


Lecture I:
Quantum Photonics



Experimental Groups doing z;”?

Quantum Computation & Simulation SuanumComputing@oniwien

Atoms (Harvard, MIT, MPQ, Hamburg,...) :

— single atoms in optical lattices
— transition superfluid - Mott insulator

Trapped lons (Innsbruck, NIST, JQl Maryland, Ulm...):
— quantum magnets
— Dirac’s Zitterbewegung
— frustrated spin systems

— open quantum systems

NMR (Rio, SaoPaulo, Waterloo, MIT, Hefei,...):

— simulation of quantum dynamics
— ground state simulation of few (2-3) qubits

Superconducting Circuits (ETH, Yale, Santa Barbara,...):
— phase qudits for measuring Berry phase
— gate operations

Single Photons (Queensland, Rome, Bristol, Vienna,...)
— simulation of H, potential (Nat.Chem 2, 106 (2009))
— quantum random walks (PRL 104, 153602 (2010))

— spin frustration
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* only weak interaction with environment (good
coherence)

= high-speed (c), low-loss transmission (‘flying qubits”)

= good single-qubit control with standard optical
components (waveplates, beamsplitters, mirrors,...)

= feasible hardware requirements (no vaccuum etc.)

= disadvantage: weak two-photon interactions
(requires non-linear medium -> two-qubit gates are hard)



Outlook of the Course E—“\zfm
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(1) Quantum Photonics Concepts and Technology
(2) Quantum Simulation
(3) Photonic Quantum Simulation Examples

" Analog Quantum Simulator

= Digital Quantum Simulator

" |ntermediate Quantum Computation

(4) Schemes based on superposition of gate orders



Basic Elements in
Photonic Quantum Computing
and Quantum Simulation
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(1) Five Lectures on Optical Quantum Computing (P. Kok)
— http://arxiv.org/abs/0705.4193v1 (2007)

(2) Linear optical quantum computing with photonic qubits
— Rev. Mod. Phys 79, 135 (2007) (P. Kok et al.)



Photonic Quantum Computer Units !‘@
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How to encode information using photons
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Polarization
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e Spatial Location — dual rail representation
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Polarization Encoding (single-rail) g"' .; I“?‘i
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= Qubit as elementary unit of (quantum) information

e Spans a 2d-Hilbert space
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Feasible Manipulation of Polarization t;?_%"
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O’Brien, Science 318, 5856 (2007)



Multi-photon Sources



Two (and Multi-Photon) Generation

— e
=

QuantumComputing@UniWien
Spontaneous parametric down conversion of pump field (CW or
pulsed) in x(2)-medium

Proper mode selection leads to polarization entanglement due to
|nd|st|ngU|shab|I|ty

H o (a}y (w1, V)ap(wa, H) — aly(ws, H)af (w1, V)

BBO-Kristall

HANV)s+IVAH,

kpump = kphoton1 T kphoton2

W =W

pump photon1 + wphoton2



Entanglement on the Screen
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For achieving high-quality entanglement

Erase which path information (originationg from bi-refringence):
Additional compensator crystals:
BBO Compensator Crystal
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Flipping:
To:
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maximally entangled state: ‘l// >
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