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Long-range interactions

Potential scales with 1/r
with exponent a < dimension d
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Long-range interactions

Potential scales with 1/r °
with exponent a < dimension d
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One-component plasma
(homogeneous system, 3D)

Coupling parameter: ["=¢2/ak T

T (°K)

a=(3/47n)"" Wigner-Seitz radius

0.01

Strong correlations: | = | ooonn |

100 100 105 108 10 10" 10M 10 10
n_(cm”‘)

Crystallization (transition to spatial order): |'=174

D. Dubin and T. O’Neil, RMP 1999.



Coulomb systems
in a lab
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Bragg Diffraction from Crystallized lon Plasmas
W. M. ltano,” J. J. Bollinger, J. N. Tan,7 B. Jelenkovic,::
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Number of diffraction peaks

Fig. 3. Histogram representing the numbers of
peaks (not intensities) chserved as a function of
gae: Where q = k, — k| is the difference between
the incident (k) and ecattered (k) photon wave
vectors. We analyzed 30 Bragg diffraction pat-
terns from two approximately spherical plasmas
having 270,000 and 470,000 ions. The dotted
lines show the expected peak paositions, normal-
zed to the center of gravity of the peak at A ({110}
Bragg reflections).

Fig. 4. Time-resolved Bragg diffraction patterm of
the same plasma as in Fig. 2. Here and in Figs. 5
and 6 the small open circle marks the position of
the undeflected laser beam. A bec lattice, aligned
along a (100} axis, would generate a spot at each
intersection of the grid lines overlaid on the image.
The grid spacing corresponds to an angular devi-
ation of 2.54 x 10~ 2 rad. Here, v, = 2m x 125.6
kHz, n, = 3.83 x 108 cm=3, N =5 x 105, a =
0.98, and 2r, = 1.36 mm.



Coulomb gas in atomic physics

1) Gas of ionized atoms:
usually singly-ionized alkali-earth metals

(e.g. Berillium, Calcium, Magnesium).
Radiation is absorbed and emitted in the visible.




Coulomb gas in atomic physics

1) Gas of ionized atoms:
usually singly-ionized alkali-earth metals.
Radiation is absorbed and emitted in the visible.

2) Confinement by external potentials:
Paul (radiofrequency) or Penning traps.

Linear Paul trap:

I senatetee s | ‘ ('I')O = Udc + Vvac COS(!ert)

Effective harmonic force F =« —r

Innsbruck lon trap

Possibility to control the number of ions and the shape of the cloud



Coulomb gas Iin atomic physics

1) Gas of ionized atoms:
usually singly-ionized alkali-earth metals.
Radiation is absorbed and emitted in the visible.

2) Confinement by external potentials:
Paul (radiofrequency) or Penning traps.

3) Crystallization:
Low thermal energies are achieved by laser cooling.
Cooling down to few microKelvin.



Crystallization:
cooling via lasers

Radiation and matter exchange energy and momentum
Cooling: enhancement of photon-scattering processes

which remove energy Emitted photon

equency o’

Laser Photon
Frequency o

(M. Drewsen & coworkers, Aahrus)

o < w’: energy is transferred from the crystal to the photons
Cooling down to few microKelvin.



Trapped ions and Nobel Foundation

Dehmelt (1989) Paul (1989) Wineland (2012)

The Nobel Prize in Physics 1989 was divided, one half awarded to Norman F. Ramsey "for the invention of
the separated oscillatory fields method and its use in the hydrogen maser and other atomic clocks”, the
other half jointly to Hans G. Dehmelt and Wolfgang Paul "for the development of the ion trap technique”.

The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David ). Wineland "for ground-
breaking experimental methods that enable measuring and manipulation of individual quantum systems”

And also: Ramsey (1989), Chu, Cohen-Tannoudji, Phillips (1997), Haroche (2012)



Crystals of ions In traps: Applications

High-precision measurements I]Zlnl I.C
Quantum

Simulation of astrophysical systems

teleportation
with atoms

Ultracold chemistry

S - &

Quantum-based technologies

Quantum simulators, quantum metrology,
Quantum computing.

Aarhus, Berkeley, Boulder, Freiburg, Erlangen, Innsbruck, London, Mainz,
Marseille, Michigan, Muinchen, Oxford, Paris, PTB, Saarbriucken, Siegen,
Sussex, ....

Cirac, Zoller, Retzker, Plenio, Altman, Porras, Solano, Duan, ...



Engineering long-range
interactions with trapped ions

Based on engineering the coupling between phonons and
spins (Wunderlich, Porras, Cirac, Plenio, Retzker, Solano,
Zoller...)
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Porras and Cirac, PRL 2004



Engineering long-range
interactions with trapped ions

Picture: Chris Monroe’s group

Based on engineering the coupling
between phonons and spins
(Wunderlich, Porras, Cirac, Plenio,
Retzker, Solano,...)

Experiments:
Blatt, Bollinger, Monroe, Schatz,
Wineland, Wunderlich



What about the system itself?

Negative Poisson’s Ratios for
Extreme States of Matter

Ray H. Baughman,'* Socrates O. Dantas,” Sven Stafstrom,?
Anvar A. Zakhidov, Travis B. Mitchell,* Daniel H. E. Dubin®

Negative Poisson’s ratios are predicted for body-centered-cubic phases that
likely exist in white dwarf cores and neutron star outer crusts, as well as those
found for vacuumlike ion crystals, plasma dust crystals, and colloidal crystals
(including certain virus crystals). The existence of this counterintuitive prop-
erty, which means that a material laterally expands when stretched, is exper-
imentally demonstrated for very low density crystals of trapped ions. At very
high densities, the large predicted negative and positive Poisson’s ratios might
be important for understanding the asteroseismology of neutron stars and
white dwarfs and the effect of stellar stresses on nuclear reaction rates. Giant
Poisson’s ratios are both predicted and observed for highly strained coulombic
photonic crystals, suggesting possible applications of large, tunable Poisson’s
ratios for photonic crystal devices.

16 JUNE 2000 VOL 288 SCIENCE



Outline

« An unusual form of condensed matter

» Structural transitions: platform for studying
criticality

* Novel paradigma of friction



lon chains: an unusual
form of condensed matter



Low dimensional structures

VOLUME 68, NUMBER 13 PHYSICAL REVIEW LETTERS 30 MARCH 1992

Observation of Ordered Structures of Laser-Cooled Ions in a Quadrupole Storage Ring

I. Waki,® S. Kassner, G. Birkl, and H. Walther

Max-Planck-Institut fiir Quantenoptik, D-8046 Garching bei Miinchen, Federal Republic of Germany
(Received 11 September 1991; revised manuscript received 16 December 1991)

[Birkl et al., Nature 357, 310 (1992)]



The ion chain

In textbooks (Ashcroft and Mermin):
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Periodic distribution: Bloch theorem
Long-range interaction (Coulomb): no sound velocity



The ion chain in a linear trap

AN WIS et Y e R S Y b st w8 e ™

(M. Drewsen and coworkers, Aarhus)

H = ggm+;m(\/2x2+v (y + 2z )) EE—

J‘ i# ] l]
v << V¢ 1D structure (ion chain)

Inhomogeneous distribution: NO Bloch theorem

Long-range interaction:
pertubation theory with Bloch waves does not converge



Charge density at equilibrium

772.1/2;1750) = — Z -i- Z 0)

.(0)
71> (;l'j 1< L, J )2

Naive continuum limit: ol
Apply Gauss theorem for a 3D < >
uniform cloud and project on 1D

Continuum limit: mean field description for 1D

Linear density: Length of the chain:

3N x? ‘ 2
nr(xr) = 17 (l — ﬁ> L(N)* = 3( ¢ ) Nlog N

mi2

at leading order in 1/log N

D. Dubin, PRE 1997.



n(z)

Charge density at equilibrium

2 (0) QZ QQ
mrix; = — Z 0 4 Z

(0) ¢ 0 o~
(@ =22 (@l = 202

Continuum limit: mean field description for 1D

L ' - —-theory, Eq. (23)

—theory, Eq. (27)
« MD

Linear density:

3N r?
nr(z) = 17 (l — ﬁ)

Length of the chain:

: . : : S QZ
L(N)? = Nlog N
e N0 muy?
) at leading order in 1/log N

2 [(q;’/m w‘Z)HS]

D. Dubin, PRE 1997.



Harmonic vibrations
around the equilibrium positions

‘ K
0 .. 7,
G =xi—x  Gi=—va—) —L(gi—q))

— m
JF1
‘ 1 K; .

e — 1,20, _ I (). — ay.
Ji = vy + 5 E - (vi — ;)
JF1
‘ 1 K;

e = 1%, L I (. _ .
i = —viz; + 5 éq’ - (2 — 25)
w1 (0) (0)3

|z T, |

Fourier modes gi — —w?q;



Normal modes - Ring

/ \ No axial confinement: periodic distribution
! Modes are phononic waves with quasimomentum k& in BZ
e = =

Spectra of excitations
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Trap: Spectra of excitations
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Trap: Spectra of excitations

V: Transverse trap frequency
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Long-wavelength modes

(w? =) =v /COZ o (¢: — q;)

20° 2
mv2L(N)3  3Nlog N

Ko =

Equilibrium positon &) = 2\ /L
Interparticle distance a(&;) = ap(x;)/L

Linear density n(€) =1 — &2



Long-wavelength modes
(w? =) =v ICOZ

JF1 |€ o 6(0 |

— qj)
Continuum approximation (away from ends):

w? — v? :§I/2/C N 5—(‘-(f)d ) q(&) —q(&
Ja(€) = ko [ e S (0() - a(€)




Long-wavelength modes

Leading orderin 1/log N (w® —v?)q(€) = ZVZICON I[&, w(§)]

Io[€,w(€)] ~ —log N| (1 — £5)w" (&) — 4&w’(€)

Jacobi Polynomials differential equation

Eigenmodes: P, (%)

n—+1)
9

: . ‘ n—1)(n+2
Transverse Eigenfrequencies: w}f Jac _ \/yf — ( )4( T+ )1/2

- . : n(
Axial Eigenfrequencies: w/ 7%¢ = v \/




Short-wavelength modes

N=20
N=40

o N80

N=160

710

5 0 s 0

z [(Q¥m )"’

They are localized at the chain center
(where the distance is smaller)

The distance in the chain center is
uniform

The short-wavelength modes are to good
approximation sinusoidal waves

demonstrate with phonon-like approximation

A. i(kja—mt)

qj: ]e

slowly varying Aj



Statistical Mechanics

Quantization of the vibrations
H, _Zm”\MZh (N, +Ni-.)

Canonical ensemble , — %pr(_.m) F=—kgTlogZ

One-dimensional behaviour: kT < hwt

min

Thermodynamic limit: v ~ \/logN/N as N —

Density in the center n(O)—i% fixed




Specific Heat
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Non extensive behaviour at low temperatures in the

thermodynamic limit:
4 c, x1/InN

*Due to long-range Coulomb interaction

It is a quantum effect (at high-T Dulong-Petit holds)



Equivalence of ensembles

,—lnN 1/2

N

1
Relative energy fluctuation < F =




Validity of the assumption of a
Canonical ensemble

lons are laser cooled (thermal distribution?)

Thermalization by collisions:
the N-1 ions are a reservoir for each ion in the chain

Role of anharmonicities?
(Fermi-Pasta-Ulam paradigma)

Statistical mechanics of a chain of oscillators?



lon chains as thermal reservoirs?

 In the harmonic chain the dynamics is integrable

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 6, NUMBER ¢4 APRIL 1965

Statistical Mechanics of Assemblies of Coupled Oscillators*

G. W. Fornt
Department of Physics, University of Michigan, Ann Arbor, Michigan
M. Kac
The Rockefeller Institute, New York, New York
AND
P. Mazur

Lorentz Institute for Theoretical Physics, Leiden, The Netherlands
(Received 25 September 1964)

It is shown that a system of coupled harmonic oscillators can be made a model of a heat bath.
Thus a particle coupled harmonically to the bath and by an arbitrary force to a fixed center will

(in an appropriate limit) exhibit Brownian motion. Both classical and quantum mechanical treatments
are given,

* The rest of the chain acts as a bath for a single ion
(when thermalization rate is faster than recurrence)



Thermalization
and entanglement



Effective dynamics of one ion

Langevm equatlon

dzdii;i W/ I‘i(t—t m4 (1 =T4(0)X=(t) = Fe(t) — T+ (t) X+ (0)

damplng kernel

Spectral density (Fourier transform of the damping kernel)

T (w) = w /0 L (1) cos(wt)dt



Effective dynamics of one ion

Langevm equatlon
d* X+

72 +u/ Ci(t—t)

damplng kernel

dX =
dt’

dt’

(1 -T+(0)X+(t) = F=(t) — T+ () X£(0)

Spectral density (Fourier transform of the damping kernel)
Ji(w) = w/ [ (t)cos(wt)dt
0

Its properties are determined by the excitation spectrum of
the chain: N

n Vi —
Jw)=5-, — 0w — @)
i=—N



Spectral properties (reminder)
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Engineering the spectral properties
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Thermalization
of one impurity defect?
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Thermalization
of one impurity defect .

N EYNYY YK -

Hi(t) = — [(xj, — q;,)°

Revival time

Thermalization occurs for any initial state.
The rate scales with the coupling strength



What about two impurity defects?
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About stationary quantum
correlations

PHYSICAL REVIEW A 66, 042327 (2002)

Entanglement properties of the harmonic chain

K. Audenaert,* J. Eisert,” and M. B. Plenio*
QOLS, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BW, United Kingdom

R. F. Wemner *
Institut fur Mathematische Physik, TU Braunschweig, Mendelssohnstrafle 3, 38106 Braunschweig, Germany
(Received 14 May 2002; published 30 October 2002)



Stationary quantum correlations li

Entanglement and separability of quantum
harmonic oscillator systems at finite temperature

Janet Anders! and Andreas Winter!:2

d/w kT
2Ind/w —  hw
entanglement
btw. two neigh-

bouring blocks
of size n/2

£ o

completely
separable into
independent
sites

1
0 E 1 kBT
temperature ! he
thresholds ~ i o hw
for 6 =0 :ru.n. ~ 2;::3 :rcrnt ~ 1.2p



Entanglement & Symmetries

» Chain with periodic boundary conditions: Discrete
translational invariance, no entanglement beyond
nearest-neighbours.

 Impurity defects: discrete translational invariance is
broken. Symmetry per reflection

K X
N N NY N 0
P y M

 Symmetry: Decoherence Free Subspaces?



Symmetries

1 2
2 QO
1 Y
N, n) - ELona n 00N
wB - d wB

Center-of-mass and relative coordinates

X1+ = (X1+X2)/V2 Defects
:E;t o (ZU_Z' + .’Bz)/\/§ Bulk ions



Spectral density for distant defects

d=10a




Spectral density for distant defects

d=10a




Spectral density for distant defects

X | X
O'"OO0.00 ———@—
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10°.J.(2) d=D5a l()j./.(.,;‘) d=10a

entangle
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changing the frequency of the defects: switch the bath from
Markovian to non-Markovian.



Thermalization “generates”
entanglement

Covariance matrix for the two impurities (t=0)

20=("%" &)



Thermalization “generates”
entanglement

_ 5,000 0 1/ 6_,(0)+3,(0) &_n(0) —,(0)
20=("%" 20 )3 (570 0 Do )

In terms of COM and relative motion (t=0)



Thermalization “generates”
entanglement

_ g_,(0) O 1/ 6_,(0)+6,(0) &_,(0)—7a,(0)
20=("5" 20 )%5(5_,,,(0)_5”(0) 0o )

Time evolution thermalizes relative motiori

+(t > tth O

COM 4
REL




Thermalization “generates”
entanglement

g_,(0) 0 ) 1( 7_n(0)+5,(0) 7_,(0) —5,(0) )
2\ 0-n(0) —=n(0) 7-n(0) +0n(0)

_ ot(t>t 0
Cross-correlations ( 0 ) 5—(T))

between the defects M
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cross correlations can be
quantum

Entanglement is two-mode squeezing (EPR)

« Initially squeezed defects: The COM is squeezed (s)
 Relative motion is thermalized (T)

* Large s and low T: the two orthogonal quadratures are
below the standard quantum limit

_ 2<Ql(t’ 9])Q2(t’ 92))
(0,(1,6))%) +(0,(1,6,)%

CI,Z(t) = l



Logarithmic negativity

2(0,(2,6,)0,(t,6,))
(0,(1,6))%) +(0,(t,6,))

Cot)=1-

We analyse entanglement from the partial
transpose of the covariance matrix

i = 3(&& +§8) — (6)(E)
§ = (qjl’p_jl-(I’qu’pj2-(1~)
using the logarithmic negativity

Eyn = max{0, — In(2v_)}



Dynamics of Entanglement

1.5 1 1 1
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distance d=5a, chain of 50 ions in a thermal state
(ions: Calcium, impurity defects: Indium).



Scaling with the number of ions
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Curves for N=800,1000,1200 ions



Scaling with the distance

= En(d)

0.4

0.2

1¢=1

slow decay with the distance

d




Detection

Perform tomography of the defects density matrix by

locally coupling spin and mode

H™, , = gi(t)oi(aje™ 4" + a;r e
measuring
(T)=(0"Q®o" -0’ o’ +ic" ®o’+ic” ®o™)
this gives access to
Xo(a,B) = Tr|[p(t) Dj () ® Dj,(B)]
= 4(T)(2).

where the coefficients can be varied by changing the pulse areas
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