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Summary. — Black-hole geometry induced by sine-Gordon solitons coupled with
two-dimensional dilaton gravity are studied in the context of the CGHS model. We
reviewed our previous work which only deals with solitons of one-kink and two-kink
type. We extend the work to include general solitons of any number of kink and
antikink, and a breather-type soliton.
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PACS 01.30.Cc – Conference proceedings.

1. – Introduction

Many discussions on some problems of quantum gravity have been going on since
Hawking’s discovery of black-hole evaporation [1], in particular on the possibility of
information loss in quantum gravity [2, 3]. A two-dimensional model of dilaton gravity
was proposed by Witten and others [4] as a useful device to study the formation and
evaporation of black holes and naked singularities without mathematical complexity of
four-dimensional theories. Callan, Giddings, Harvey and Strominger (CGHS) [5]
attempted to understand the dynamical formation and evaporation of black holes in
two-dimensional space-time by coupling scalar matter fields to a dilaton field. It is
exactly solvable classically, and it was expected that it could be successfully treated
semiclassically including back reaction of Hawking radiation. Various attempts and
improvements [6] have since been made without decisive results.

Integrable models of nonlinear partial differential equations, and especially their
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soliton solutions [7] have been objects of active research as field theories in two-
dimensional space-time. The sine-Gordon theory of the interacting scalar fields has
attracted much attention as a good example of solitons and their scatterings [8].

Recently, two-dimensional gravity coupled with sine-Gordon solitons [9] was
introduced as a model of black-hole formation by solitons, and similar works [10, 11]
followed. Vaz and Witten [12] studied in detail the nature of singularities produced by a
kink-type soliton of sine-Gordon theory and examined their evaporation in the one-loop
approximation.

In this work we extend our previous work [9] to include general soliton solutions of
sine-Gordon nonlinear fields. In the previous work we studied the geometry only
produced by one-kink– and two-kink–type solitons. Here we take N-solitonOanti-
soliton solutions and obtain the corresponding metric fields as a general formula, and
derived the previous results as special cases. In sect. 2 the action and field equations of
the dilaton gravity model coupled with a sine-Gordon matter field are given, and in
sect. 3 the geometry produced by a kink-type soliton is studied. We fix the constants of
integration so that in the ultrarelativistic limit the shock wave solution of the CGHS
model [5] is reproduced. We compare this particular choice of constants with that of
Vaz and Witten [12], and notice that the detail geometry and nature of singularity
depend on the integration constants. In sect. 4 we present a general solution of field
equations in connection with N-solitonOantisoliton solutions, and in sect. 5 we take a
particularly interesting case of a breather soliton (soliton-antisoliton bound state), and
analyze the singularity structure of its space- time. In the last section we discuss
briefly on the quantum treatment of the problem.

2. – Dilaton gravity coupled to general sine-Gordon solitons

The model we investigate is the dilaton gravity coupled to a scalar matter field of
sine-Gordon type whose action in two space-time dimensions is

S4
1

2p
�d2xk2g ke 22f [R14(˜f)214l 2 ]2

1

2
(˜f )214m 2 ( cos f21) e 22fl ,(2.1)

where g, f and f are the metric, dilaton, and matter fields, respectively, and l 2 is a
cosmological constant. The last sine-Gordon term is added to the CGHS action [5] in
order to study formation of black holes by solitons.

We choose the conformal gauge such that the metric is simply

ds 242e 2r dx 1 dx 2 ,(2.2)

where x 64 t6x , and the action becomes

(2.3) S4
1

p
�d2x ye 22f (2¯1 ¯2 r24¯1 f¯2 f1l 2 e 2r )1

1
1

2
¯1 f¯2 f1m 2 ( cos f21) e 2r22fz .
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The field equations are

(2.4) T664e 22f (4¯6 r¯6 f22¯6
2 f)1

1

2
(¯6 f )240 ,

(2.5) T124e 22f (2¯1 ¯2 f24¯1 f¯2 f)2 (l 21m 2 ( cos f21)) e 2(r2f)40 ,

(2.6) e 22f (24¯1 ¯2 f14¯1 f¯2 f12¯1 ¯2 r)1 (l 21m 2 ( cos f21)) e 2(r2f)40 ,

(2.7) ¯1 ¯2 f1m 2 sin f e 2(r2f)40 .

From eqs. (2.5) and (2.6) we have ¯1 ¯2 (r2f)40, and by fixing the subconformal
gauge freedom we can let

r2f40 .(2.8)

With the subconformal gauge-fixing we get the following simplified equations:

¯6
2 (e 22f )1

1

2
(¯6 f )240 ,(2.9)

¯1 ¯2 (e 22f )1l 21m 2 ( cos f21)40 ,(2.10)

¯1 ¯2 f1m 2 sin f40 ,(2.11)

where the last equation is the well-known sine-Gordon equation.
In the rest of this paper we will take known soliton solutions of the sine-Gordon

equation, insert them in the rest of the field equations, and obtain f and r, which
determines the geometry of space-time. We are particularly interested in black-hole
formation by solitons. Black-hole formation in dilaton gravity is usually considered
with matter fields without self-interactions [3]. Our work extends these studies to the
case of nonlinearly interacting waves.

3. – Black-hole formation by a kink-type soliton

General N-soliton solutions of sine-Gordon equations are obtained through
Backlünd transformations [13]. Before considering these general solutions we take the
simplest illustrative case, namely, a soliton of kink type in order to investigate
black-hole formation by solitons. The kink solution [14] is given by the following
traveling wave:

f (x , t)44 arctan exp [2mg((x2x0 )1v(t2 t0 ) )] ,(3.1)

where

g4
1

k12v 2
.(3.2)

Here 2 v is the velocity of the soliton wave, and the center of the soliton moves along
the line x2x042v(t2 t0). It is somewhat more convenient to rewrite (3.1) in terms of
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x 64 t6x as

f (x 1 , x 2 )44 arctan exp [m 1 (x 12x 1
0 )2m 2 (x 22x 2

0 ) ] ,(3.3)

where

m 64mo 16v

1Zv
.(3.4)

After some algebraic manipulations we obtain

cos f412
2

cosh2 (D2D0 )
,(3.5)

where

D=m1 x 12m 2 x 242mg(x1vt) , D0fm 1 x 1
0 2m 2 x 2

0 .(3.6)

The classical energy momentum tensor is concentrated around the center of the
soliton. For instance, the T f

12 is given by

T f
1242m 2 ( cos f21)4

2m 2

cosh2 (D2D0 )
.(3.7)

Given the soliton solution, it is straightforward to solve the field equations (2.9), (2.10)
as

e 22r4e 22f4C1ax 11bx 22l 2 x 1 x 222 ln [11exp [2D22D0 ]] ,(3.8)

where a, b, C are constants. To fix these constants we need to impose some reasonable
physical conditions. For this purpose we notice that in the ultrarelativistic limit
(vK1) the incoming solition resembles an f-shock wave traveling in the x 2-direction
with the magnitude A. To be more precise, in the limit

vK1 , mK0 , m 14 finite ,(3.9)

the energy momentum tensor becomes

(3.10)
.
/
´

T f
12K0 , T f

22K0 ,

T f
114

1

2
(¯1 f )24

2m 2
1

cosh2 [m 1 x 12m 2 x 22D0 ]
K4m 1 d(x 12x 1

0 ) .

For a shock wave of magnitude A traveling in the x 2-direction its only nonvanishing
stress tensor component is given by

T f
114Ad(x 12x 1

0 ) ,(3.11)

and the CGHS black hole formed by the shock wave is described by

e 22r42A(x 12x 1
0 ) U(x 12x 1

0 )2l 2 x 1 x 2 .(3.12)
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We find that the choice of integration constants of eq. (3.8)

C4a4b40(3.13)

gives, in the ultrarelativistic limit, the CGHS metric as

e 22rK
.
/
´

2l 2 x 1 x 2 ,

2l 2 x 1 x 224m 1 (x 12x 1
0 ) ,

x 12x 1
0 E0 ,

x 12x 1
0 D0 .

(3.14)

Our choice of the constants (C4a4b40) reproduces the CGHS geometry of a shock
wave with magnitude A44m 1 . So our solution is simply

e 22r42l 2 x 1 x 222 ln [11exp [2D22D0 ]] .(3.15)

The geometry of the space-time with a kink-type soliton is qualitatively analyzed by
examining the asymptotic regions: D2D0b21, and D2D0c1. In both of the regions
the stress tensor vanishes exponentially as we can see:

T f
11C8m 2

1 e 22ND2D0 N , ND2D0 Nc1 .(3.16)

Since the soliton is moving in the x 2-direction, we expect that the left asymptotic
region (D2D0b21) approaches the linear dilaton vacuum while the right one
(D2D0c11) approaches the geometry of a black hole. The solution (3.15) indeed

Fig. 1. – The space-time induced by a kink-type soliton with parameters D4D0
22

(8m 2 Ol 2) ln 2D0. The soliton is produced at the point w by a white hole and absorbed
at the point b by a black hole. A white hole, timelike singularity, and a black hole are
joined smoothly across the soliton center. The thick broken line, the thick curve, and
the dotted lines represent the soliton center, the singularity, and the event horizons,
respectively.
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bears out this expectation as can be seen by the asymptotic expression

e 22rC
.
/
´

2l 2 x 1 x 2 ,

4 gD02
4m 2

l 2 h2l 2gx 12
4m 2

l 2 h gx 21
4m 1

l 2 h ,

D2D0b21 ,

D2D0c11 ,
(3.17)

where the second line represents the geometry of a black hole of mass 4l(D024m2Ol2)
(we take D0D4m 2 Ol 2) after shifting x 1 by 4m 2Ol 2 , and x 2 by 24m 1Ol 2 .

The curvature has a singularity at e 22r40. The space-time displayed in fig. 1
shows the singularity along with the trajectory of the soliton center. The spacelike
singularity of a white hole approaches the asymptote x 144m 2Ol 2 , and creates the
soliton at the point w(x 14 (D02kD)O2m 1 , x 24 (2D02kD)O2m 2 ) , where

DfD2
02

4m 2

l 2
(2 ln 2)D0 .(3.18)

The spacelike singularity turns smoothly to a timelike singularity proceeding to the
point b (x 14 (D01kD)O2m 1 , x 24 (2D01kD)O2m 2 ) where the soliton is absorbed
by the black hole whose asymptote is the line x 2424m 1Ol 2 . Here we assumed the
constant D is positive, but if we choose the parameters l, m, and D0 such that D is
negative, the trajectory of the soliton will be entirely to the left of the singularity curve.
The space-time of our case is essentially the same as that of Vaz and Witten [12] with a
positive cosmological constant.

4. – N-solitonOantisoliton solutions

Perring and Skyrme [15] found a two-kink solution which shows that kinks emerge
unscathed from collision, suffering only a phase shift. The solution is

fKK (x , t)44 arctan y v sinh (2mgx)

cosh (2mgvt)
z ,(4.1)

where g41Ok12v 2 . The geometry induced by these colliding kinks was obtained
as [9]

e 22r4e 22f4C2l 2 x 1 x 222 ln [cosh2 (2mgv(t2t0 ) )1v 2 sinh2 (2mg(x2x0 ) )] ,(4.2)

where C is a constant to be determiend by boundary conditions.
It is even possible to compute exact multi-soliton solutions by the methods of the

inverse spectral transformation or the Backlünd transformation. The N-solitonOanti-
soliton solution is given by the following simple expression [13]:

cos fN411
2

m 2
¯1 ¯2 ln Ndet MN ,(4.3)

where the matrix M is given by

Mij4
2

ai1aj

cosh y u i1u j

2
z ,(4.4)
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a 2
i 4

12vi

11vi

, Nvi NE1 , vicvj ,(4.5)

u i462mg i (x2vi t2j i )46(Di2D0 i ) ,(4.6)

where the positive (negative) sign in the last line corresponds to a kink (antikink)
soliton. Here vi is the speed parameter of the i-th soliton, j i is the constant defining the
trajectory of the i-th soliton center.

One can easily check that in the single-soliton case (N41)

( cos f )1-soliton412
2

cosh2 (D2D0 )
,(4.7)

which agrees with the previous solution (3.5). The two-kink solution of Perring and
Skyrme is also derived from the general one by taking

u 142mg(x1vt) , u 2422mg(x2vt) ,(4.8)

and

a14o 11v

12v
, a242o 12v

11v
.(4.9)

In this case the matrix M is given by

M4

C
`
`
`
D

1

a1

cosh u 1

2

a11a2

cosh k u 11u 2

2
l

2

a11a2

cosh k u 11u 2

2
l

1

a2

cosh u 2

E
`
`
`
F

,(4.10)

and its determinant is

det M4
21

v 2
[ cosh2 (2mgvt)1v 2 sinh2 (2mgx) ] ,(4.11)

from which we get

( cos f )2-soliton412
8v 2 cosh2 (2mgvt) sinh2 (2mgx)

[ cosh2 (2mgvt)1v 2 sinh2 (2mgx) ]2
.(4.12)

One can check that the last equation is in agreement with the Perring and Skyrme
solution (4.1).

Turning back to the general situation we insert the general soliton solution (4.3)
into the dilaton field equations (2.9), (2.10), and we get the solution

e 22r4e 22f4C1ax 11bx 22l 2 x 1 x 222 ln Ndet MN ,(4.13)

where the constants C, a, and b are to be determined by suitable boundary conditions.
Intuitively the region of space-time which is not affected by the stress tensor of solitons
must be a linear dilaton vacuum, which could be used to fix the constants. A detailed
analysis of the geometry and curvature singularity is quite complicated but physically
not so illuminating. We refer to our previous work [9] for the two-kink case, and turn to
the less complicated yet physically interesting case of bound solitons.
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5. – Breather solitons

Perring and Skyrme [15] found two other interesting solutions using analytic-
continuation methods. One is the so-called kink-antikink scattering solution described
by the function

fKK
–(x , t)44 arctan y 1

v

sinh (2mgvt)

cosh (2mgx)
z .(5.1)

Performing the analytic continuation vK iv (5.1) can be transformed into another
solution:

fB (x , t)44 arctan y 1

v

sin (2mGvt)

cosh (2mGx)
z(5.2)

with

G4
1

k11v 2
.(5.3)

This localized solution is known as a breather [13], or bion (a bound state of a soliton
and an anti-soliton). Since v is no longer a velocity in (5.2), it is rather more natural to
introduce new variables:

V42mGv , h4
1

v
4

k(2m)22V2

V
.(5.4)

In terms of the new variables the breather takes the form

fB (x , t)44 arctan yh sin (Vt)

cosh (hVx)
z ,(5.5)

where V is a breathing frequency. The energy-momentum tensor of this breather is
given by

T6642h 2 V2 [ cos Vt cosh hVxZh sin Vt sinh hVx]2

[ cosh2 hVx1h 2 sin2 Vt]2
,(5.6)

T1242h 2 V2 (11h 2 )
sin2 Vt cosh2 hVx

[ cosh2 hVx1h 2 sin2 Vt]2
,(5.7)

which shows that the energy-momentum density is oscillating with a frequency V, and
is concentrated in the region NxNE (hV)21 .

A moving breather with velocity 2u can simply be obtained by the Lorentz boost of
(5.5)

fB (x , t)44 arctan yh sin Vg(t1ux)

cosh hVg(x1ut)
z , g4

1

k12u 2
.(5.8)

Given a breather solution we can evaluate the dilaton field and the metric in a similar
way as in the previous section. After some calculations we get

(5.9) e 22r4C2l 2 x 1 x 22

22 ln [cosh2 hVg[ (x1ut)2 (x01ut0 ) ]1h 2 sin2 Vg[ (t1ux)2 (t01ux0 ) ]] ,
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where the origin of the coordinate is chosen such that linear terms in x 1 or x 2 are
zero.

We only consider a simple illustrative case with u40 to study the geometry
induced by the breather soliton. We determine the integration constant C by requiring
that the space-time be that of a linear dilaton vacuum in the vanishing Tmn limit mK0
(hK0, VK0). Then the metric becomes

e 22r4 g4hVx01
4h 2 V2

l 2
24 ln 2h2l 2 x 1 x 22(5.10)

22 ln [ cosh2 hV(x2x0 )1h 2 sin2 V(t2 t0 ) ] ,

whose asymptotic expressions are

e 22rC

.
`
/
`
´

2l 2gx 11
2hV

l 2 h gx 22
2hV

l 2 h ,

8hVx02l 2gx 12
2hV

l 2 h gx 21
2hV

l 2 h ,

hV(x2x0 )b21 ,

hV(x2x0 )c11 ,

(5.11)

where the last line represents a combination of a white hole and black hole with event
horizons at x 2422hVOl 2 , and x 142hVOl 2 , respectively, and its ADM
(Arnowitt-Deser-Misner) mass is 8lhVx0 . The singularity of the curvature scalar is
given by the equation e 22r40. One difference from the previous kink-soliton case is
that it may have an oscillation of the singularity near the breather center due to the
oscillation of the breather, but it is not clear whether it gives any observable effect to
the observer at IR

1 because the singularity is behind the event horizon.

6. – Discussion

We have studied the geometry of two-dimensional dilaton gravity coupled with
incoming solitons of one kink, two scattering kinks, a breather, and arbitrary numbers
of kinkOantikinks. The singularities of a white hole and black hole are joined smoothly
with a linear dilaton vacuum across a soliton. In a relativistic limit the geometry of the
soliton approaches that of a shock wave described in the CGHS model [5].

We confined our studies to classical treatments, and the Hawking radiation and
semiclassical nature of the problem are left for future work. However, as Vaz and
Witten [12] had already pointed out, the classical stress-energy tensor of the sine-
Gordon field is exponentially vanishing at infinity and the Hawking radiation is
dominant there. Following Vaz and Witten we may impose reasonable boundary
conditions on the energy-momentum tensor in order to examine the Hawking
evaporation of the singularities, and the essential character of the radiation would be
similar to that produced by an incoming shock wave in the CGHS model [16]. In spite of
this similarity we expect that there are qualitative differences in the quantum
treatment of the soliton-induced geometry. First of all, we need to quantize not only
the radiation but also the solitons, which will require distribution of soliton’s
trajectories, which, in turn, introduce probabilistic distribution of singularities.
Another point is that there may exist bound states of soliton and radiation which have
not yet been analyzed in connection with the Hawking radiation.
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