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Summary. — In this paper, the relation between the coupled nonlinear Schrodinger
equation and the complex Hamilton system are discussed by means of the third-order
spectral problem. Then the complete integrability of the complex Hamilton system
associated with the coupled nonlinear Schrodinger equation is discussed by using
the symplectic structure and the complex representation of the Poisson bracket. So
the solutions to the coupled nonlinear Schrédinger equation are derived.

PACS 03.75.Lm — Tunneling, Josephson effect, Bose-Einstein condensates in peri-
odic potentials, solitons, vortices, and topological excitations.

1. — Introduction

The relation between the finite-dimensional complete integrable Hamilton and the
soliton equation has been an important question for study [1]. Though the complex com-
plete integrable Hamilton system has been discussed, the complex complete integrable
Hamilton system [2, 3] for the third-order spectral problem is rarely studied. In this
paper, we consider the third-order eigenvalue problem
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and discuss the relation between the third-order spectral problem (1.1) and the following
equation:

(1.2) { ipne = paga — 20 (lpa? + |p2l?) |

Z‘,UJ2t = H2zx — 2#2 (|,ul‘2 + ‘:U'Q‘z) )

where i = /=1, u1 = p1 (z,t), po = pz (z,t), and £ is a complex eigenparameter of the
eigenvalue problem (1.1). This system, often referred to in the literature as the coupled
nonlinear Schrédinger equation, was used by Manakov for studying the propagation of
the electric field in a waveguide [4]. Each equation governs the evolution of one of the
components of the field transverse to the direction of propagation. Also it can be derived
as a model for wave propagation under conditions similar to those where NLS applies and
there are two wavetrains moving with nearly the same group velocity [5]. In recent years,
this system was derived as a key model for light-wave propagation in optical fibers [6,7].

In the present paper, by using the adjoint representation of the eigenvalue prob-
lem (1.1), we obtain the evolution equation hierarchy and the Lax representation as-
sociated with eq. (1.2). On the real space R'?, a suitable symplectic structure, the
Poisson bracket and Hamiltonian canonical equations are introduced, therefore, they are
all written in the complex forms. By using the nonlinearization of the Lax pairs of the
coupled nonlinear Schrédinger equation, a finite-dimensional completely integrable sys-
tem of the complex form is given. Furthermore, the representation of the solution of the
coupled nonlinear Schrédinger equation (1.2) is generated by using commutable flows of
the finite-dimensional completely integrable systems.

2. — The complex representation of the symplectic structure and the Poisson
bracket

We consider the symplectic structure for the fundamental coordinate function in the
real space [8]

3 2N 3
(2.1) DD dap Adpj =) dg; Adp;.
G=1 k=1 j=1

The Poisson bracket of the function H and F in the symplectic space
(RlQN, Z?Zl dg; A dpj) is defined as follows:

2N
(22) (HF)=> (aH oOF _ of aF)= ((Hy;» ) — (Hp, Fy,))

3
== \ 945 Opjr Opjk I —

Jj=1

and the Hamilton canonical equations in the symplectic space are as follows:

oOH oH
2.3 i, = (¢, H) = —, i, =, H)=—%5—, ) =1,2,3.
(2.3) qj (‘IJ ) 3pj pj (pg ) 8qj J
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Theorem 2.1
Set [9,10]
G1k = o (“puk i3 k) Gk = s (b 2 vk) Gk = = (D + 1)
= —— - A y = —_—— 1 s = —_—— - 1 )
1k \/5 Pik 43,N+k 2k \/5 D2k 42, N+k 3k \/i D3k q1,N+k
¥ _( ' ), ¥ (g + i ), ¥ _( ' )
= —_— — 1 s = —_— 1 R y = —_— — 1 , . s
1k \/5 q1k P3,N+k 2k \/5 q2k P2, N+k 3k \/5 43k P1,N+k

where k=1,2,---, N.

Then the real representation for the symplectic stucture (2.1), the Poisson
bracket (2.2) and the Hamilton canonical equation (2.3) is equivalent to the complex
representation as follows:

3 2N 3 N 3 N
(2.4) DO dgie Adpie =YY deir Ader + > Y dgn Ade
j=1k=1 j=1k=1 j=1k=1
3 N
OH OF  9H OF 9H OF  O0H OF
2.5 H,F = - + * PR * * ’
25 (=32, <a¢jk D05 Oy Doy | Doy DUT, | O a%)

OH OH
(2.6) Djk, = (Pj, H) = Foir Yik, = (Y, H) = g
¢jkt = (¢]k7H) = a—*) w]kt - (wjk,H) = —a—*,

Jjk ik

j=1,2,3, k=12---,N.

3. — The third-order spectral problem and the m—th-order evolution equation

We consider the spectral problem

1
§i§ p1 2

1 1 ?1 )
(3.1) o2 | =| wi —gi€ 0 g2 | =M | o2 | .
¢3 ) 1. ®3 ¢3
14 0 *515
) m [ ai; a12; 13, P ‘ )
(3:2) [ &2 = Z azi; Gg2; A23; 2 | €M = Ny (1,6) | 02
¢3 ), =0\ @z, azz; as, ¢3 ®3
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Set
a11; a12; a13;
o .
V=320 | axy ax; ax; [§77.
asiy; a3z2; Aasg;

From the adjoint representation equation V,, = [M, V], we have

a11j, — p10G215 — poas; + piaisj + pyaz; =0,
ag2j, + H1a21; — piaiz; =0,
assj, + p2a31; — psaiz; =0,
a23;5, + p2ao1; — piaiz; =0,
(3.3) agzj, + p1asi; — p3aiz; =0,
a12j, — 1a12,j41 — p1G22; — H2032j + p1ai; =0,
a21j, + a1 j41 — pia115 + p1a22; + pHaags; =0,
a13j, — 1Q13j4+1 — H1G23; — 20335 + p2air; =0,
asij, + 1031 j41 — H5a11j + piasq; + piass; = 0.

Set (9071 =019 =1)

K =
872u1871uffu2571u’2‘ 210 Lpg *#1571‘“; nod Ly 410" Lug
2#1‘871%‘ 972%*071#1*#’2‘371#2 u;afluTJruI@’lu; 7#?671#2
—ng0 = tuy 120 Yy +p10 g O — o ut —2u00 7l 2pp07 iy
u§3_1u1+u’1‘6_1u§ 7#38_1/” 2u;6_1u§ 672;L;6_1M2*u]‘8_1tt1
i 0 0 O a12;
0 —2 O 0 agyj .
J = . , G; = I j=0,1,2...,
0 0 (3 0 @135
0 0 0 —z @315
then (3.3) becomes
(3.4) KG; = JGjqa, 7=0,1,2....
We choose a119 = i/2, aza0 = azzo = —i/2, a120 = G210 = G130 = A310 = A230 = A320 = 0,
and assume the constans of integration to be zero. In this way, the recursion relation (3.4)
uniquely gives a series of polynomial functions with respect to u, i, - - -. For example,
a21 1 a122 —ip1,
* .k
a211 a212 ?
(35) G, = = 1 y Gy = = Hlm
@131 H2 @132 —t2,
* - *
asii o asi2 o

Theorem 3.1. The m-th—order evolution equation

H1

(3.6) e, = Zl = JGmi1 = KGp, m=12...
2

B
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is equivalent to the Lax equation

(3.7) M;,, = (Nm), — [M, Ny] .

m

Proof. From the compatibility condition of (3.1) and (3.2), the theorem is proved.
Example. From (3.5), we have the first-order evolution equation

H1 K1,
It _ | w1
H2 M2,
1 )y 13,

and the second-order evolution equation

o —p,, + 2 ([m]? + [p2f?)
It i, = 2ips (] + p2f?)
(3.8) _ : . p
142 —pi2,, + 2ipa (|pa? + |p2l?)
1/, iy, — 2ips (|pal? + |p2l?)

Obviously, (3.8) is equivalent to (1.2).

4. — The functional gradient of the eigenvalue

Consider the third-order eigenvalue problem

15 1ig; 1 fho o1 o1
(4.1) ®2j = pr o —5i& 10 bo5 | =M () | b2y |,
P35 ) K3 0 -3 ¢3; b3
j=1,2---N

and the adjoint eigenvalue problem

1 . 1
(4.2) Yo | =-M" (&) | Y2y |, J=12--N,
VY3 ) V3
where §; is an eigenvalue of (4.1) and (4.2), ((}TJ,\II_j)T = ((¢1j,¢2j7¢3j)T,

(115,25, ng)T> is the associated eigenfunction.

Then the conjugate representations of (4.1) and (4.2) are

. —ol] pi ¢ i
(4.3) b3 | = po i 0 ¢35 | =M (&) | 955 |
35 ), 2 0 3 ¢35 ?3;

j=1,2---N,
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ij %ij* —1M1 —H2 dﬁj - ’/’fj
@4 vy | = -1 —2% 0 $a | =M (&p) | by |
Vi), —nz 0 —3ig 3 V3
j=12---N.

Theorem 4.1. Let &; be an eigenvalue of (4.1) and (4.2), then

S¢;
on 15925
gi 1 1 1 - G251,
(4.5) V¢, = = 501yt 502 + 505 ) do D13
i | Ve 5
0, P31
Lo
and
55
% 51,05,
.| owE T S P R
(4.6) ij = 55}1‘ = 0 §¢1j¢1j - §¢2j¢2j - §¢3j¢3j dz ¢Tj¢§j )
9 %%
5%2 ¢3j¢1j
Opy
j=1,2---N.

Proof. Direct compute from (4.1) to (4.4).
Then from (4.5) and (4.6), through calculation, we obtain the conclusions as follows:
Corollary 4.1

2) KVE =€JVE,  j=1,2---N.

Corollary 4.2

1525 + P13 §iP1j2; + & 1,435
(4.7) x| P2Vt oa v | L g S92 & 020,
b1535 + 01,03, §iP150s; + &5 01,¥3;
b35015 + 93,075 §Paiiy + & D301

5. — A complex complete integrable system in the Liouville sense

Set q)J = (¢J17)¢]Na¢;1va¢;N) ’ \I/J = ('l/)jla"'»'(/}jNﬂb;p”'a ;N) 3 A =
diag(§1,~~,§N,§f,~~,§}"v),j = 17273'

We consider the constraint relations between the potential functions and the eigen-
functions

1 (D1, ¥a)
wi i(P2, V1)
5.1 = = . =G
(5:1) a fho i(P1, U3) !
U3 i(P3, ¥1)



A CLASS OF COUPLED NONLINEAR SCHRODINGER EQUATIONS ETC. 643

From (3.4) and (5.1), we have
(5.2) G, =

and so we derive
ail; = Z'<Aj_1@1, \I’1>
225 = Z‘<Aj71(132, \I/2>
(53) ass; :Z‘<Aj71@37\1’3> , J=12...
ag3; = i<Aj_1(I)2, \I’3>
agzz; = ’L'<Aj_1@37 \I/2>

Theorem 5.1. (4.1), (4.2), (4.3) and (4.4) can be written as follows:

H H, H,
(I)lw 0 0 (I)2$ = Q’ (I)Bw = Ma
(5 4) oV, AN 8\113
' v, _9Ho _ _9Ho _ _OHo
le — aq)la 2 — 6(1)2’ 3r — 8(1)37
where

HO = %<A(I)1, \I/1> — %<A(I)2,\I/2> — §<A(I)3, \I/3> + Z<A(I>1, \I/2><A(I)2, \Ifl> +
+i(ADy, U3)(AD3, Uy).

Proof. From (5.1), we obtain (5.4).

T () m(v )

By using V, = [M,V] and Vf = [M*,V*] , we have V = [M,V]. Therefore we derive
(Vn> = [M,V"] (n>1). Then tr (72) =tr[M,V ] 0.

x

Set F'= (1/2)tr V2 =3>""°_ F,,£~™, we obtain the following expressions:

F,, =

mooq 1 1
5 ].:o(5011]‘all,m—_;’+5a22jan,m—j+5a33_7‘¢133,m—j+al2jan,m_]‘+a13_7’¢131,m—j+a23jas2,m—j)+

m 1 * * 1 * * 1 * * * * * * *
+ § jzo(Ealljall,mfj+§a’22ja’22,mfj+§aSSja33,mfj+a12ja21,mfj+a13ja31,m7j+a23ja32,mfj)!

3

1 1 1
Foyi = —§<A7"<I>17 Uy) + §<A"’<I>27 Uy) + §<Am<1>3, Us) —

_§Z;n (AT R W (AT T B W ) (AT T D W) (AT Do W)+ (AT T g W) (AT @, W) ) —

= (AT T Ry W (AT T Dy W) (AT Ty W) (AT g W) (AT W) (AT @, W) )
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The time evolution equation of the eigenfunction

(Dlj q>1.7
(5.5) Dy, =Ny (1, &) | P25 |, j7=12---N
s Pa

tm

\Iflj \Iflj
(5.6) 2% =N (&) | o |, j=1,2...N,
2% Uy,

tm

then the conjugate representations of (5.5) and (5.6) are

o3, 3,
(5.7) 3 =N; (& | @5 |, i=12,...N,
(I)gj tm (I);:j
v, ) vi,
(5.8) w3, =-NI (| 95 |, j=12...N
\IJEJ tm \Ijgj

Let
H,, =Fpy1,then H =H,,, m=1,2,...

Theorem 5.2. (5.5), (5.6), (5.7) and (5.8) can be written as follows:

0H,, 0H,, 0H,,
Dy, =, Dy, = o, 3y, = BT
(5.9) oV, ovy oVy
: _ oM, o, o,
Lem = 8‘1’1 ' Zm 8‘1’2 ’ Btm 8@3 ’

Proof. From (5.2), (5.3) and Theorem 2.1, we obtain (5.9).

We know that F' = (1/2)trV 2 is also a generating function of integrals of motion for
(5.9). Therefore [11,12] {Hp, Hp} = {Fpy1, Fop1} = 25251 = 0, m,n > 0.

at'm+ 1

Corollary 5.1
The Hamiltonian systems (5.4) and (5.9) are complete integrable systems in the Li-
ouville sense.

Theorem 5.3. Let
* * T
q)] = ((b]l (x7tm)7a¢j]\f (xatm)7¢jl (.’I},tm),, iN (I,tm>) )

\II] = (wjl (Z’,tm) [ 7¢]N ($7tm)aw}<1 ($7tm)>' o 7¢;N (m7tm))T

be an involutive solution of the systems (5.4) and (5.9), u = (u1 pf pe p3)" and
(®;,¥;) satisfy (5.1), then
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1) The Hamiltonian equations (5.4) and (5.9) reduce the spatial part and time part of
the Lax pair for the m-th-order equation (3.6).

2) p= (1 By peo uﬁ)T satisfies the m-th—order equation (3.6).

6. — Conclusions

In this paper, the Lax representation of the coupled nonlinear Schrédinger equation
hierarchy is discussed. Based on the constrained relations between the potential and
eigenfunctions of the spectral problem, we get a completely integrable system of complex
form in the Liouville sense. Moreover, the solutions of the equation are derived by using
the involutive solution of the completely integrable Hamiltonian system.

* ok ok
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