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Canonical quantization of (21 1)-dimensional gravity
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Summary. — We construct an action and carry out its canonical quantization for
(21 1)-dimensional gravity with the gravitational Chern-Simons term, coupled to
point particles with spins. While doing so we use the coadjoint-orbit method and
apply the Faddeev-Jackiw first-order formalism. In addition, we obtain the braiding
relation and discuss the scattering process of the two-particle case.

PACS 04.20 – Classical general relativity.
PACS 03.70 – Theory of quantized fields.
PACS 03.80 – General theory of scattering.
PACS 04.60.Kz – Lower dimensional models; minisuperspace models.
PACS 01.30.Cc – Conference proceedings.

Quantum gravity is one of the most important and challenging problems in
contemporary theoretical physics. Although there have been a lot of attempts, we do
not have a definite answer to it, yet. In this respect, three-dimensional gravity provides
a good toy model, where the mathematical structures are greatly simplified but still
rich enough for us to gain much insight into the interrelation between geometry and
quantum mechanics, which may be an indispensable ingredient toward a consistent and
complete theory of quantum gravity. This virtue of the three-dimensional gravity can
be mostly ascribed to the fact that the three-dimensional gravity can be described as a
non-Abelian Chern-Simons gauge theory of which the gauge group is the three-
dimensional Poincaré group ISO(2 , 1 ) [1, 2].

In this paper we will investigate, in the framework of Chern-Simons gauge-
theoretic formulation, a generalized three-dimensional gravity coupled to point
particles with arbitrary spins, which incorporates the gravitational Chern-Simons
term. The gravitational Chern-Simons term originates from the unique feature of
three-dimensional space-time: its Poincaré group ISO(2 , 1 ) has one-parameter family

(*) Paper presented at the Fourth Italian-Korean Meeting on Relativistic Astrophysics,
Rome-Gran Sasso-Pescara, July 9-15, 1995.
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of invariant non-degenerate inner products [3]. On the other hand, we will exploit the
coadjoint-orbit method [4, 5] to construct the action of the point particles which keeps
the local Poincaré symmetry manifest, and will take advantage of Faddeev-Jackiw’s
first-order formalism [6] to perform canonical quantization. And we will compare it
with the theories of three-dimensional gravity with the conventional inner
product [7, 8]. We start by constructing the generalized invariant non-degenerate inner
product on ISO(2 , 1 ). Let us first consider the algebra defined by

[Pa , Pb ]42 le ab
c Jc , [Pa , Jb ]4e ab

c Pc , [Ja , Jb ]4e ab
c Jc ,(1)

where a , b , c40, 1 , 2. The above algebra corresponds to SO(3 , 1 ), SO(2 , 2 ), or
ISO(2 , 1 ) if lD0, lE0, or l40, respectively. One of the most interesting features in
three-dimensional space-time, which is indeed the underlying basis allowing a gauge-
theoretic formulation for three-dimensional gravity, is that the above algebra admits
two invariant inner products as follows:

.
/
´

aPa , Pb b40 ,

aPa , Jb b4h ab ,

aJa , Jb b40 ,

(2)

or

.
/
´

aPa , Pb b4lh ab ,

aPa , Jb b40 ,

aJa , Jb b4h ab ,

(3)

where h ab4diag (21, 1 , 1 ). Notice that the inner product (2), which is
non-degenerate, is peculiar only to three-dimensional space-time, although the inner
product (3) has its natural counterparts in any dimensional space-time, which are
unfortunately degenerate if l40. We would like to emphasize once more that the
above fact is the very reason why only three-dimensional gravity exhibits a simple
gauge-theoretic formulation while others do not. Now we can construct the most
general invariant non-degenerate inner product on the algebra by combining the above
two inner products as (2)1a(3), where a is an arbitrary real number. Putting l40,
we have at last arrived at the generalized invariant non-degenerate inner product on
ISO(2 , 1 ), defined as

.
/
´

aPa , Pb b40 ,

aPa , Jb b4h ab ,

aJa , Jb b4ah ab .

(4)

In the limit a goes to zero, the above inner product obviously reduces to the
conventional one previously used in the Chern-Simons gauge formulation of three-
dimensional gravity [2].

Using the above generalized inner product for the Lie-algebra–valued gauge
potential of ISO(2 , 1 ) defined as

A4Am dx m , Am4em
a Pa1v m

a Ja ,(5)
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we obtain the generalized Chern-Simons action for gravity in three dimensions as [9]

.
`
/
`
´

IG4�dt LG ,

LG4
1

2
�d2 x oA , dA1

2

3
A 2p4�d2xe lmn el

c (¯m v n
c2¯n v m

c1e abc v m
a v n

b )1

1
a

2
�d2xe lmn v l

cg¯m v n
c2¯n v m

c 1
2

3
e abc v m

a v n
bh .

(6)

We note that the obtained Lagrangian contains the gravitational Chern-Simons term
in addition, being compared with the previous one. However, the above Lagrangian
yields the same equations of motion as the Einstein-Cartan theory of three-
dimensional gravity when the matter is absent.

For the particles, we take the following action which manifests the local gauge
symmetry ISO(2 , 1 ):

.
`
/
`
´

LP4 oK , g 21g ¯

¯t
1Athgp ,

K4mJ 01sP 0 ,

At4et
a Pa1v t

a Ja4 j
.

m em
a Pa1j

.
m v m

a Ja ,

(7)

where g is an element of ISO(2 , 1 ) and j m denote the space-time coordinates of the
particle. With expressing g in terms of the Euler angles f, u, c and a Lorentz vector q a,
g(t)4 (L , q), L4e J0 f e J1 u e J0 c and performing some modifications, learnt from the
lesson in the relativistic anyon theory [10], which helps greatly for the canonical
quantization, we find the Lagrangian for N point particles with arbitrary spins coupled
to gravity as [9]

(8) LP4!
A

[p Am j
.

m
A1pAa q

. a
A1sA cosh u A f

.
A1l A (pAa Sa

A1sA mA )1NA (p 2
A1m 2

A ) ]1

1!
A

b m [p Am2SAa v m
a2pAa (em

a1e a
bc v m

b q c ) ] ,

where A41, R , N labels the particles. It will be clear shortly that the parameters mA

and sA4sA1amA correspond to mass and spin of the particles, respectively.
If we set j 0

A4 t, using the diffeomorphism invariance, we have an expression of the
Lagrangian of the gravity coupled to N point particles with spins, which is more
suitable for the canonical quantization

(9) L4LG1LP4!
A

[p Ai j
.

i
A1pAa q

. a
A1sA cosh u A f

.
A1NA x A

M1l A x A
PL1b A

i x A
i ]1

1�d2x [e ij v j
a (2 e

.
ia1av

.
ia )1e0a W a

R1v 0a W a
T ] .
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As usual for a reparametrization-invariant theory, the Hamiltonian consists of con-
straints only:

.
`
/
`
´

W a
R (x)4e ij Rij

a (x)1!
A

p a
A d(x2jA )40 ,

W a
T (x)4e ij (Tij

a (x)1aRij
a (x) )1!

A
J a

A d(x2jA )40 ,

x A
i 4p Ai2JAa v i

a (jA )2pAa ei
a (jA )40 ,

x A
M4p 2

A1m 2
A40 ,

x A
PL4pAa Sa

A1sA mA40 ,

(10)

where JA
a4LA

a1SA
a 4e a

bc qA
b pA

c1SA
a , and

Rij
c4¯i v j

c2¯j v i
c1e ab

c v i
a v j

b ,

Tij
c4¯i ej

c2¯j ei
c1e ab

c (v i
a ej

b2v j
a ei

b ) ,

which are spatial components of the curvature and the torsion, respectively. Notice that
the constraints x A

M and x A
PL are nothing but the mass-shell condition and the

Pauli-Lubanski condition, respectively, which are just what we need to describe the
relativistic anyons. Since the mass and the spin are determined by the mass-shell
condition and the Pauli-Lubanski condition, we find that the spin of the anyon is shifted
by am due to the gravitational Chern-Simons term. It is not difficult to see that when
sA4a40 the above Lagrangian (9) reduces to that of the approach [7, 8] which takes
advantage of the Poincaré coordinates; q a

A are nothing but the Poincaré
coordinates.

Applying Faddeev-Jackiw’s first-order formalism [6], we can easily show that the
above Lagrangian yields the fundamental commutators as

.
`
/
`
´

]j i
A , p Bj(4d i

j d AB , ]q a
A , p b

B(4h ab d AB ,

]SAa , SBb(4e ab
c SAc d AB , ]ei

a (x), v j
b (y)(4

1

2
e ij h ab d 2 (x2y) ,

]ei
a (x), ej

b (y)(42
a

2
e ij h ab d 2 (x2y) , ]v i

a (x), v j
b (y)(40 .

(11)

From these fundamental commutators, we find that the constraints form a closed
algebra. The only non-vanishing commutators of them are as follows:

.
`
/
`
´

]W a
R (x), W b

R (y)(40 ,

]W a
T (x), W b

R (y)(4e ab
c W c

R (x) d 2 (x2y) ,

]W a
T (x), W b

T (y)(4e ab
c W c

T (x) d 2 (x2y) ,

]x A
i , x B

j (4
1

2
d AB e ij [ (Ja2apa ) W a

R1pa W a
T ] .

(12)

As expected, the constraints W a
R and W a

T form an ISO(2 , 1 ) algebra. The constraints x i
A

are present because of the underlying diffeomorphism invariance of the theory, which
cannot be completely represented by the action of the ISO(2 , 1 ) constraints when it
acts by moving particles around [8].
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After having constructed a classical action for the three-dimensional gravity with
the gravitational Chern-Simons term, coupled to point particles with spins, and
performed its canonical quantization, we would like to end the paper by deriving the
braiding operator and scattering amplitude. Although it is rather straightforward to
apply most of the apparatus already developed for the NACS particles [11-13] to the
spinning particles coupled with the gravity under discussion, in this paper we shall
consider only the simplest case of a two-particle sector, especially in the Coulomb
gauge, which cannot possibly be chosen among the sectors with an arbitrary number of
particles. Let us suppose that one particle (labeled by 1) is located at the origin and the
other (labeled by 2) is at x. Choosing a Coulomb gauge condition, ¯i Ai

a40, or
equivalently,

¯i ei
a4¯i v i

a40 ,

we easily find a solution of the Gauss constraint,

ei
a (x)4e ij

J×a
11ap×a

1

2p

x j

r 2
, v i

a (x)4e ij
p×a

1

2p

x j

r 2
.(13)

With this solution, the constraints x A
i 40, A41, 2 eqs. (10) are read as

.
`
/
`
´

p×1 i4 J×1a v i
a (j1 )1p×1a ei

a (j1 )4e ij

(j j
12j j

2 )

(j12j2 )2

1

2p
[J×1 Qp×21 (J×22ap×2 ) Qp×1 ] ,

p×2 i4 J×2a v i
a (j2 )1p×2a ei

a (j2 )4e ij
(j j

22j j
1 )

(j22j1 )2

1

2p
[ (J×12ap×1 ) Qp×21J×2 Qp×1 ] ,

(14)

and the braiding operator can be evaluated to be

exp ki�Am dj ml4exp ki�p×2 i dj 2
il(15)

4exp ki� (J×2a v i
a (j2 )1p×2a ei

a (j2 ) ) dj 2
il

4exp [i (J×1 Qp×21J×2 Qp×12ap×1 Qp×2 ) ] .

We now consider the scattering process of the above situation in the test-particle
approximation, by using the phase space path integral formalism. Since we can solve
the constraints explicitly in this case, let us assume all the constraints are imposed.
Then the Lagrangian is reduced to

L4 (pi
– q

. i
–
1scosh uf

.
)1 (Ja v i

a1pa ei
a ) j

.
i2kp

K21m 2(16)

up to constant term. Notice that we dropped the index of the particle for simplicity. To
get the idea on what our strategy is, let us consider a simple case in which both
particles are spinless. Then, in non-relativistic limit, with the gauge choice j m4d m

a q a,
the scattering amplitude becomes

S4�[ d q
K

][ d p
K

] exp yi�dt up
K
Q q
K
.
2

p
K2

2m
2 lM

u
.

2p
vz ,(17)

where l4e ij q i p j4 q
K
3 p

K
, u is the angular coordinate of q i, and M and m are the

masses of the source and the test particle, respectively. Then, after completing the
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integral over the momentum p
K

, we at last obtain the expression for the propagator
as

G( r
K

f , tf ; r
K

i , ti )4�[ d q
K

] exp yi�dt
m

2
yq
K
.

21 q
K2g12 M

2p
h2

u
.

2zz .(18)

Notice the appearance of the deficit factor before the u-term. Therefore, the propaga-
tor gives exactly the same result as that in [14, 15], which was demonstrated before
in [4]. The important point here is that we started just with the flat coordinate q

K
, but

we arrived at the same result as that obtained by the conventional approach which
uses from the beginning the geometric coordinate which manifests a deficit angle.
More details, in addition to the generalization to the cases with an arbitrary number
of particles andOor with arbitrary spins, will be discussed elsewhere [16].
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