 3q2

2

∂q2

∂x
+ 9q2

1q2
2

)
.

V0(x, t) = − ia
√

3
9

(v0,1ωB
(0)
1 + v0,2B

(0)
2 ),(36)

v0,1 =
∂4q1

∂x4
+ 15

∂q2

∂x

∂2q2

∂x2
+ 45q2

((
∂q1

∂x

)2

+ q1
∂2q1

∂x2

)

+ 45(q3
1 + q3

2)
∂q1

∂x
+ 27q2

2(5q3
1 + 2q3

2),

v0,2 =
∂4q2

∂x4
− 15

∂q1

∂x

∂2q1

∂x2
+ 45q1

((
∂q2

∂x

)2

+ q2
∂2q2

∂x2

)

− 45(q3
1 + q3

2)
∂q2

∂x
+ 27q2

1(2q3
1 + 5q3

2),

The NLEE:

(37)
∂q1

∂t
+

a

9
∂v01

∂x
= 0,

∂q2

∂t
+

a

9
∂v02

∂x
= 0.

3.4. Special reductions. – Kaup considers two special reductions on his La operator L:
A) R = 0 and B) R = 1

2Qx. It is the second reduction that is responsible for the KKE;
in terms q1 and q2 it can be formulated as

(38) q2 = −q1.

It may be realized using external automorphism of sl(3), so it must be responsible for
A

(2)
2 Kac-Moody algebra.
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Imposing the reduction (38) we get the equation

(39)
∂q1

∂t
= −a

9
∂

∂x

(
∂4q1

∂x4
+ 15

∂q1

∂x

∂2q1

∂x2
− 45q1

((
∂q1

∂x

)2

+ q1
∂2q1

∂x2

)
+ 81q5

1

)
,

which is gauge equivalent to the KKE.

4. – The FAS of the Lax operators with Z3-reduction.

The idea for the FAS for the generalized Zakharov-Shabat (GZS) system has been
proposed by Shabat [28], see also [29]. However for the GZS J is with real eigenvalues,
while our Lax operator has complex eigenvalues. The ideas of Shabat were generalized
by Beals and Coifman [6] and Caudrey [2] for operators L related to the algebras sl(n);
these results were extended to L operators related to any simple Lie algebra i [14], see
also [12,31,15,16].

The Jost solutions of eq. (23) are defined by

(40) lim
x→−∞

φ+(x, λ)eiλJx = �, lim
x→∞

φ−(x, λ)eiλJx = �,

They satisfy the integral equations:

(41) Y±(x, λ) = �+
∫ x

±∞
dye−iλJ(x−y)Q(y)Y±(y, λ)eiλJ(x−y),

where Y±(x, λ) = φ±(x, λ)eiλJx. Unfortunately, with our choice for J = diag (ω, 1, ω2)
this integral equations have no solutions. The reason is that the factors eiλJ(x−y) in the
kernel in (41) can not be made to decrease simultaneously.

Following the ideas of Caudrey, Beals and Coifman, see [2,6,14] we start with the Jost
solutions for potentials on compact support, i.e. assume that q(x) = 0 for x < −L0 and
x > L0. Then the integrals in (41) converge and one can prove the existence of Y±(x, λ).

The continuous spectrum of L consists of those points λ, for which eiλ(Jk−Jj)(x−y)

oscillate, which means that

(42) Im λ(Jk − Jj) = Im λ(ω2−k − ω2−j) = 0.

It is easy to check that for each pair of indices k �= j eq. (42) has a solution of the form
arg λ = const depending on k and j. The solutions for all choices of the pairs k, j fill up
a pair of rays lν and lν+3 which are given by

lν : arg(λ) =
π(2ν + 1)

6
, Ων :

π(2ν + 1)
6

≤ arg λ ≤ π(2ν + 3)
6

,(43)

where ν = 0, . . . , 5, see fig. 1.
Thus the analyticity regions of the FAS are the 6 sectors Ων , ν = 0, . . . , 5 split up by

the set of rays lν , ν = 0, . . . , 5, see fig. 1. Now we will outline how one can construct a
FAS in each of these sectors.

Obviously, if Im λα(J) = 0 on the rays lν ∪ lν+3, then Im λα(J) > 0 for λ ∈ Ων ∪
Ων+1 ∪ Ων+2 and Im λα(J) < 0 for λ ∈ Ων−1 ∪ Ων−2 ∪ Ων−3; of course all indices here
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λ

×

⊗×

⊗

×⊗

+

⊕

+

⊕

+

⊕

+

⊕

+

⊕

+

⊕

l1

l0

l5

l4

l3

l2

b0

b5

b4b3

b2

b1

Fig. 1. – The contour of the RHP with Z3-symmetry fills up the rays lν , ν = 1, . . . , 6. By ×
and ⊗ (respectively, by + and ⊕) we have denoted the locations of the discrete eigenvalues
corresponding to a soliton of first type (respectively, of second type).

are understood modulo 6. As a result the factors e−iλJ(x−y) will decay exponentially if
Im α(J) < 0 and x − y > 0 or if Im α(J) > 0 and x − y < 0. In eq. (44) below we have
listed the signs of Im α(J) for each of the sectors Ων .

To each ray one can relate the root satisfying Im λα(J) = 0, i.e.

l0, ±(e1 − e2) Ω0 α1 < 0, α2 > 0 α3 > 0,(44)
l1, ±(e1 − e3) Ω1 α1 > 0, α2 > 0 α3 < 0,

l2, ±(e2 − e3) Ω2 α1 < 0, α2 < 0 α3 < 0.

There are two fundamental regions: Ω0 and Ω1. The FAS in the other sectors can be
obtained from the FAS in Ω0 and Ω1 by acting with the automorphism C0:

(45) C0Ων ≡ Ων+2, C0lν ≡ lν+2, ν = 0, 1, . . . , 5.

The next step is to construct the set of integral equations for FAS which will be
analytic in Ων . They are different from the integral equations for the Jost solutions (41)
because for each choice of the matrix element (k, j) we specify the lower limit of the
integral so that all exponential factors eiλ(Jk−Jj)(x−y) decrease for x, y → ±∞,

(46) Xν
kj(x, λ) = δkj + i

∫ x

εkj∞
dye−iλ(Jk−Jj)(x−y)

h∑
p=1

qkp(y)Xν
pj(y, λ),

where the signs εkj for each of the sectors Ων are collected in the table I, see also [30,12,16].
We also assume that for k = j εkk = −1.
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Table I. – The set of signs εkj for each of the sectors Ων .

(k, j) (1,2) (1,3) (2,3) (2,1) (3,2) (3,1)

Ω0 − + + + − −
Ω1 − + − + − +
Ω2 − + − + − +
Ω3 + + + − − −
Ω4 − + − + − +
Ω5 − + − + + −

The solution of the integral equations (46) will be the FAS of L in the sector Ων .
The asymptotics of Xν(x, λ) and Xν−1(x, λ) along the ray lν can be written in the
form [14,16]:

lim
x→−∞

eiλJxXν(x, λei0)e−iλJx = S+
ν (λ), λ ∈ lν ,(47)

lim
x→∞

eiλJxXν(x, λei0)e−iλJx = T−
ν (λ)D+

ν (λ), λ ∈ lν ,

lim
x→−∞

eiλJxXν−1(x, λe−i0)e−iλJx = S−
ν (λ), λ ∈ lν ,

lim
x→∞

eiλJxXν−1(x, λe−i0)e−iλJx = T+
ν (λ)D−

ν (λ), λ ∈ lν ,

where the matrices S±
ν and T±

ν belong to su(2) subgroups of sl(3). More specifically
from the integral equations (46) we find

S+
0 (λ) = �+ s+

0;21E21, T−
0 (λ) = �+ τ−

0;12E12,(48)

S−
0 (λ) = �+ s+

0;12E12, T+
0 (λ) = �+ τ+

0;21E21,

D+
0 (λ) = d+

0;1E11 +
1

d+
0;1

E22 + E33, D−
0 (λ) =

1
d−0;1

E11 + d−0;1E22 + E33,

and

S+
1 (λ) = �+ s+

1;31E31, T−
1 (λ) = �+ τ−

1;13E13,(49)

S−
1 (λ) = �+ s+

1;13E13, T+
1 (λ) = �+ τ+

1;31E31,

D+
1 (λ) = d+

1;1E11 + E22 +
1

d+
1;1

E33, D−
1 (λ) =

1
d−1;1

E11 + E22 + d−1;1E33.

By Ekj we mean a 3 × 3 matrix with matrix elements (Ekj)mn = δumδjn.
The corresponding factors for the asymptotics of Xν(x, λei0) for ν > 1 are obtained

from eqs. (48), (49) by applying the automorphism C0. If we consider potential on
finite support, then we can define not only the Jost solutions Ψ±(x, λ) but also the
scattering matrix T (λ) = φ−(x, λ)φ−1

+ (x, λ). The factors S±
ν (λ), T±

ν (λ) and D±
ν (λ)

provide an analog of the Gauss decomposition of the scattering matrix with respect to
the ν-ordering, i.e.

(50) Tν(λ) = T−
ν (λ)D+

ν (λ)Ŝ+
ν (λ) = T+

ν (λ)D−
ν (λ)Ŝ−

ν (λ), λ ∈ lν .
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The Zn-symmetry imposes the following constraints on the FAS and on the scattering
matrix and its factors:

C0X
ν(x, λω)C−1

0 = Xν−2(x, λ), C0Tν(λω)C−1
0 = Tν−2(λ),(51)

C0S
±
ν (λω)C−1

0 = S±
ν−2(λ), C0D

±
ν (λω)C−1

0 = D±
ν−2(λ),

where the index ν − 2 should be taken modulo 6. Consequently we can view as indepen-
dent only the data on two of the rays, e.g. on l0 and l1; all the rest will be recovered
using the reduction conditions.

If in addition we impose the Z2-symmetry, then we will have also

a) K−1
0 (Xν(x,−λ∗))†K0 = X̂N+1−ν(x, λ), K−1

0 (S±
ν (−λ∗))K0 = Ŝ∓

N+1−ν(λ),(52)

b) K−1
0 (Xν(x, λ∗))∗K0 = X̂ν(x, λ), K−1

0 (S±
ν (λ∗))K0 = Ŝ∓

N+1−ν(λ),

where K0 = E1,3 +E2,2 +E3,1 and by the “hat” we denote the inverse matrix. Analogous
relations hold true for T±

ν (λ) and D±
ν (λ). One can prove also that D+

ν (λ) (respectively,
D−

ν (λ)) allows analytic extension for λ ∈ Ων (respectively, for λ ∈ Ων−1. Another
important fact is that D+

ν (λ) = D−
ν+1(λ) for all λ ∈ Ων .

The next important step is the possibility to reduce the solution of the ISP for the
GZSs to a (local) RHP. More precisely, we have

Xν(x, t, λ) = Xν−1(x, t, λ)Gν(x, t, λ), λ ∈ lν ,(53)

Gν(x, t, λ) = ei(λJx+λ5Kt)G0,ν(λ)e−i(λJx+λ5Kt), G0,ν(λ) = Ŝ−
ν S+

ν (λ)
∣∣∣
t=0

.

The collection of all these relations for ν = 0, 1, . . . , 5 together with

(54) lim
λ→∞

Xν(x, t, λ) = �,

can be viewed as a local RHP posed on the collection of rays Σ ≡ {lν}2N
ν=1 with canonical

normalization. Rather straightforwardly we can prove that if Xν(x, λ) is a solution of
the RHP then χν(x, λ) = Xν(x, λ)e−iλJx is a FAS of L with potential

(55) q(x, t) = lim
λ→∞

λ
(
J − Xν(x, t, λ)JX̂ν(x, t, λ)

)
.

5. – The dressing method and the N-soliton solutions

The main idea of the dressing method [35, 21, 21] is, starting from a known regular
solution of the RHP Xν

0 (x, t, λ) to construct a new singular solution Xν
1 (x, t, λ) of the

same RHP. The two solutions are related by a dressing factor u(x, t, λ)

(56) Xν
1 (x, t, λ) = u(x, t, λ)Xν

0 (x, t, λ),

which may have pole singularities in λ. A typical anzats for u(x, t, λ) is given by [21],
see also [3, 4, 14,13]:

(57) u(x, t, λ) = �+
2∑

s=0

(
N1∑
l=1

C−sAlC
s

λ − λlωs
+

N∑
r=N1+1

C−sArC
s

λ − λrωs
+

N∑
r=N1+1

C−sA∗
rC

s

λ − (λ∗
r)ωs

)
,
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with 3N1 + 6N2 poles and λp is real if p ∈ 1, N1 and complex if p ∈ N1 + 1, N1 + N2.
In [3] both types of simplest one-soliton solutions for the Tzitzeica equation are derived.
Note that Tzitzeica equation possesses Lax representation with the same Lax operator,
but its M -operator is linear with respect to λ−1.

The dressing factor u(x, t, λ) satisfies the equation:

(58) i
∂u

∂x
+ (q(1)(x, t) − λJ)u(x, t, λ) − u(x, t, λ)(q(0)(x, t) − λJ) = 0,

where q(0)(x, t) (typically chosen to be vanishing) corresponds to the “naked” Lax oper-
ator (or to the regular solution of RHP), while q(1)(x, t) is the potential of the “dressed”
Lax operator. The eq. (58) must hold true identically with respect to λ. We also assume
that the residues Ak(x, t) are degenerate matrices of the form:

(59) Ak(x, t) = |nk(x, t)〉〈mT
k (x, t)|, (Ak)ij(x, t) = nk;i(x, t)mk;j(x, t).

Thus u(x, t, λ) for N1 = N2 = 1 has 9 poles located at λ1ω
k with λ1 real and λ2ω

k,
λ∗

2ω
k, with k = 0, 1, 2 and λ2 complex.
Evaluating the residue of eq. (58) for λ = λk one finds that the “polarization” vectors

|nk(x, t)〉 and 〈mT
k (x, t)| must satisfy the equations:

(60) i
∂|nk〉
∂x

+ (q̃(1)(x, t) − λkJ̃)|nk(x, t)〉 = 0, i
∂〈mT

k |
∂x

+ λk〈mT
k (x, t)|J̃ = 0,

where we have put q(0)(x, t) = 0. Then the vectors 〈mT
k (x, t)| must depend on x and t

as follows:

m1 = μ2e
−2X1 + 2|μ1|eX1 cos

(
Ω1 −

2π

3

)
, m2 = μ2e

−2X1 + 2|μ1|eX1 cos (Ω1)(61)

m3 = μ2e
−2X1 + 2|μ1|eX1 cos

(
Ω1 +

2π

3

)
, X1 =

1
2
(λ1x + λ5

1t),

Ω1 =
√

3
2

(λ1x − λ5
1t) − α1, μ1 = |μ1|eiα1 .

The factors u(x, t, λ) must also satisfy all symmetry conditions characteristic for the
FAS. The Z3 symmetry is already taken into account with the anzatz (57). From the
second Z2-reduction (52), K−1

0 u†(x, t,−λ∗)K0 = u−1(x, t, λ), after taking the limit λ →
λk, we obtain algebraic equation for |nk〉 in terms of 〈mT

k |: Below we list the relevant
formulae just for the two types of one-soliton solutions (for the general case see [21,3]):

(62) a) |n1〉 = A−1|m1〉, b)
( |n2〉

|n∗
2〉

)
=

(
D F

F ∗ D∗

)−1 ( |m2〉
|m∗

2〉

)
,

where case a) corresponds to the choice N1 = 1, N2 = 0 while case b) is relevant for
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N1 = 0, N2 = 1. The notation above are as follows:

A =
1

2λ3
1

diag (Q(1), Q(2), Q(3)), D =
1

2λ3
2

diag (P (1), P (2), P (3)),(63)

F =
1

λ3
2 + λ∗,3

2

diag (K(1),K(2),K(3)), Q(j) = 〈mT
1 |Λ

(j)
11 (λl, λ1)|m1〉,

K(j) = 〈m∗,T
2 |Λ(j)

12 (λ1, λ
∗
2)|m1〉, P (j) = 〈mT

2 |Λ
(j)
21 (λ2, λ1)|ml〉,

with

(64) Λ(j)
lp = −λlλpE1+j,3−j + λ2

l E2+j,2−j + λ2
pE3+j,1−j , j = 1, 2, 3.

Skipping the details, we just mention that this approach allows one to obtain the
explicit form of the N -soliton solutions. We just mention that along with the explicit
expressions for the vectors |nk〉 in terms of 〈mj | that follow from eqs. (62)–(64) and take
into account that |mj〉 are solutions of the “naked” Lax operator with vanishing potential
q(0) = 0.

We end this section with a few comments about the simplest one-soliton solutions of
the MKdV and KKE equations. The first one is these one-soliton solutions with generic
choice of the polarization vectors are not traveling waves.

Skipping the details (see e.g. [3]) we find for the naked solution of the Lax operator

(65) q1(x) = −∂x ln
(

n3m3

λ1
− 1

)
= −∂x ln

(
2m1m3

m2
2

− 1
)

.

Note that the soliton solution of the KKE can be obtained from (65) by

(66) 6Q = −2q1,x − q2
1.

In the special case μ2 = 0 we have

(67) q1(x, t) = −∂x ln
(

1
2

+
3
2

tan2 Ω1

)
= −3

√
3λ1 tan Ω1

2 sin2 Ω1 + 1
.

This solution is obviously singular. In addition the relevant potential of the Lax
operator

(68) 6Q =
9λ2

1(1 − 4 sin2 Ω1)
(1 + 2 sin2 Ω1)2

is not in the functional class, since it does not decay to zero.
A possible way to find regular soliton solutions of these equations is to take into

account the fact that both MKdV and KKE are invariant under the transformation

x → ix′, t → it′, Q → −Q′.
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Table II. – The set of signs t
(k)
ν for each of the sectors Υν (73).

Υ0 Υ1 Υ2 Υ3 Υ4 Υ5

t
(1)
ν − − − + + +

t
(2)
ν + + − − − +

t
(3)
ν − + + + − −

Then Ω1 → iΩ′
1 and we get

(69) q1(x, t) =
3
√

3λ1 tanh Ω′
1

2 sinh2 Ω′
1 − 1

, 6Q′ = −9λ2
1(1 + 4 sinh2 Ω′

1)
(1 − 2 sinh2 Ω′

1)2
,

which this time is singular only at two points sinh Ω′
1 = ± 1√

2
. Moreover the potential

Q′(x, t) decays for x → ±∞

6. – The resolvent of the Lax operator

The FAS can be used to construct the kernel of the resolvent of the Lax operator L.
In this section by χν(x, λ) we will denote

(70) χν(x, λ) = u(x, λ)χν
0(x, λ),

where χν
0(x, λ) is a regular FAS and u(x, λ) is a dressing factor of general form (57).

Remark 3. The dressing factor u(x, λ) has 3N1 +6N2 simple poles located at λlω
p, λrω

p

and λ∗
rω

p where l = 1, . . . , N1, r = 1, . . . , N2 and p = 0, 1, 2. Its inverse u−1(x, λ) has
also 3N1 + 6N2 poles located −λlω

p, −λrω
p and −λ∗

rω
p. In what follows for brevity we

will denote them by λj, −λj for j = 1, . . . , 3N1 + 6N2.

Let us introduce

Rν(x, x′, λ) =
1
i
χν(x, λ)Θν(x − x′)χ̂ν(x′, λ),(71)

Θν(x − x′) = diag
(
t(1)ν θ(t(1)ν (x − x′)), t(2)ν θ(t(2)ν (x − x′)), t(3)ν θ(t(3)ν (x − x′))

)
,(72)

where θ(x − x′) is the step-function and t
(k)
ν = ±1, see table II.

Theorem 1. Let Q(x) be a Schwartz-type function and let λ±
j be the simple zeroes of the

dressing factor u(x, λ) (57). Then

1. The functions Rν(x, x′, λ) are analytic for λ ∈ Υν where

(73) bν : arg λ =
π(ν + 1)

3
, Υν :

π(ν + 1)
3

≤ arg λ ≤ π(ν + 2)
3

.

having pole singularities at ±λ±
j ;

2. Rν(x, x′, λ) is a kernel of a bounded integral operator for λ ∈ Υν ;
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3. Rν(x, x′, λ) is uniformly bounded function for λ ∈ bν and provides a kernel of an
unbounded integral operator;

4. Rν(x, x′, λ) satisfy the equation:

(74) L(λ)Rν(x, x′, λ) = �δ(x − x′).

Proof 1 (Idea of the proof). 1. First we shall prove that Rν(x, x′, λ) has no jumps on
the rays lν . From sect. 3 we know that Xν(x, λ) and therefore also χν(x, λ) are
analytic for λ ∈ Ων . So we have to show that the limits of Rν(x, x′, λ) for λ → lν
from Υν and Υν−1 are equal. Let show that for ν = 0. From the asymptotics (47)
and from the RHP (53) we have

(75) χ0(x, λ) = χ1(x, λ)G1(λ), G1(λ) = Ŝ+
1 (λ)S−

1 (λ), λ ∈ l1,

where G1(λ) belongs to an SL(2) subgroup of SL(3) and is such that it commutes
with Θ1(x − x′). Thus we conclude that

(76) R1(x, x′, λe+i0) = R1(x, x′, λe−i0), λ ∈ l1.

Analogously we prove that Rν(x, x′, λe+i0) has no jumps on the other rays lν .

The jumps on the rays bν appear because of two reasons: first, because of the func-
tions Θν(x−x′) and second, it is easy to check that for λ ∈ bν the kernel Rν(x, x′, λ)
oscillates for x, x′ tending to ±∞. Thus on these lines the resolvent is unbounded
integral operator.

2. Assume that λ ∈ Υν and consider the asymptotic behavior of Rν(x, x′, λ) for
x, x′ → ∞. From eqs. (47) we find that

Rν
ij(x, x′, λ) =

n∑
p=1

Xν
ip(x, λ)e−iλJp(x−x′)Θν;pp(x − x′)X̂ν

pj(x
′, λ).(77)

Due to the fact that χν(x, λ) has the special triangular asymptotics for x → ∞ and
λ ∈ Υν and for the correct choice of Θν(x − x′) (72) we check that the right hand
side of (77) falls off exponentially for x → ∞ and arbitrary choice of x′. All other
possibilities are treated analogously.

3. For λ ∈ bν the arguments of 2) can not be applied because the exponentials in the
right hand side of (77) Im λ = 0 only oscillate. Thus we conclude that Rν(x, x′, λ)
for λ ∈ bν is only a bounded function and thus the corresponding operator R(λ) is
an unbounded integral operator.

4. The proof of eq. (74) follows from the fact that L(λ)χν(x, λ) = 0 and

(78)
∂Θ(x − x′)

∂x
= �δ(x − x′).

Lemma 1. The poles of Rν(x, x′, λ) coincide with the poles of the dressing factors u(x, λ)
and its inverse u−1(x, λ).
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Proof 2. The proof follows immediately from the definition of Rν(x, x′, λ) and from
Remark 3.

Thus we have established that dressing by the factor u(x, λ), we in fact add to the
discrete spectrum of the Lax operator 6N1 +12N2 discrete eigenvalues; for N1 = N2 = 1
they are shown on fig. 1.

7. – Discussion and conclusions

On the example of the KKE we analyzed the relation between the scalar ordinary
differential operators and the Kac-Moody algebras. Using the dressing method we estab-
lished that KKE and its gauge equivalent MKdV have two types of one-soliton solutions,
which generically are not traveling wave solutions. The dressing method adds discrete
eigenvalues to the spectrum of L which comes in sextuplets for each soliton of first type
and in dodecaplets (12-plets) for the solitons of second type. Still open is the question
of constructing regular soliton solutions and to study the properties of the generic one
soliton solutions that are. not traveling waves.

We have constructed the FAS of L which satisfy a RHP on the set of rays lν . We also
constructed the resolvent of the Lax operator and proved that its continuous spectrum
fills up the rays bν rather than lν . From fig. 1 we see that the eigenvalues corresponding
to the solitons of first type lay on the continuous spectrum of L. This explains why the
solitons of first type are singular functions.

Using the explicit form of the resolvent Rν(x, x′, λ) and the contour integration
method one can derive the completeness relation of the FAS.

As a further development we note, that one can use the expansions over the squared
solutions [30] to derive the action-angle variables of the NLEE in the hierarchy. These
expansions are, in fact, spectral decompositions of the relevant recursion operators Λk

which in addition possess important geometrical properties [31-33].

∗ ∗ ∗

The author is grateful to Dr. Alexander Stefanov and to Prof. R. Ivanov for useful
discussions and help in preparing the manuscript.

Appendix A.

The basis of A
(1)
2

The basis of A
(1)
2 is obtained from the Cartan-Weyl basis of A2 (15) by taking the

average with the Coxeter automorphism. In this case the Coxeter automorphism is
represented by C̃XC̃−1,

C̃ =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ .
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B
(0)
1 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠, B

(0)
2 =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠,(A.1)

B
(1)
1 =

⎛
⎝ 0 1 0

0 0 ω2

ω 0 0

⎞
⎠, B

(1)
2 =

⎛
⎝ 0 0 1

ω2 0 0
0 ω 0

⎞
⎠, B

(1)
3 =

⎛
⎝ ω2 0 0

0 ω 0
0 0 1

⎞
⎠,

B
(2)
1 =

⎛
⎝ 0 1 0

0 0 ω

ω2 0 0

⎞
⎠, B

(2)
2 =

⎛
⎝ 0 0 1

ω 0 0
0 ω2 0

⎞
⎠, B

(2)
3 =

⎛
⎝ ω 0 0

0 ω2 0
0 0 1

⎞
⎠.
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