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Symmetry reductions for 2-dimensional non-linear wave equation
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Summary. — Lie symmetry method is used to find symmetry reductions for the
non-linear wave equation utt = un(uxx + uyy). A set of symmetries and Lie algebra
are found and reduction under each 2-dimensional sub-algebra is presented.

PACS 02.30.Jr – Partial differential equations.
PACS 02.20.Tw – Infinite-dimensional Lie groups.
PACS 02.90.+p – Other topics in mathematical methods in physics.

1. – Introduction

Finding exact analytical solutions of nonlinear partial differential equations (PDEs)
is one of the challenging problems in applied mathematics. Whilst there exist methods
in the literature which can be used to tackle such problems, a large number of prob-
lems are wide open for an analytical study using the standard or conventional methods.
In particular, the case of nonlinear PDEs poses the most difficult challenge. In such
cases, approaches involving transformation of the given differential equation to a sim-
pler equation while preserving the invariance of the original equation is of great interest.
These transformations lead to invariant solutions also known as similarity solutions. Lie
symmetry method provides a powerful tool for generation of these transformations [1,2].
Consequently, the method enjoys a widespread application and has attracted attention of
many researchers working in fields such as general relativity, nonlinear wave and diffusion
equations [3-15].

For many nonlinear systems, there are only explicit exact solutions available. These
solutions play an important role in both mathematical analysis and physical applications
of the systems. A lot of research is being done in classification of symmetries [4, 8, 12,
13, 16-19], linearizing transformations and invariant solutions [9, 14, 20-28]. Symmetry
analysis of a variety of 1-dimensional nonlinear wave equations has been given by various
authors [17, 19, 23, 26, 29-32]. Studies have also been made for the 2-dimensional wave
equation with constant coefficients [33,34]. In this paper we provide a classification of a
nonlinear 2-dimensional wave equation in which the non-linearity is introduced through
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a function representing the wave speed. Using the Lie symmetry criteria, we provide all
possible symmetries by this wave equation and then use each of the sub-algebras of the
symmetry generators to reduce the wave equation to an ordinary differential equation.

2. – Derivation of symmetry generators

In this section we derive symmetry generators of the 2-dimensional nonlinear wave
equation,

(1) utt = un(uxx + uyy).

In order to find the solution of (1), we use the Lie symmetry criterion for PDEs,
V 2(H)

∣∣
H=0

= 0, which leads to the expression

(2) V (2)
{
utt − un(uxx + uyy)

}|utt−un(uxx+uyy)=0 = 0 ,

where V (2) represents the second prolongation of the generator associated with the orig-
inal basis and is given by

V (2) = V + φx ∂

∂ux
+ φy ∂

∂uy
+ φt ∂

∂ut
+ φxx ∂

∂uxx
+ φxy ∂

∂uxy
+(3)

+ φxt ∂

∂uxt
+ φyy ∂

∂uyy
+ φyt ∂

∂uyt
+ φtt ∂

∂utt
.

In the light of (3), eq. (2) becomes

(4) φtt − nu(n−1)(uxx + uyy)φ − un(φxx + φyy) = 0.

In order to find coefficients of infinitesimal symmetry generator, we substitute the ex-
pressions for φj in (4). These expressions can be determined from the formula φj(xi, u) =
Dj

(
φ − ∑3

i=1 χiui

)
+

∑3
i=1 χiuj,i [1, 2]. Using these expressions in (4) gives rise to a

determining system for the coefficients of infinitesimal symmetry generator. Comparing
like terms in the resulting expression, we obtain a coupled system of equations. Using
the coefficients of uxxux, uxxuyt and uyyuyt in the determining system yields

(5) τu = ξu = ηu = 0.

In the light of (5) it is easy to find that the coefficients of the other terms in the derivatives
of u give




2(ξx − τt) = nu−1φ,

2(ηy − τt) = nu−1φ,

ηx = −ξy,

ξt = unτx,

ηt = unτy,

φuu = 0.

(6)
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Solving φuu from (6), immediately gives

(7) φ = α(x, y, t)u + β(x, y, t).

Now substituting (7) in the remaining equations and solving them iteratively we obtain

(8)




ξ = a0 − a1y + a2x ,

η = a3 + a1x + a2y ,

τ =
( 4a2

n + 4
− 2na4

n + 4

)
t + a5 ,

φ =
( 2a2

n + 4
+

4a4

n + 4

)
u + β(x, y, t),

where all of a′
is are arbitrary constants, giving a five-parameter group, G5, with an addi-

tional parameter as an arbitrary function in the φ direction. From (8) we can construct
the symmetry generators in explicit form as given below:

(9)




V0 =
∂

∂x
, V1 = −y

∂

∂x
+ x

∂

∂y
,

V2 = x
∂

∂x
+ y

∂

∂y
+

( 4t
n + 4

) ∂

∂t
+

( 2u
n + 4

) ∂

∂u
,

V3 =
∂

∂y
, V4 = −

( 2nt

n + 4

) ∂

∂t
+

( 4u
n + 4

) ∂

∂u
,

V5 =
∂

∂t
, Vβ = β

∂

∂u
.

The symmetries V0, V3 and V5 represent translations, V1 rotation and Vβ a scaling trans-
formation. The arbitrary function β(x, y, t) satisfies the wave equation in itself, given
by

βtt − un(βxx + βyy) = 0.

3. – Reductions

In this section we give reduction of (1) under two 2-dimensional subalgebras only: one
when generators commute and second when they do not. A complete table of reductions
by every single generator is given in appendix A and reductions under 2-dimensional
subalgebras is given in appendix B. Further, before proceeding to show reductions in two
cases, we construct commutation relations satisfied by each of the generators and give it
in table I. According to Lie’s theorem [1], if a PDE is invariant under Vi and Vj , it is
also invariant under [Vi, Vj ] if it forms a closed sub-Lie algebra. With this in mind, we
first consider the two mutually commuting generators V3 and V5 ([V3, V5] = 0) and give
reduction of of the 2-dimensional wave equation under them.
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Table I. – Commutator algebra for symmetry generators.

[Vi, Vj ] V0 V1 V2 V3 V4 V5

V0 0 V3 V0 0 0 0

V1 −V3 0 0 V0 0 0

V2 −V0 0 0 −V3 0
( −4

n+4

)
V5

V3 0 −V0 V3 0 0 0

V4 0 0 0 0 0
(−2n

n+4

)
V5

V5 0 0 0
(

4
n+4

)
V5

(−2n
n+4

)
V5 0

Starting with V3 = ∂/∂y we can reduce eq. (1) to

(10) wrr = wnwss

with similarity variables s = x, r = t and w(r, s) = u. Before using V5 we first transform
it to new variables given by

Ṽ5 = 0
∂

∂s
+

∂

∂r
+ 0

∂

∂w
.

Solving the above equation it is straightforward to notice that the similarity variables
for it become α = s and β(α) = w. Using these variables reduces (10) to β′′ = 0.

As a second example we consider generators V0 and V2. Whereas these generators do
not commute with each other, their algebra is closed. We start reduction of (1) with V0

and obtain

(11) wrr = wnwss ,

where s = y, r = t and w(r, s) = u. Under these similarity variables, the V2 transforms to
Ṽ2 = s ∂

∂s +
(

4r
n+4

)
∂
∂r +

(
2w

n+4

)
∂

∂w with its invariants being α = r
n
4 +1/s and

√
reβ(α) = w.

Using these invariants (11) reduces to an ODE given by

−1
4
+

(n

4
+ 1

)2(
αβ′ + α2β′2 + α2β′′

)
= α2enβ(2αβ′ + α2β′2 + α2β′′).

A complete reduction under remaining two-dimensional subalgebras is given in Ap-
pendix B.

4. – Conclusions

Using Lie symmetry methods we give a set of symmetries of the non-linear wave
equation in which the non-linearity has been introduced through un. Finding all the Lie
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point symmetries possessed by this equation we give a complete reduction of the wave
equation to second-order ones.

∗ ∗ ∗
AHB and FDZ acknowledge KFUPM, Saudi Arabia research grant FT/2005-02.

Appendix A.

Table II. – Reduction under symmetry generators.

Generator Reduction and similarity variables

V0 = ∂
∂x

wrr = wnwss

where s = y, r = t and w(r, s) = u

V1 = −y ∂
∂x

+ x ∂
∂y

wrr = 4wn(ws + swss)

where s = x2 + y2, r = t and w(r, s) = u

V2 = x ∂
∂x

+ y ∂
∂y

+ − 1
4
+

(
n
4
+ 1

)2
r2w2

r +
(

n
4
+ 1

)
wr +

(
n
4
+ 1

)2
r2wrr(

4t
n+4

)
∂
∂t

+
(

2u
n+4

)
∂

∂u
= r2enw

{
r2w2

r + (s2 + 1)w2
s + 2rswswr+

r2wrr + 2srwsr + 2rwr + (s2 + 1)wss + 2sws

where s = y
x
, r = t

n
4 +1

x
and

√
tww(r,s) = u

V3 = ∂
∂y

wrr = wnwss

where s = x, r = t and w(r, s) = u

V4 = −(
2nt
n+4

)
∂
∂t

+
(

4u
n+4

)
∂

∂u
2
n

(
2
n
+ 1

)
= enw(wss + wrr)

where s = x, r = y and u = t−
2
n ew(r,s)

V5 = ∂
∂t

wss + wrr = 0

where s = x, r = y and w(r, s) = u
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Appendix B.

Table III. – Reductions under two-dimensional algebra.

Algebra Reductions and similarity variables

[V0, V3] = 0 β′′ = 0

where α = r , β(α) = w and s = y, r = t, w(r, s) = u

[V0, V4] = 0 2
n

(
2
n
+ 1

)
= enβ(β′2 + β′′)

where α = s, eβ(α)r−
2
n = w and s = y, r = t, w(r, s) = u

[V0, V5] = 0 β′′ = 0

where α = s, β(α) = w and s = y, r = t, w(r, s) = u

[V1, V2] = 0 − 1
2
+

(
n
2
+ 2

)2
(αβ′ + α2β′ + α2β′′) = 4αenβ(αβ′ + α2β′2 + α2β′′)

where α = r
n
2 +2

s
,
√

reβ(α) = w and s = x2 + y2, r = t, w(r, s) = u

[V1, V4] = 0 2
n

(
2
n
+ 1

)
= 4enβ{β′ + α(β′2 + β′′)}

where α = s, eβ(α)r−
2
n = w and s = x2 + y2, r = t, w(r, s) = u

[V1, V5] = 0 β′ + αβ′′ = 0

where α = s2 + r2, β(α) = w and s = x, r = y, w(r, s) = u

[V2, V4] = 0 2
n

(
2
n
+ 1

)
= enβ

(
β′′ − 2

n
+ α2β′′ + 2αβ′)

where α = s
r
, 2

n
ln r + β(α) = w and s = x, r = y, w(r, s) = ln

(
ut

2
n

)
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Table III. – Continued.

Algebra Reductions and similarity variables

[V3, V4] = 0 2
n

(
2
n
+ 1

)
= enβ(β′′ + β′2)

where α = s, eβ(α)r−
2
n = w and s = x, r = t, w(r, s) = u

[V3, V5] = 0 β′′ = 0

where α = s, β(α) = w and s = x, r = t, w(r, s) = u

[V0, V2] = V0 − 1
4
+

(
n
4
+ 1

)2(
αβ′ + α2β′2 + α2β′′) = α2enβ(2αβ′ + α2β′2 + α2β′′)

where α = r
n
4 +1

s
,
√

reβ(α) = w and s = y, r = t, w(r, s) = u

[V3, V2] = V3 − 1
4
+

(
n
4
+ 1

)2(
αβ′ + α2β′2 + α2β′′) = α2enβ(2αβ′ + α2β′2 + α2β′′)

where α = r
n
4 +1

s
,
√

reβ(α) = w and s = x, r = t, w(r, s) = u

[V5, V2] = c1V5
2(n+2)

(n+4)2
=

(
2n+12
n+4

)
αβ′ + β′2 + β′′ + α2β′2 + α2β′′

where α = r
s
, s

2
n+4 eβ(α) = w and s = x, r = y, w(r, s) = u
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