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Summary. — We present Vlasov equilibria characterized by discontinuous dis-
tribution functions of electrons and of finite mass ions and by asymmetric electric
potential profiles. These profiles well reproduce double layers, phase space holes,
solitary waves, sheaths near electrodes and near surfaces of airless bodies in Space.
By means of the energy method, we show that the stability of the proposed equilib-
ria is better than that of the steady-state solutions of the Vlasov equation based on
continuous distribution functions and symmetric potential profiles.

PACS 52.35.8b — Solitons; BGK modes.

PACS 52.40.Kh — Plasma sheaths.

PACS 52.65.Ff — Fokker-Planck and Vlasov equation.
PACS 94.05.Jq — Spacecraft sheaths, wakes, and charging.

1. — Introduction

Spatially asymmetric distributions of physical quantities (or their asymmetric time
development) are observed in several states of matter and only in special circumstances
they may be treated as perturbations of a symmetric basic state.

One particular source of asymmetry is dissipation. This affects the propagation of
otherwise symmetric linear and nonlinear waves (such as solitary waves or shock waves) in
most diverse physical conditions, from granular materials (fig. 1) to bubbly liquids [1,2].

Another possible source of weak asymmetry are imperfections in a medium. These
modify its dispersion properties and affect wave propagation through the medium [3],
thus distorting their otherwise symmetric shape.

Collisionless plasmas offer a fertile setting for the observation and laboratory repro-
duction of nonlinear, strongly asymmetric, long-lived structures, which cannot be con-
ceived as being either small or dissipative perturbations of any symmetric counterpart.
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Fig. 1. — Pressure amplitude variations induced by wave propagation in a granular material.
Reproduced from ref. [5] with permission.

Examples are the isolated electrostatic structures in the solar wind [4] and the plasma
sheaths between electrodes [6-8] or facing the surface of sun-lit, airless bodies in Space [9].

A common problem facing the interpretation of the above phenomena is the recon-
struction of the spatial distribution (or time development) of an observed physical quan-
tity, e.g., the electric potential in a plasma.

One approach to this problem is to specify the properties of the medium (e.g. the
particle velocity distributions in a collisionless plasma) and then work out and solve the
equations that govern the physical quantity of interest. In plasma Physics, this approach
was used, e.g., in refs. [9-11].

In some circumstances, however, the distribution of the potential in the plasma is
itself the best datum emerging from observation, from which the particle distribution
functions have to be reconstructed. This problem may be cast as an inverse integral
problem and it is akin to that encountered, e.g., in stellar dynamics [12].

To solve this inverse problem, a reasonable profile for the electric potential is needed.
One possibility is to assume that this potential solves a given nonlinear partial differential
equation and it may be specified as an expansion in terms of ad hoc functions: these
may be simple transcendental functions, such as exp, tanh, sech [13], or functions solving
suitable nonlinear equations such as the Riccati or the matrix Riccati equations (e.g. [14]).

In some cases, such as the one treated in this paper, however, not even the dif-
ferential equation solved by the potential profile is actually known, and only informa-
tion on its morphology is available. In sect. 3, we shall see that the theory of elliptic
functions [15] enables the reconstruction of the potential from even those qualitative
properties.

To test the stability of steady plasma states, we face several difficulties. Some are
due to the inhomogeneous and asymmetric nature of our equilibria, at variance with the
periodic, symmetric equilibria of, e.g., ref. [16].

More severe difficulties come from the singularity of the particle velocity distribution
functions. This feature already appeared in refs. [10,17], and it was recenly shown to be
a necessary consequence of asymmetry [18], a result corroborated by sect. 4 below.

Even under homogeneous plasma conditions, singular, steady-state particle distri-
butions are not subject to Penrose’s stability criterion. A separate treatment revealed
that homogeneous, singular electron distributions nevertheless have encouraging stability
properties [18], at least against electrostatic perturbations.
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The stability problem we consider in this paper tackles those difficulties arising from
the inhomogeneous nature of the plasma state, while neglecting any dynamical character
of the perturbations. This approach, known as the energy method, was adopted, e.g., in
ref. [9] and it is developed in sect. 5.

2. — Notations, basic equations and boundary conditions

Let e be the elementary charge, ng a plasma density scale,
(1) ¢ =min¢ + ¢o¢, ¢ = max ¢ — min ¢
the rescaled equilibrium electric potential and its scale,
(2) &= Lx, v =vov, L = \/[6(,250/(471'71062)], vo = /(ego/me)

the space and velocity coordinates and their respective scales, a = e or @ = i a label
denoting electron and ion quantities,

(3) Zal, o = ma/me; —Ve=2Z.9, -Vi= Z1(¢ - 1)7 We = Mav2/2 - Va

the particle charges, charge and mass ratios (of which Z. = —1, pe = 1), the scaled and
normalized particle potential and total energies.
In the above notation, the one-particle equilibrium velocity distributions

(4) fa(*%’ﬁaf) :nOFa(wa>/(U0Za)

satisfy the steady-state Vlasov’s equation, while Poisson’s equation reads
o0
5) =y — g, mg = / dwF, (w)/,/(w + ).
—¢

We seek solutions to eq. (5) subject to the following boundary conditions:

(6) d(r1) =a <1, p(x2) =1, 21 < 2,
(7) ¢w(x1) =0= ¢w(x2)7 _(bww(xl) =r= Oa _¢ww(x2) =4q > 07
(8) Folamay = \/(Be/m)e” %0 H0)  Flomy, = \/(Bi/m)e” ™ for w; > 0,

where a subscript « denotes d/dz and G, 11 are the particle temperatures at * = x4
normalized to ego. In the following, the left (z = ) and right (2 = 25) boundaries will
be referred to as the low and high potential boundaries, respectively. Only vanishing
boundary electric fields and non-negative boundary charges will be considered in this

paper (eq. (7).
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3. — Construction of the potential profile

We characterize the morphology of the electric potential spatial distribution ¢(x)
by the boundary conditions (egs. (6) and (7)), and by assuming that it has one single
minimum, that this minimum is quadratic and that it occurs at z = 0, where ¢ = 0.
Near the minimum,

(9) p~a?, g~ 2r~ 2sign(e) b, (y/d)s ~ sign(a).

Thus \/¢ has a cusp at x = 0, but sign(m)\/gb is smooth. Also, since ¢ has one single
minimum, then Sign(x)\/qb is a monotonic function of x. It is precisely this function that
we wish to reconstruct.

To do so, we assume that, in some particular conditions (to be specified later), the
potential profile can be represented by means of hyperbolic functions, e.g., the tanh
function. Since this function is the limit of Jacobi’s elliptic sine as its elliptic modulus
approaches 1, we conceive that the general potential profile may be constructed in terms
of elliptic functions.

We set u = k(x—x2) (22 being the position of the right plasma boundary (eq. (6)) and
k a positive constant) and, without loss of generality, we assume that, for v < 0, \/(Z) is
the restriction to the negative u-axis of an even function of u. Since /@ is also assumed
to be elliptic, this even function necessarily is a rational combination of Weierstrass’
function p [15] and, being \/gb monotonic, this combination necessarily has the form

(10) ¢:y27_y:0— ,u=kx—us <0, ug = kws, k>0,
(11) pu = p(u; g2, g3).

Here, A, C, p are real constants, e; = pw, w is the real half period of p and g, g3 are its
elliptic invariants. Since, for any real u, pu > eq, then, for ¢ to be non-singular, p > 0.

Next, owing to the homogeneity relation p(au;a=4ge,a %g3) = a=2p(u; g2, g3) and
after a rescaling of the constants k and p in egs. (10) and (11), we may set, without loss
of generality,

(12) go = 12.
Denoting d/du by a prime, from eq. (10) we have

kApp'u

(13) Yo = m.

Since, as u — 0, pu ~ 1/u?, p'u ~ —2/u3, and since ¢’ (+w) = 0, we see that the location
of the contiguous boundaries where ¢, = 2yy, = 0 (eq. (6)) are

(14)  u=0 ie xz=29=wug/k and wu=-w ie =1z =ux—w/k

We now impose the boundary conditions (egs. (6)) and require that the minimum of the
potential occurs at x = 0 (u = ug):

(15) ¢(@1) =a=A=1+/a, ¢(x2) =1=C=1, ¢(0) =0= puz = e1 + ,/ap.
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Here and in the following, it is understood that the square root operation precedes any
of the four arithmetic operations.
By egs. (5) and (13), the electric charge in the plasma is

o"u L 2(pMw)? }
(pu—er+p)? (pu—er+p)? )’

(16) — gz = _2[%25 + Yzl Yoo = k2AP{
In particular, the boundary conditions (eq. (7)) imply that

(17) P = —¢pp(r1) = 4k*Ap, ¢ = —rz(T2) = 12k2\/aA(e% —-1)/p,

where we took into account that p”u = 6p*u — go/2 and that g = 12 (eq. (12)).
We now use the scaling invariance k — ok, ¢ps — ¢, built in eq. (17) to set,
without loss of generality,

(18) = —¢g(21) = 3\/aA?’R7 q = —bee(r2) = 34%Q, k= A/2,
so that eq. (17) gives

(19) p=3Q, er = /(1 +3QR).

Once the value of e; is known from the charges at the boundaries, the values of p at
the imaginary half period w’, pw’ = e3, of p(w+w’) = eq, of the elliptic invariant g3, and
of the real half period w are found from the relations e; +es+e3 = 0, eyea+ese3+e3e; =
—g2/4 = =3, g3 = 4ejezes, and w = f:; du/,/l4(ex — u)(e2 — u)(es — u)] and they are

(20) €2 = [—er+ 31— QR))/2. e = [~e1 — /3/(1 — QR)]/2
(21) g3 =4(BQR~-2),/(1+3QR), w=K(r)//(e1 —e3), & = /[(e2 — e3)/(e1 — e3)],

where K(k) is the complete elliptic integral of the first kind and & its elliptic modulus.
The above relations completely determine the potential of eq. (10):

(1+ ,/a)3@Q

(22) ¢=y2,—y=1—m,u:k(x—x2)<o,k>o

in terms of a, the ratio of the potential values at the two boundaries, and of 7, ¢, the
values of the charges there (egs. (6) and (7)).

A limitation of the above potential profile is that a vanishing charge at the high
potential boundary (@ = 0) implies that ¢ = 1. To construct a potential non-trivially
allowing for such possibility, we write

B
(23) ¢=z27z=—D+7p U+,u:kx+u1>0,u1=—kx1,k>0,
uw—e,+o

where B, D, o are constants and z; is the position of the left boundary (eq. (6)). The
two contiguous boundaries where ¢, = 0 now occur for

(24) u=wuy ie.x=x1 and u=w ie x=x1+w/k=u1s.
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We require that

(25)  ¢(z1) =a= D= /a, p(v2) =1= B=A, ¢(0) =0= pu; =e1 +0/,/a,

where A was defined in eq. (15). The charges at the boundaries now are

(26) r=—¢ea(21) = 4k* A, Ja0, q = —¢ga(w2) = 12k°A(e] — 1) /0

and, choosing ¢u. (1), Pze(22) and k as in eq. (18), we find

(27) o =3R, e1 = /(1+3RQ).
The above relations completely determine the potential of eq. (23):

(1+,/a)3R

28 == 2 = — _—
(28) o=z r= Vet O TR Y

=k(z—x1) >0, k>0.

According to eq. (18), the charge at the high potential boundary (x = x5) may now
vanish (@ = 0) and the potential ¢ remains non-trivial. The charge at the low potential
boundary, however, remains finite (R > 0).

A third class of potential profiles may be constructed as follows. We use the property
pu+w) =e1 + (e1 —e2)(er — e3)/(pu — e1) [15] and, taking es and eg form eq. (20),
we observe that the functions Y (u) = y([u + ua]/k) (eq. (22)) and Z(u) = z([u — u1]/k)
(eq. (28)) are related by Z(u) =Y (u + w).

This remarkable result shows that the functions y(z) (taken for z < 0) and z(z)
(taken for 2z > 0), both vanishing at = = 0, are the smooth extension of each other. It is
therefore legitimate to define the potential profile

(29) ¢ =y*(zx)forx <0, ¢=2z*(z)forx>0.

When e; = 1, charges may vanish at one boundary (egs. (22), (28)) or at both
boundaries (eq. (29)). In these degenerate cases, e; = e, es = —2, so that the elliptic
modulus % (eq. (21)) approaches 1 and the elliptic integral K (eq. (21)) and the half
period w diverge. The degenerate form of Weierstrass’ function, in this case, is pu =
—2+3 coch(\/3u)7 so that the elliptic potential profiles of egs. (22), (28) and (29) reduce
to the hyperbolic profiles reported in ref. [18].

Solutions with two vanishing boundary charges (a particular case of eq. (29)) may be
conveniently written as follows. By means of the properties of elliptic functions we first
reduce eq. (16) to

(30)  —¢ue = qd+ (1 —)(p+ 12k*¢) — 4k*y(1 — y)(3b + 5y), y = ,/¢sign(x),

(31)  p=—da—(qa—1)/A

(32) d=1- ja+ (q,/a+71)/(8/adA®), b= Ja+ (1 - Ja)(p+4a)/(8,/ad),

where p is manifestly the charge at the potential minimum (y = 0): eq. (31) may thus

be taken as a scaling law relating the charges at the two boundaries and that at the
potential minimum.
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Fig. 2. — Left: the potentials of eq. (22) (with @ = 1, R = 0.01, solid line, lower z-scale) and
eq. (28) (with R = 1,Q = 0.01, dashed line, upper z-scale). Right: the potential of eq. (33).
a = 0.25 for all plots.

For vanishing boundary charges (¢ =0 =r), we have b=1—d = J/a:p = —4a and
eq. (30) admits the solution [18]

(33) o =y* y=2ya/[(1 - ja) — (1+ /a)coth(kz)].

Examples of the potential profiles thus found are shown in fig. 2. The actual com-
putation of Weierstrass’ o function was carried out by means of the rapidly converging
series given in ref. [15].

4. — The particle distributions

The information we have gathered on the spatial distribution of the potential will now
be used to reconstruct the steady state particle energy distributions F, and F; (eq. (4)),
according to ref. [18]:

(34) memzaam+14

™

VU Eat) 1 [0 Bl =)
Jht+w 1 Jtot—w

In eq. (34), o denotes the ion species if § denotes the electrons’ and vice-versa, w is the
particle energy, ¢, is the maximum value of the potential on each side of the potential
minimum (¢, = 1 for > 0, ¢, = a for < 0) and P denotes the principal value of an
integral. The fractional charges [19] G, and G; are introduced in such a way that the
charge in the plasma can be defined in the two equivalent forms [18]

Ge(t) Gi(¢ —t)
(35) —Qzz =P — dt = +/ dt——+~.
o (@—1) p V(t =)
In eq. (35), p is the charge at the potential minimum (where ¢ = 0), ¢, = ¢ for x > 0,
gr =1 for x < 0 and ¢, r are the boundary charges (eq. (7)).
Inverting Abel’s equations (35) we find

¢'pr +p _ 1d o ¢rz+qb
(36) *mm/’¢ 1 Gilon —w) = - [ o T
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In eq. (36), ¢, needs to be given as a function of ¢ as specified in eq. (30), and we have

(37)  Ge(w) = 3d(2b — 5w) + ,/w(ce + 16w) sign(z) /T,
(38) (w) = 3d[2b — 5(1 — w)] In([1 + \/w}/[l - yw]) + ywlei + 16(1 — w)]/,
(39) = 2[g—p— 12(1 + db) + 20d], ¢; = co — 30d + 32,

where the constants b, d, p were defined in eqgs. (31) and (32).

Inserting G, in eq. (34) we see that, because of the asymmetry of the potential pro-
file, that part of the electron distribution contributed by the electron fractional charge
assumes different values on different sides of the potential minimum.

Physically this is made legitimate by the fact that the negative energy electrons that
are on one side of the potential minimum are unable to overcome their electric potential
barrier and they are thus secluded from the electrons on the other side of the barrier.

On the other hand, ions can freely move across the potential minimum and their
distribution, being conserved along their trajectories, needs to be calculated only for,
e.g., x> 0.

5. — Stability

In sect. 3, we established that several plasma steady state equilibria can be obtained,
for the same values of the boundary charges, by varying the ratio a of the values that
the potential has at the two boundaries.

It is of particular interest to establish which of these equilibria contains the least
amount of potential energy. We assume that this particular equilibrium is the most stable,
at least against very slow perturbations that introduce no appreciable time varying terms
in Vlasov’s equation. In these circumstances the potential energy to be considered is [9]

(40) w—- | " de(2)2),

where the integral is extended to the whole plasma domain.
For the potential of eq. (33), the boundaries are at © = +00 and eq. (40) reduces to

1
W= —dka®(1+ /o) [1 at(1 — 12)/[(1 — Ja) — (1 + Ja)i]° =
(41) k(3a® —2,/a® + 2a — 2,/a — 3)/120, k > 0.

This quantity has its minimum at a = 1/4, as shown in the left panel of fig. 3. The
electric potential profile for a = 1/4 was shown in the right panel of fig. 2.

A similar expression for W as a function of the boundary potential ratio a holds for
the profile considered in eq. (10): now the boundaries may be set at = —co and =0
and we have

W= —2k(1 + \/a)2/0 dt(1— 1)1 — (1 + Ja)t/Qt + (1 - Q)] =
(42) —2k(1+ Ja)’[lo — 3+ 2/a)ly + (1 4 \/a)(3+ Ja) I + (1 + /a)’Is], k > 0,
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Fig. 3. — Left: the energy W of eq. (41), corresponding to the electric potential of eq. (33).
Right: the same for egs. (42)—(44), corresponding to the electric potential of eq. (22) in which
Q=15R=0.

where
(43) 8(1-Q)Io =2(2 - Q) + Q*arcsin([Q — 1]/Q) / /(Q — 1),
(44) 6(1 — Q)1 = (2 —3QI), 8(1 —Q)I> = (2 —-5Q), 10(1 — Q)3 = (2 - TQL).

Also in this case, a minimum of W appears, now at a ~ 0.42, as shown in the right
panel of fig. 3.

6. — Discussion and conclusion

In this article we determined the steady-state electrostatic potential, and the particle
velocity distribution functions of electrons and ions sustaining it in a collisionless plasma,
both quantities being subject to well-defined boundary conditions.

We started from only qualitative morphological information on the electric potential
and, using the theory of elliptic functions, we uniquely reconstructed its space distri-
bution, in both finite, semi-infinite and infinite domains, which are able to reproduce
observed potential distributions (e.g. those in ref. [4]).

The particle velocity distribution functions were determined by solving an inverse
integral problem and they are in agreement with those introduced, in a heuristic way, in
ref. [18]. This shows that the singular part of these distributions arises under very general
assumptions on the potential profile and it is intimately connected with the theory of
elliptic functions.

To test the stability of the steady states thus found, we determined the potential en-
ergy of these states as the ratio of the electric potential’s values on the plasma boundaries
is varied in a quasi-static way. Our results clearly show that values of this parameter
exist in which the potential energy has a minimum and that, for such values, the profile
of the electric potential is asymmetric.

We conclude that collisionless, electrostatic plasma states endowed with asymmetric
electric potential profiles and singular particle distributions have better stability proper-
ties than those of symmetric states, in agreement with ref. [9].
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