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Summary. — Parity-violating Mgller scattering measurements are a powerful
probe of new physics effects, and the upcoming high-precision experiments will re-
quire a new level of accuracy for electroweak radiative corrections (EWC). First,
we perform the updated calculations of one-loop EWC for Mgller scattering asym-
metry using two different approaches: semi-automatic, precise, with FeynArts and
FormCalc as base languages, and “by hand”, with reasonable approximations. In
addition, we provide a tuned comparison between the one-loop results obtained in
two different renormalization schemes: on-shell and constrained differential renor-
malization. As the last step, we discuss the two-loop EWC induced by squaring
one-loop diagrams, and show that the significant size of this partial correction indi-
cates a need for a complete study of the two-loop EWC in order to meet the precision
goals of future experiments.

PACS 12.15.Lk — Electroweak radiative corrections.
PACS 13.88.+e — Polarization in interactions and scattering.
PACS 25.30.Bf — Elastic electron scattering.

1. — Introduction

Mgller scattering is a very clean process with well-known kinematic and extremely
suppressed backgrounds, and any inconsistency with the Standard Model will signal
new physics. The next-generation experiment to study electron-electron scattering,
MOLLER [1], planned at JLab following the 11 GeV upgrade, will offer a new level
of sensitivity and measure the parity-violating asymmetry in the scattering of longitudi-
nally polarized electrons off an unpolarized target to a precision of 0.73 ppb, and allow
a determination of the weak mixing angle with an uncertainty of about 0.1%, a factor

(© Societa ltaliana di Fisica 192



HIGH-PRECISION CALCULATIONS OF ELECTROWEAK RADIATIVE CORRECTIONS ETC. 193

of five improvement over the measurement by E-158 [2]. Obviously, before we can ex-
tract reliable information from the experimental data, it is necessary to take into account
EWC. EWC to the parity-violating (PV) Mgller scattering asymmetry were addressed
in the literature earlier ([3-5]) and were shown to be large. A more detailed literature
review can be found in [5], our first work on the topic. In [5], we calculated a full gauge-
invariant set of the one-loop EWC and found the total correction to be close to —70%,
with no significant theoretical uncertainty coming from the hadronic contributions to
the vacuum polarization or other uncertain input parameters. Since it is possible that a
much larger theoretical uncertainty may come from two-loop corrections, we investigated
the importance of two-loops contribution in [6], by comparing corrections calculated in
two different renormalization schemes (RS), on-shell and constrained differential renor-
malization (CDR, [7]), and found a difference to be about 11%. That means that the
two-loop EWC may be larger than previously thought and cannot be dismissed, espe-
cially in the light of precision promised by MOLLER. We divide the two-loop EWC into
two classes: Q-part induced by quadratic one-loop amplitudes, and T-part the interfer-
ence of Born and two-loop diagrams. In [8], we calculated the Q-part exactly and found
that it can reach 4%. Here, we provide a brief review of our calculations done at the
one-loop level [5], show details of comparison between corrections evaluated in on-shell
and CDR schemes [6], and outline some of our calculations of higher order corrections.

2. — Born and one-loop corrections

The asymmetry between left/right longitudinally polarized electrons can be con-
structed in the following way:

OLL +0LR — ORL — ORR OLL —ORR
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enhancing the contributions induced by PV electroweak interactions. The term o = 5 g(;’b 7l

stands for the differential cross section defined in the center of mass reference frame of
incoming electrons. At the Born level (leading order (LO)), asymmetry is
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where s3, = sin®fy = 1 — 2 ~ 0.24. As one can see from eq. (2), the asymmetry

zZ
is highly sensitive to Oy so any deviation from the SM value will signal new physics.
Obviously, before we can extract reliable information from the experimental data, it is
necessary to include EWC. The cross section including one-loop matrix elements is

7T3 7T3
(8) o= Mo+ Ml = Z(MOMg +2Re My M +M1M1T) = 00+ 01 + 00,

where o1 = oP9F 4 o/e" + 0B°% « o3 is an interference term between the Born and
one-loop amplitudes (NLO), and the cross section og o a* is a quadratic term of the
same order as two-loops contribution (NNLO). To make sure that our calculations at the
one-loop level are error-free, we evaluate EWC using two different methods. Our first
method, “by hand”, is to derive the compact analytic expressions for the leading one-loop
correction (see [5]) manually using appropriate approximations for /s < 30 GeV and
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Fig. 1. — a) Weak and QED (w = 0.05-/s) corrections to the PV asymmetry in Mgller scattering
at 6 = 90° (left plot). b) Total correction to the cross section in OS and CDR schemes (middle
plot). ¢) Correction to the PV asymmetry in OS and CDR schemes (right plot).

Vs > 500 GeV. Our second method, semi-automated, is to consider a full set of graphs
with no approximations using computer-based algebra packages [9,10] and [11]. To make
sure that we calculate a gauge-invariant set of graphs, we use two sets of renormalization
conditions (RC): RC by Hollik (HRC) introduced in [12] for our “by hand” approach,
and RC proposed by Denner (DRC) in [13] for our semi-automated method. The infrared
divergences (IR) are treated by the soft and hard-photon bremsstrahlung (see [5]). We
choose our input parameters to be the fine structure constant (o = 1/137.03599), mass
of the W boson (mw = 80.398 GeV) and mass of the Z boson (mz = 91.1876 GeV).
A relative correction to the PV asymmetry is defined as 6§ = (AS, — A9,)/AY )

with the superscript in (51?; corresponding to the various contributions: “weak”—mno

IR-divergent graphs and “QED”—only IR divergent graphs treated by bremsstrahlung
contribution. In order to see how our results compare to the literature [4], we compare
§4eak ([5]) = —0.2790 for the /s = 100 GeV and §%°**([4]) = —0.2787 using the same
input parameters as in [4] and obtained an excellent agreement. A comparison of re-
sults evaluated by two methods can be seen in fig. 1(a). To establish if the higher-order
(NNLO) contributions in a given RS are important (see [14]), we compare results in two
RS: on-shell (OS) and CDR. Figure 1(b) shows the total correction to the unpolarized
cross section §'° = (ot — ¢9) /0¥ calculated in OS and CDR schemes. In the low-energy
region, the correction to the cross section is dominated by the QED contribution, and
the difference between the two schemes is almost constant and rather small (~ 0.01), but
it grows at \/s > myz as the weak correction becomes comparable to QED. As a result
(see fig. 1(c)), the difference between OS and CDR corrections to the PV asymmetry can
reach as much as 10% so contribution from two-loop corrections could become important.

3. — Two-loops corrections (Q-part)

The higher-order corrections (x a*) to the electroweak Born cross section can be
divided into two classes, Q-part and T-part. The Q-part is induced by the quadratic
one-loop amplitude (~ Mle) (third term in eq. (2)) and the T-part is an interference
term between the Born and two-loops amplitudes: op = 7T;Re MgMJ x ot (fig. 2).
The T-part still needs to be evaluated in the future, but we can provide some results
for the Q-part in this paper. The cross section for the Q-part can be divided into two
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Fig. 2. — Representative two-loops graphs for the Mgller scattering.

terms: og = O'é + aé. The first term, aa, is an IR-divergent and regularized part of

the cross section and the second term og = (%)25{ - 0p is a finite contribution. The
IR-divergent part has the following structure:

3 2
71' A . 1/« " .
(4) oy = MM (0 +20f ) = 4(7T> Re [0 (62 +207) | - o,
where 07 = 41In % ( In nff;g -1+ i7r). Since the Q-part contains terms of order o In? %

it deserves a special attention. To treat the IR divergences, we have to account not only
for photon emission from one-loop diagrams but also include a complete treatment of the
two-photons emission (fig. 3). A half of the bremsstrahlung contribution in fig. 3(a) and
(b) is responsible for the treatment of IR divergence in the Q-part and an other half for
the T-part. We take the maximum energy of the emitted soft photon to be w = 0.05-/s.
The bremsstrahlung cross section for Q-part is derived from fig. 3(a) as

2
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Here, o7 is the total photon emission cross section and UZ) is the one-photon

bremsstrahlung term from the Q-part. The two-photons emission for the Q-part (0227)
is derived from fig. 3(b):

2

> - 0Q-

Combining egs. (4), (5) and (6) gives the final result for 0y + o7, 4+ 0y free from non-
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physical parameters with the regularization parameter A cancelled analytically. Detailed
calculations can be found in [8]. As one can see from fig. 4(a), the correction induced by
the Q-part (Ay = (AlL;OOerQ — A 4°)JAY ) can reach as much as ~ 4% at 90°. The
energy dependence (fig. 4(b)) is nearly constant for \/s < myz but increases rapidly after
weak interactions become comparable to QED.



196 A. ALEKSEJEVS, S. BARKANOVA, Y. KOLOMENSKY, E. KURAEV and V. ZYKUNOV

o Lo

v v +
v v 2 o,
pal

v 2

+ +..

Fig. 3. — Bremsstrahlung treatment of IR divergences in the Q-part. The top plot represents
interference between emission from one-loop (shaded bubble) and Born graphs. The bottom
plot is the two-photons emission amplitude squared.

4. — Conclusion

With the one-loop corrections now under control, it is worth considering the EWC
corrections at the two-loop level. One way to find some indication of the size of higher-
order contributions is to compare results that are expressed in terms of quantities related
to different renormalization schemes (RS), and our tuned comparison between the results
obtained in on-shell and CDR RS show a difference of about 11%. Although an argument
can be made that the two-loop corrections are suppressed by a factor of ar relative to
the one-loop corrections, we believe that they can no longer be dismissed, especially in
the light of 2% uncertainty to asymmetry promised by the MOLLER experiment. At the
MOLLER kinematic conditions, the part of the quadratic correction considered here can
increase the asymmetry up to ~ 4%. For the high-energy region /s ~ 2 TeV, a contribu-
tion from the quadratic correction can reach +30%. It is impossible to say at this time if
the Q-part will be enhanced or cancelled by other two-loop radiative corrections, but we
believe that the large size of the Q-part demands detailed and consistent consideration
of two-loop corrections (T-part), which is the current task of our group.
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Fig. 4. — Left plot (a) shows the angular dependence of the correction induced by quadratic
part only (A4) and the right plot (b) shows “one-loop”, “one-loop + Q-part” and quadratic
corrections energy dependence.
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