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Summary. — The creation of particles is a natural consequence of quantum field
theory in curved space-time. We study this phenomenon at finite temperature by
using Thermo Field Dynamics (TFD). In the conventional TFD formulated in the
thermal Schrödinger picture, temperature is included in the state vectors. We adopt
another approach where the temperature is absorbed in operators, so that the double
(time and thermal) Bogoliubov transformations of the operators in curved space-
time can be unified consistently with TFD, giving a correct number of particles
created from false vacuum at finite temperature. We found that the net number of
particles created at time t due to thermal effects and curved space-time is given by
∆nk(t, β) = {1 + σ2nk(β)}nk(t), where nk(t) is the number of particles at time t
and nk(β) = 1/(eβωk − σ) the initial distribution for bosons (σ = 1) and fermions
(σ = −1) at temperature T (= 1/kBβ), respectively. Thermal state condition in
THP is also given in a general form.

PACS 11.10.Wx – Finite-temperature field theory.
PACS 04.62.+v – Quantum field theory in curved spacetime.
PACS 98.80.Cq – Particle-theory and field-theory models of the early Universe (in-
cluding cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe,
etc.).

1. – Introduction

Laciana [1] studied the problem of boson creation amplification in curved space [2]
due to thermal effects. In his study, he formulated the problem by means of thermo field
dynamics (TFD) along with the Bogoliubov transformation. TFD [3-5] is a field theory
to describe elementary particles at finite temperature and has been recognized as a theory
essential to treat a system with infinitely many quantum particles. We can expect that
there are two possibilities in the creation of particles (boson, fermion) from the vacuum
state: one is a dynamical effect due to a natural consequence of quantum field theory in
curved space-time and the other is a spontaneous phenomenon due to thermal effects. In
the latter case, those particles are created from false vacuum at temperature T .

In this paper, we shall consider the problem of creation of particles from false vacuum
at finite temperature by using TFD for both bosonic and fermionic fields in a unified
manner. We formulate the problem by introducing a thermal Heisenberg operator [6]
analogous to a Heisenberg operator in quantum mechanics. In other words, we construct
the theory of particle creation in terms of a thermal Heisenberg picture (THP) within
the framework of TFD. When we take the statistical averaging of an observable A in
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TFD, the averaging of a thermal Heisenberg operator A(β) := U†(β)AU(β) should be
taken so as to give a correct expression for 〈A〉 although 〈A〉 can be calculated in terms
of a thermal Schrödinger picture (TSP), that is, 〈A〉 can be calculated from

〈A〉 ≡
{

〈0, 0̃|A(β)|0, 0̃〉 (THP),

〈0(β)|A|0(β)〉 (TSP),
(1)

where |0(β)〉 (:= U(β)|0, 0̃〉) is a thermal vacuum state and U(β) a unitary operator that
generates |0(β)〉 upon operating the vacuum state |0, 0̃〉. In ref. [1], however, 〈A〉 is calcu-
lated from 〈0, 0̃|Aβ |0, 0̃〉 = 〈0, 0̃|U(β)AU†(β)|0, 0̃〉. Thus, the expectation value in ref. [1]
is certainly not equal to the statistical averaging defined in TFD though his result for
boson creation gives the correct result as will be derived in this paper. In order to avoid
the inconsistency for the use of statistical averaging in TFD as seen in ref. [1] and some
literatures, we shall present a theory in terms of THP within the framework of TFD and
apply it to the problem of particle creation amplification for both bosonic and fermionic
fields and study the effect of the statistical defference in particle creation, namely, the
creation of bosons and fermions at finite temperature. We specifically consider the situ-
ation where we had a curved geometry at finite temperature initially and ask how many
particles will be created by thermal effects at time t. We will show that, in the formula-
tion, working with THP is advantageous over the conventional TFD formulated in TSP
and unavoidable utility of the double Bogoliubov transformation to connect initial and
final thermal states is proved to be justified under certain circumstances.

2. – Thermo field dynamics

2.1. Preliminary . – To begin with, we briefly summarize the most essential parts of
TFD [3]. In TFD, statistical averaging of an observable A in the ordinary quantum-
statistical mechanics is expressed by

〈A〉 = Tr(ρA) ≡ 〈0(β)|A|0(β)〉,(2)

where ρ (= exp[−βH]/Tr[exp[−βH]]) is a density operator and |0(β)〉 is a thermal (in-
verse temperature (β ≡ 1/kBT ) dependent) vacuum state defined by

|0(β)〉 := ρ1/2
∑

n

|n〉 ⊗ |ñ〉 =: ρ1/2
∑

n

|n, ñ〉.(3)

Here, |n〉 (|ñ〉) is the eigenstate of Hamiltonian H (H̃) in the Hilbert (tilde conjugate
Hilbert) space H (H̃ ) and each state satisfies the orthogonality conditions: 〈m, m̃|n, ñ〉
= δmnδm̃ñ, where |n〉 ∈ H and |ñ〉 ∈ H̃ . By introducing the tilde conjugate Hilbert
space H̃ corresponding to the ordinary Hilbert spaceH , thermal states can be expressed
in the space H ⊗ H̃ . Any operators A, B on H and the corresponding tilde operators
Ã, B̃ on H̃ must satisfy the following tilde conjugation rules:

• (AB)∼ = ÃB̃,

• (c1A+ c2B)∼ = c∗1Ã+ c∗2B̃ (c1, c2 ∈ C),

• (A†)∼ = Ã†,
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• (Ã)∼ = σA (σ = 1 (−1) for boson (fermion)),
• [A, B̃]σ = AB̃ − σB̃A = 0,

where † indicates an Hermitian conjugate. It is now clear that the statistical aver-
age (expectation value) of an observable A on H can be in principle calculated from
〈0(β)|A|0(β)〉 by use of the vacuum state (3), on which so-called the thermal state con-
dition [3] in TSP, i.e.

A|0(β)〉 = eβĤ/2Ã†|0(β)〉(4)

has to be imposed in order to satisfy the tilde conjugation rules listed above. It should
be noted that Ĥ := H − H̃ is introduced so as to give the same expression for eq. (2) [5].
In this paper we shall consider a system of free particles (bosons, fermions). The Hamil-
tonian is given by H =

∑
k �ωka†

kak. Here, ak, a†
k denote, respectively, the annihilation

and creation operators for bosonic (fermionic) fields defined on H and satisfy the com-
mutation (anti-commutation) relations: [ak, a†

k′ ]∓ = δk,k′ , [ak, ak′ ]∓ = 0. Here, the
upper (−) sign corresponds to a commutation relation for bosons whereas the lower (+)
sign to an anti-commutation relation for fermions. k denotes the wave vector of a parti-
cle. In TFD, we also have to introduce the tilde operators ãk, ã

†
k, which are, respectively,

the annihilation and creation operators for bosonic (fermionic) fields defined on H̃ and
represent the quantum effect of particle distribution, namely, the thermal effect. These
tilde operators obey the tilde conjugation rules [3] and also satisfy the usual commutation
(anti-commutation) relations for bosonic (fermionic) fields.

In the following, we shall consider the problem of particle creation from false vac-
uum at finite temperature for a system consisting of free particles (bosons, fermions).
Hereafter � and kB will be taken as 1.

2.2. Thermal Schrödinger picture. – In conventional TFD, a thermal vacuum state (3)
can be expressed by

|0(β)〉 = U(β)|0, 0̃〉,(5)

where the vacuum state |0, 0̃〉 belongs to the double Hilbert space H ⊗ H̃ and U(β) is
the unitary operator defined by [3]

U := exp

[
−

∑
k

θk(β)(ãkak − a†
kã†

k)

]
,(6)

where θk(β) must be determined from sinh θk(β) = e−βωk/2√
1−e−βωk

for bosons and sin θk(β) =

e−βωk/2√
1+e−βωk

for fermions, respectively. The unitary operator U provides the thermal Bo-

goliubov transformation, giving new operators ak,β , ãk,β as

ak,β := UakU† = ak cosh θk(β)− ã†
k sinh θk(β),(7)

ãk,β := UãkU† = ãk cosh θk(β)− a†
k sinh θk(β),(8)
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for bosons and

ak,β := UakU† = ak cos θk(β)− ã†
k sin θk(β),(9)

ãk,β := UãkU† = ãk cos θk(β) + a†
k sin θk(β),(10)

for fermions, respectively. These new operators ak,β , ãk,β and their Hermitian conjugate
operators a†

k,β , ã
†
k,β are called the thermal quasi-particle operators that operate on |0(β)〉

and satisfy the usual commutation (anti-commutation) rules for the bosonic (fermionic)
fields [4, 5]. Solving eqs. (7), (8) (eqs. (9), (10)) for ak, a†

k and using the tilde conju-
gation rules and the appropriate commutation relations for these thermal quasi-particle
operators of the bosonic (fermionic) field, we can obtain the number of particles (bosons,
fermions) having momentum (wave vector) k at temperature T (= 1/β):

nk,β = 〈a†
kak〉 ≡ 〈0(β)|a†

kak|0(β)〉(11)

=
{
sinh2 θk(β) = (eβωk − 1)−1 (boson),
sin2 θk(β) = (eβωk + 1)−1 (fermion).

As expected, we obtained the Bose-Einstein and the Fermi-Dirac distributions for bosonic
and fermionic fields, respectively. In the conventional TFD, the thermal effect (viz.,
temperature) is generally taken into account in the state vectors as demonstrated in
the above calculation for the particle number. Analogous to the Schrödinger picture in
quantum mechanics, we call this picture “Thermal Schrödinger Picture” (TSP) in TFD.

2.3. Thermal Heisenberg picture. – Analogous to the Heisenberg picture in quantum
mechanics, where the time dependence is absorbed in an operator, we transfer the thermal
effect into an operator, so that the operator depends on temperature. We call this picture
“Thermal Heisenberg Picture” (THP) and those temperature-dependent operators in
THP of TFD are called thermal Heisenberg operator, which may be defined through the
thermal Bogoliubov transformation as A(β) := U†(β)AU(β). Thermal state condition
in THP corresponding to eq. (4) is then given by

A(β)|0, 0̃〉 = eβĤ(β)/2Ã†(β)|0, 0̃〉,(12)

where A(β), Ã(β) are thermal Heisenberg operators defined on H ⊗ H̃ . It should be
noted that the definition of a thermal Heisenberg operator A(β) differs from the thermal
quasi-particle operator Aβ introduced in refs. [1,4,5], viz., U†(β)AU(β) =: A(β) �= Aβ :=
U(β)AU†(β).

Let us illustrate the THP within the framework of TFD. Since the thermal vacuum
state introduced in TFD is given by eq. (5), the statistical averaging of an observable A
(see eq. (1)) can be expressed in terms of the thermal Heisenberg operator A(β):

〈0(β)|A|0(β)〉 = 〈0, 0̃|U†(β)AU(β)|0, 0̃〉(13)

=: 〈0, 0̃|A(β)|0, 0̃〉,

where U(β) is the unitary operator (generator) given by eq. (6). It is clear that eq. (13) is
not equal to 〈0, 0̃|Aβ |0, 0̃〉= 〈0, 0̃|U(β)AU†(β)|0, 0̃〉 defined in ref. [1] and some literatures.
The statistical averaging of an observable A must be evaluated by taking the expectation
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value of the thermal Heisenberg operator A(β) with the vacuum state |0, 0̃〉 as defined in
eq. (13).

From the definition of a thermal Heisenberg operator A(β) := U†(β)AU(β) along with
eq. (5), those thermal Heisenberg annihilation operators, ak(β) and ãk(β), are explicitly
given for boson by

ak(β) := U†akU = ak cosh θk(β) + ã†
k sinh θk(β),(14)

ãk(β) := U†ãkU = ãk cosh θk(β) + a†
k sinh θk(β)(15)

and for fermion by

ak(β) := U†akU = ak cos θk(β) + ã†
k sin θk(β),(16)

ãk(β) := U†ãkU = ãk cos θk(β)− a†
k sin θk(β)(17)

and their corresponding Hermitian conjugates are also obtained from these equations.
It is noted that these new operators ak(β), ãk(β) and their Hermitian conjugates a†

k(β),
ã†
k(β) also satisfy the usual commutation (anti-commutation) relations for bosonic
(fermionic) fields. Employing eqs. (14), (16) and their Hermitian conjugates in the cal-
culation of particle (boson and fermion) number 〈0, 0̃|a†

k(β)ak(β)|0, 0̃〉 in THP, we can
obtain the same expressions as in eq. (11) calculated in TSP. To show this, let us calculate
the number of particles (bosons, fermions) having momentum k at finite temperature in
THP. The transformations (14), (16) and the Hermitian conjugates of (15), (17) can be
expressed for the bosonic and fermionic fields in a same simple matrix equation:

(
ak(β)
ã†
k(β)

)
=

1√
1− σfk

(
1 f

1/2
k

σf
1/2
k 1

) (
ak

ã†
k

)
,(18)

where we used sinh θk(β) = e−βωk/2√
1−e−βωk

for bosons and sin θk(β) = e−βωk/2√
1+e−βωk

for fermions,

respectively. In eq. (18), fk is defined by fk := e−βωk and σ = 1 (−1) corresponds
to the case for boson (fermion). Since the vacuum state at 0 K in THP is given by
|0〉 := |0, 0̃〉, the expectation value of the particle number at T (= 1/β) can be calculated
from 〈0|a†

k(β)ak(β)|0〉 and is given by

nk(β) = 〈0, 0̃|a†
k(β)ak(β)|0, 0̃〉(19)

=
1

1− σfk
〈0|f1/2

k ãkf
1/2
k ã†

k|0〉 =
1

eβωk − σ
.

This is the Bose-Einstein (Fermi-Dirac) distribution for free bosons (fermions). From
eqs. (11) and (19), we see that nk,β = nk(β), proving the equivalence between TSP and
THP in TFD. The definition of thermal Heisenberg operators, A(β) := U†(β)AU(β),
introduced in this theory is therefore justified.

Now we consider another approach to treat the problem of particle creation amplifi-
cation for bosonic and fermionic fields from false vacuum by thermal effects, namely, to
treat it in terms of THP within the framework of TFD.
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3. – Particle creation from false vacuum at finite temperature

Let us consider the situation where we had a curved geometry at finite temperature
initially and ask how many particles will be created by thermal effects at time t. For
this purpose, let us first consider another Bogoliubov transformation that relates the
annihilation and creation operators at an initial time, say t = 0 and time t in curved
space-time at zero temperature [2]:

ak(t) = Ukak + Vka†
−k, a†

k(t) = U∗
k a†

k + V ∗
k a−k,(20)

where Uk, Vk represent some physical (c-number) parameters characterizing the system
(at time t) and ak, a†

k are, respectively, the annihilation and the creation operators for
a boson (fermion) with momentum (wave vector) k at an initial time: ak(t = 0) ≡ ak,
a†
k(t = 0) ≡ a†

k. The annihilation and the creation operators, ak(t), a
†
k(t) defined at time

t satisfy

ak(t)|0; t〉 = 0, a†
k(t)|0; t〉 = |1k; t〉,(21)

where |0; t〉, |1k; t〉 denote the vacuum and the one-particle states at time t, respectively.
It is noted that ak(t), a†

k(t) also satisfy the usual commutation (anti-commutation) rela-
tions for bosons (fermions), so that Uk and Vk satisfy the relations: |Uk|2 − σ|Vk|2 = 1.
The number of particles at time t is then given by

nk(t) = 〈0|a†
k(t)ak(t)|0〉 = |Vk|2(22)

for both bosonic and fermionic fields. It is interesting to note that the number of particles
created at time t due to the change in curved space-time gives the same result for bosonic
and fermionic fields although these fields obey different statistics.

Next we consider the situation where we had a curved geometry at finite tempera-
ture initially and ask how many particles will be created by thermal effects at time t.
Noticing the similarity between the two Bogoliubov transformations (time and thermal)
(see eqs. (20) and (18)), we can conveniently work out this problem by introducing the
quadrivectorial operators [1]: Ak, Ak(β) and Ak(t) defined by

Ak(l) := [ ak(l), a
†
k(l), ãk(l), ã

†
k(l) ]

T,(23)

where l is a generic variable for t and β. We also introduce the 4× 4 matrix Λ(t, β), so
that the two transformations (time and thermal) can be expressed by the single matrix
form

Ak(t, β) =: Λ(t, β)Ak,(24)

where Λ(t, β) is expressed by

Λ(t, β) =
1√

1− σfk

(
M f

1/2
k R

σf
1/2
k R

∗ M̃

)
,(25)
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and the R and the M are given in terms of Vk and Uk as

R =
(

VkP Uk

U∗
k V ∗

k P

)
, M =

(
Uk VkP

V ∗
k P U∗

k

)
.(26)

Here P denotes the parity operator: Pak = a−k.
The total number of created particles (bosons, fermions) comes from two sources: a

generic one due to the curvature of space-time and the other one due to thermal effects.
Using the thermal Heisenberg operators ak(t, β), a†

k(t, β) and applying the Bogoliubov
transformation (24), the number of particles nk(t, β) created from the initial vacuum due
to the change of curved space-time and also to the distribution of particles is thus given
by

nk(t, β) := 〈0|a†
k(t, β)ak(t, β)|0〉(27)

= nk(β) + nk(t) + σ2nk(β)nk(t).

From this, the net number of created particles (bosons, fermions), ∆nk(t, β) = nk(t, β)−
nk(β), at time t, temperature T , is given by

∆nk(t, β) = {1 + σ2nk(β)}nk(t),(28)

where nk(t) is given by eq. (22) and nk(β) by eq. (19) for bosons (σ = 1) and fermions
(σ = −1), respectively. It is clearly seen from this that the number of particles created
in curved space-time, nk(t), is further modified by the factor {1 + σ2nk(β)} due to
the change in particle distribution (i.e. temperature). If at the beginning we had a
curved geometry, there will be nk(t, β) particles created at time t. Considering the
boson (fermion) distribution at time t, we see that the number of bosons (fermions)
are further increased (decreased) by the factor {1 + σ2nk(β)} due to thermal effects.
This quantum effect can be seen distinctively at low temperature due to the fact that
bosons obey the Bose-Einstein statistics while fermions obey the Fermi-Dirac statistics.
As temperature is raised, the energy of each particle becomes high, so that nk(β) in
eq. (28) can be approximated by the Boltzmann distribution (∼ exp[−βωk]), indicating
that the statistical nature of particles (bosons and fermions) does not appear although
the quantum effect due to the bosonic and fermionic nature of particles still remains even
at high temperature.

In summary, we have considered the simple problem of particle creation from false
vacuum at finite temperature by applying the theory of TFD formulated in THP by
introducing a thermal Heisenberg operator defined by A(β) := U†(β)AU(β). We showed
that if at the beginning we had a curved geometry at zero temperature there would
be nk(t, β) particles created at time t (see eq. (27)), and obtained the net particles
created at time t and temperature T due to the change of the particle distribution as
{(1 + σ2nk(β)}nk(t) for bosonic (σ = 1) and fermionic (σ = −1) fields (see eq. (28)).

4. – Conclusions

Due to the difference in the statistics of quantum particles, our result (eq. (28))
shows that the number of bosons increases due to thermal effects (i.e. the change in
the distribution of particles) by the factor {1+ 2nk(β)} whereas the number of fermions
decreases by the factor {1 − 2nk(β)} in contrast to the bosonic field, indicating the
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Fig. 1. – Thermal factor (1+σ2nk(β)) vs. temperature (T ). Here, β = 1/T and ω = 1. (σ = +1
for bosons, σ = −1 for fermions.)

quantum effect. As temperature is raised, energy of each particle becomes higher, so
that the particle (boson, fermion) distribution nk(β) becomes the Boltzmann distribution
(∼ exp[−βωk] for βωk � 1), indicating that the statistical nature of quantum particles
does not appear at high temperature although the quantum effect still can be seen even
at such high temperatures. Another extreme, when temperature approaches zero (i.e.
β → ∞), nk(β) → 0, and our result (eq. (28)) recovers the zero temperature result
(eq. (22)) accordingly, where no distinction can be seen in the statistical nature of bosonic
and fermionic fields. These distinctive features can be clearly seen in fig. 1.

Finally, we should note that our results are independent of the particular model.
Therefore, the present theory could be applied to the system of photons, phonons, and
the Cooper pairs in the condensed phase for bosonic fields or to the system of He3 for
the fermionic field, depending on the system considered.
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