Structural transitions in ion crystals: a platform to study criticality

Low dimensional structures

VOLUME 68, NUMBER 13

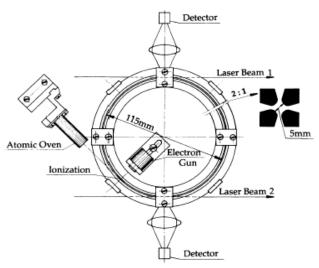
PHYSICAL REVIEW LETTERS

30 MARCH 1992

Observation of Ordered Structures of Laser-Cooled Ions in a Quadrupole Storage Ring

I. Waki, (a) S. Kassner, G. Birkl, and H. Walther

Max-Planck-Institut für Quantenoptik, D-8046 Garching bei München, Federal Republic of Germany (Received 11 September 1991; revised manuscript received 16 December 1991)



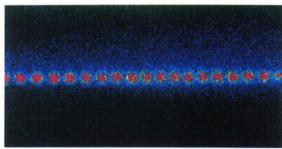


FIG. 3. Spatially resolved image of the fluorescence light emitted by an ordered structure of 19 ions forming a linear string. The distance between the ions is $33 \pm 1 \mu m$. The image is sales could with and indicating high and blue indicating law.

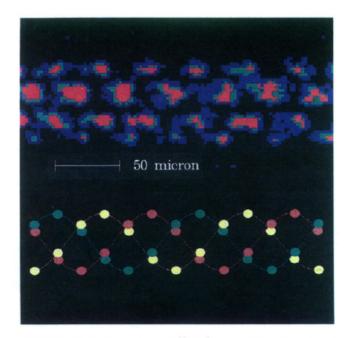


FIG. 6. Helical structure of 24 Mg $^{+}$ ions with a diameter of $63 \pm 2 \mu m$. The experimental image (top) corresponds to three interwoven helices (shown in different colors, bottom). The closely appearing pairs of ions are sitting on opposite sites, re-

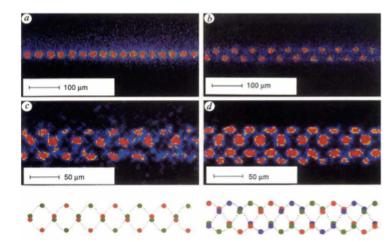
Phase diagram

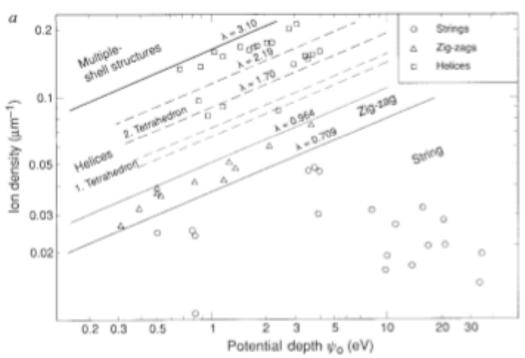
Multiple-shell structures of laser-cooled ²⁴Mg⁺ ions in a quadrupole storage ring

G. Birkl, S. Kassner & H. Walther

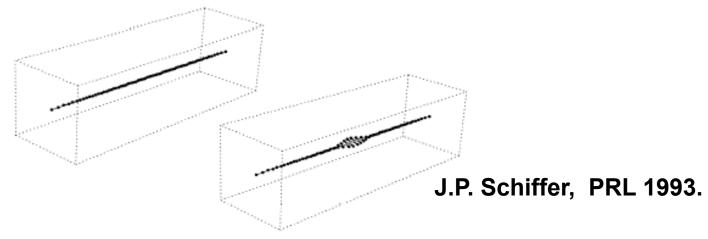
Max-Planck-Institut für Quantenoptik, Garching bei München, Germany

Nature 357, 310 (1992)

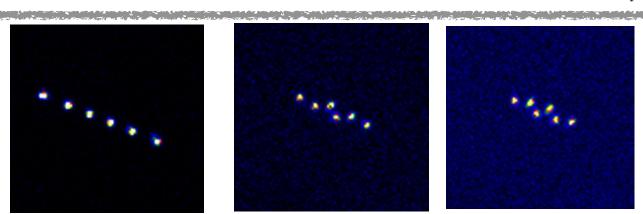




Structural instability: Linear-Zigzag



decrease transverse confinement ν_t



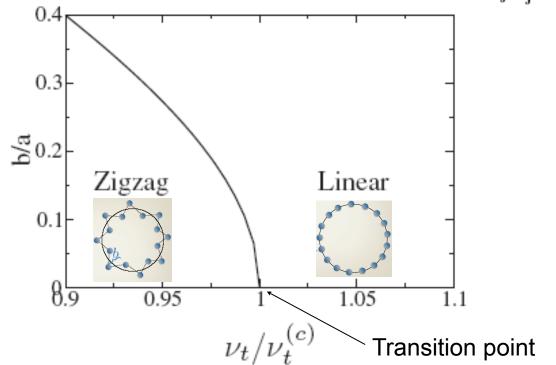
J.Eschner and coworkers, Barcelona, 2007.

Instability for ions in a ring

Fixed interparticle distance *a* (thermodynamic limit)

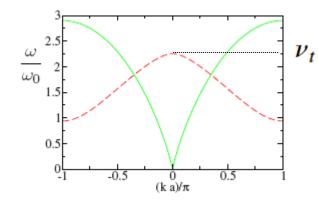
Find transverse displacement b with

$$\left. \frac{\partial V}{\partial \mathbf{r_j}} \right|_{\mathbf{r_j} = \mathbf{r_j^{(0)}}} = 0$$



Normal modes – Ring

No axial confinement: periodic distribution Modes are phononic waves with quasimomentum k in BZ



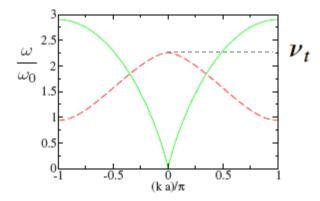
Spectra of excitations

transverse motion

$$\omega_{\perp}(k)^2 = \nu_t^2 - 2\left(\frac{2Q^2}{ma^3}\right) \sum_{j=1}^N \frac{1}{j^3} \sin^2 \frac{jka}{2}$$

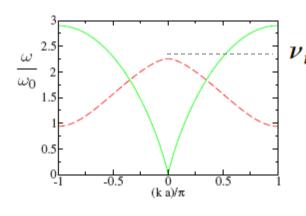
Normal modes - linear chain

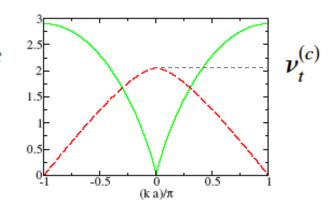
$$\omega_{\perp}(k)^2 = \nu_t^2 - 2\left(\frac{2Q^2}{ma^3}\right) \sum_{j=1}^N \frac{1}{j^3} \sin^2 \frac{jka}{2}$$



Normal modes - linear chain

$$\omega_{\perp}(k)^2 = \nu_t^2 - 2\left(\frac{2Q^2}{ma^3}\right) \sum_{j=1}^N \frac{1}{j^3} \sin^2 \frac{jka}{2}$$





Critical value:

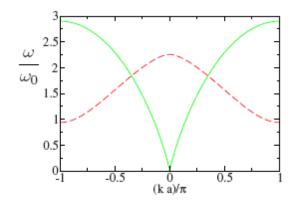
$$\nu_t^{(c) 2} = 2\left(\frac{2Q^2}{ma^3}\right) \sum_{j=1}^{N} \frac{1}{j^3} \sin^2 \frac{j \pi}{2} \rightarrow \frac{Q^2}{ma^3} \frac{7}{2} \zeta(3)$$

Transition linear-zigzag

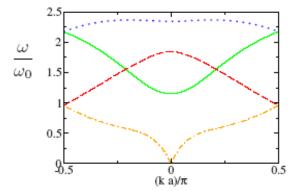
decrease transverse confinement

 ν_t

Linear chain

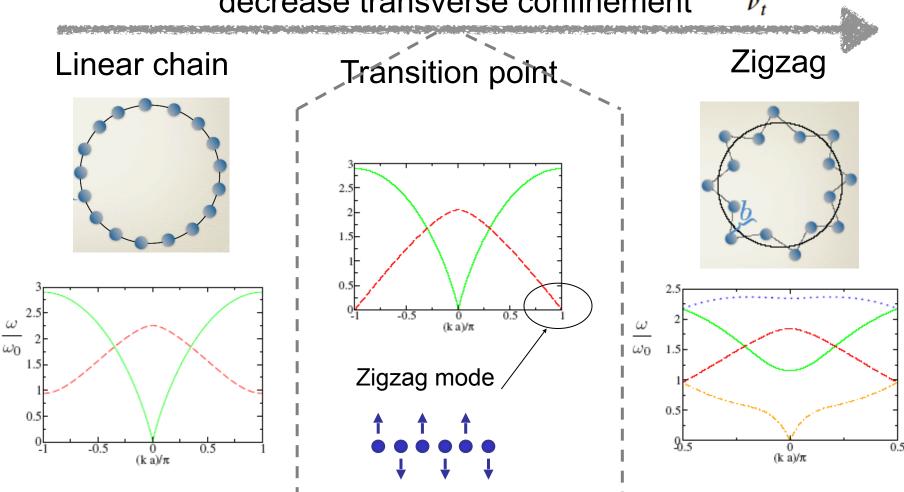


Zigzag



Transition linear-zigzag

decrease transverse confinement

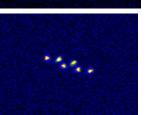


Linear-Zigzag: second-order phase transition?

Educated guess:

Symmetry breaking: line to plane

Order parameter: Equilibrium distance from the axis



Control field: Transverse frequency

Soft mode: Zigzag mode

Mapping to Landau's model-l

Simplified version: Longitudinal positions fixed only transverse oscillations in one direction.

$$\omega_{\perp}^{2}(k) = \nu_{t}^{2} - 4\omega_{0}^{2} \sum_{j=1}^{N} \frac{1}{j^{3}} \sin^{2} \frac{jka}{2}$$
$$\hat{\psi}_{k} = \sum_{j} \psi_{j} e^{ijka} / \sqrt{N}$$

zigzag mode: wavelength $\lambda_0 \equiv 2\pi/k_0 = 2a$

close to the instability
$$V'\simeqrac{1}{2}\sum_{k>0}r_k\hat{\psi}_k\hat{\psi}_{-k}+V^{(4)}$$
 $r_k=m\omega_\perp^2(k)a^2$

Mapping to Landau's model-II

close to the instability
$$V'\simeq rac{1}{2}\sum_{k>0}r_k\hat{\psi}_k\hat{\psi}_{-k}+V^{(4)}$$

$$u_t>
u_t^{(c)}$$
 all coefficients $r_k=m\omega_\perp^2(k)a^2$ are positive: the mean value of all $\hat{\psi}_k$ vanishes —> Linear chain

$$u_t <
u_t^{(c)}$$
 the effective potential to minimize is

$$V_0' = \frac{1}{2} r_{k_0} |\hat{\psi}_{k_0}|^2 + A_4 |\hat{\psi}_{k_0}|^4$$

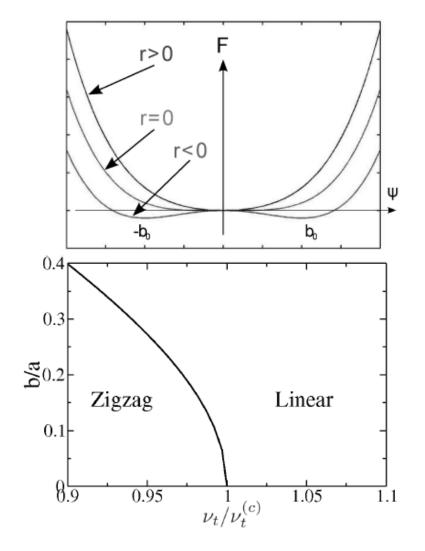
$$\hat{\psi}_{k_0} \propto \pm \sqrt{\nu_t^{(c)} - \nu_t}$$

Mapping to Landau's model-III

$$V_0' = \frac{1}{2} r_{k_0} |\hat{\psi}_{k_0}|^2 + A_4 |\hat{\psi}_{k_0}|^4$$
$$\hat{\psi}_{k_0} \propto \pm \sqrt{\nu_t^{(c)} - \nu_t}$$

Transverse equilibrium positions

$$b_j = \pm (-1)^j C \sqrt{\nu_t^{(c)} - \nu_t}$$



Consider

$$F = \frac{1}{2}r_1\psi_1^2 + \frac{1}{2}r_2\psi_2^2 + A_{11}\psi_1^4 + A_{22}\psi_2^4 + A_{12}\psi_1^2\psi_2^2$$
 with $r_1 < r_2$ and $A_{ij} > 0$

Consider

$$F = \frac{1}{2}r_1\psi_1^2 + \frac{1}{2}r_2\psi_2^2 + A_{11}\psi_1^4 + A_{22}\psi_2^4 + A_{12}\psi_1^2\psi_2^2$$
 with $r_1 < r_2$ and $A_{ij} > 0$

For
$$0 < r_1 < r_2$$
 then $\psi_1 = \psi_2 = 0$

Consider

$$F = \frac{1}{2}r_1\psi_1^2 + \frac{1}{2}r_2\psi_2^2 + A_{11}\psi_1^4 + A_{22}\psi_2^4 + A_{12}\psi_1^2\psi_2^2$$
 with $r_1 < r_2$ and $A_{ij} > 0$

For
$$0 < r_1 < r_2$$
 then $\psi_1 = \psi_2 = 0$

For
$$r_1 < 0 < r_2$$
 then $\psi_2 = 0$ and $\psi_1 = \pm \sqrt{-r_1/4A_{11}}$

the quadratic term for mode 2 is

$$r_2 + 2A_{12}\psi_1^2 > 0$$

Consider

$$F = \frac{1}{2}r_1\psi_1^2 + \frac{1}{2}r_2\psi_2^2 + A_{11}\psi_1^4 + A_{22}\psi_2^4 + A_{12}\psi_1^2\psi_2^2$$
 with $r_1 < r_2$ and $A_{ij} > 0$

For
$$0 < r_1 < r_2$$
 then $\psi_1 = \psi_2 = 0$

For
$$r_1 < 0 < r_2$$
 then $\psi_2 = 0$ and $\psi_1 = \pm \sqrt{-r_1/4A_{11}}$

For $r_2 < 0$ (small) the quadratic term is still $r_2 + 2A_{12}\psi_1^2 > 0$ thus $\psi_2 = 0$

Cylindrical potential

Ansatz: the zigzag mode is the soft mode.

One finds the effective potential for the zigzag mode:

$$V^{\text{soft}} = \mathcal{V}[(\Psi_0^y)^2 + (\Psi_0^z)^2] + A[(\Psi_0^y)^2 + (\Psi_0^z)^2]^2$$

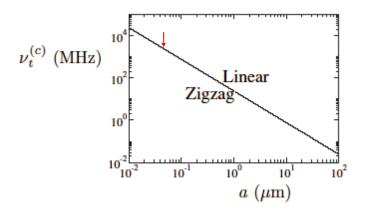
$$\mathcal{V} = \frac{m}{2}\beta_0 = \frac{1}{2}m(\nu_t^2 - \nu_t^{(c)2})$$

$$A = \frac{3}{2}A = \frac{3}{2}D^2$$

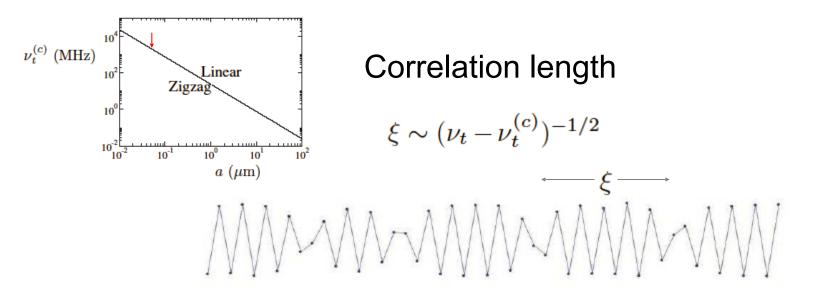
$$A = \frac{3}{2} \frac{31}{32} \zeta(5) \frac{Q^2}{a^5}$$

The other modes are stably trapped by a harmonic potential

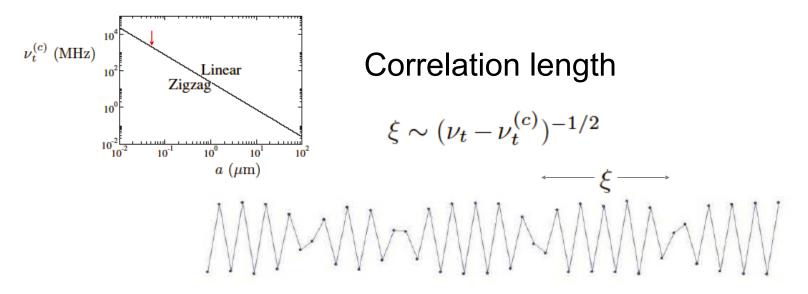
Scaling laws at the structural phase transition



Scaling laws at the structural phase transition



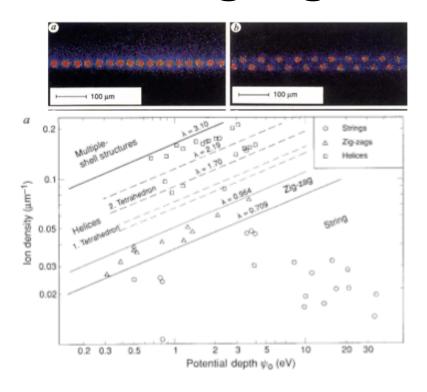
Scaling laws at the structural phase transition



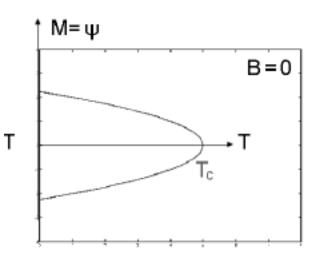
Relaxation time

$$\tau \sim (\nu_t - \nu_t^{(c)})^{-1}$$

Linear-Zigzag like Ferromagnetism



Same critical behaviour as a ferromagnet at B=0



Fluctuations

In 1 D: no long-range order for nonzero temperature

But if the chain is shorter than the correlation length it will look ordered in one of the zigzag phases

$$\xi \sim (\nu_t - \nu_t^{(c)})^{-1/2} > \text{length } L$$

Fluctuations

In 1 D: no long-range order for nonzero temperature

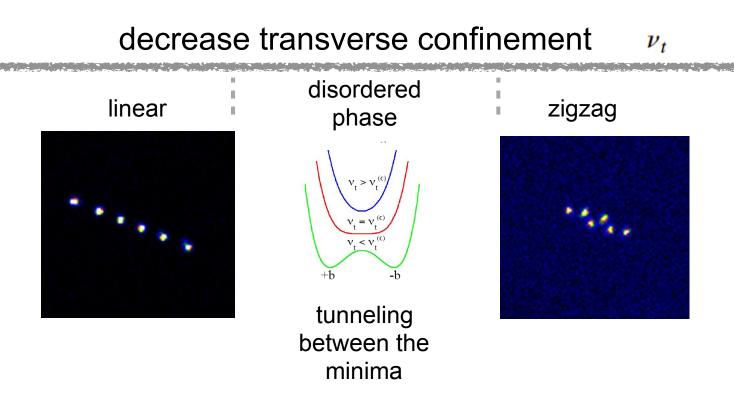
But if the chain is shorter than the correlation length it will look ordered in one of the zigzag phases

$$\xi \sim (\nu_t - \nu_t^{(c)})^{-1/2} > \text{length } L$$

T=0 and "
$$\hbar$$
" = 0

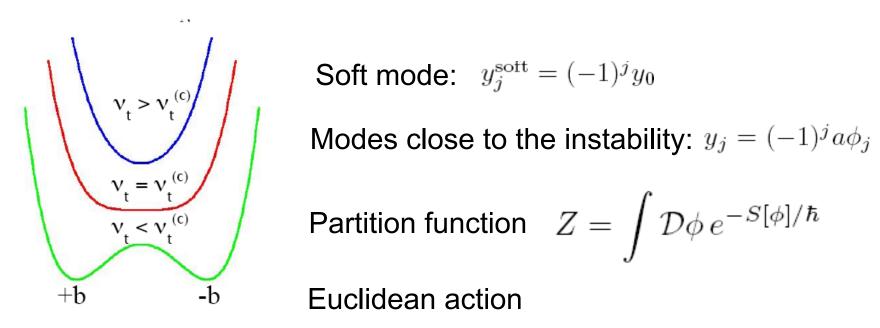
no fluctuations transition at r = 0 $v_t = v_t^{(c)}$

Quantum fluctuations



Mapping to an Ising model with transverse field.

Quantum fluctuations at the mechanical instability



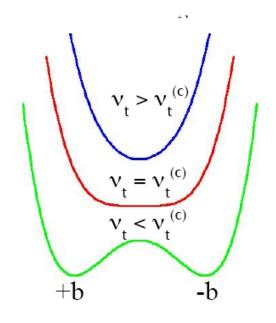
Soft mode: $y_j^{\text{soft}} = (-1)^j y_0$

Partition function
$$\,\,\,Z=\int {\cal D}\phi\,e^{-S[\phi]/\hbar}$$

Euclidean action

$$S[\phi] = \int_0^{\hbar\beta} d\tau \sum_{j=1}^N \left[\frac{1}{2} ma^2 (\partial_\tau \phi_j)^2 + V_0(\phi_j) + \frac{1}{2} K(\phi_j - \phi_{j+1})^2 \right]$$

Quantum fluctuations at the mechanical instability



Soft mode: $y_j^{\text{soft}} = (-1)^j y_0$

Modes close to the instability: $y_j = (-1)^j a \phi_j$

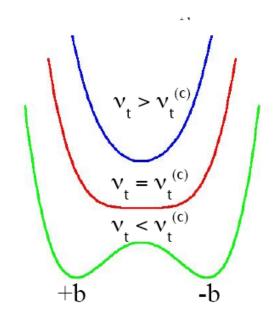
Partition function
$$Z = \int \mathcal{D}\phi \, e^{-S[\phi]/\hbar}$$

Euclidean action

$$S[\phi] = \int_0^{\hbar\beta} d\tau \sum_{j=1}^N \left[\frac{1}{2} ma^2 (\partial_\tau \phi_j)^2 \right) + V_0(\phi_j) + \frac{1}{2} K(\phi_j - \phi_{j+1})^2 \right]$$

Fluctuations (1+1 dimensions)

Quantum fluctuations at the mechanical instability



Soft mode: $y_j^{\text{soft}} = (-1)^j y_0$

Modes close to the instability: $y_j = (-1)^j a \phi_j$

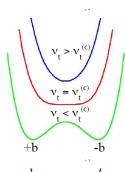
Partition function
$$Z = \int \mathcal{D}\phi \, e^{-S[\phi]/\hbar}$$

Euclidean action

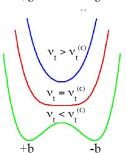
$$S[\phi] = \int_0^{\hbar\beta} d\tau \sum_{j=1}^N \left[\frac{1}{2} ma^2 (\partial_\tau \phi_j)^2 \left(+ V_0(\phi_j) + \frac{1}{2} K(\phi_j - \phi_{j+1})^2 \right) \right]$$

local potential

$$V_0(\phi) = -\frac{1}{2}m(\nu_c^2 - \nu_t^2)a^2\phi^2 + \frac{1}{4}ga^4\phi^4$$



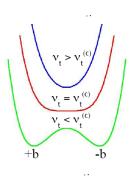
Mapping to an Ising model with transverse field



Two wells: two values of the spin

$$\phi_j = \phi_0 \sigma_j^z + \delta \phi_j$$

$$Z \approx Z_0 \int \mathcal{D}\sigma \exp\left(-S_I[\sigma]/\hbar\right)$$

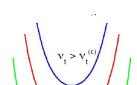


Effective Hamiltonian

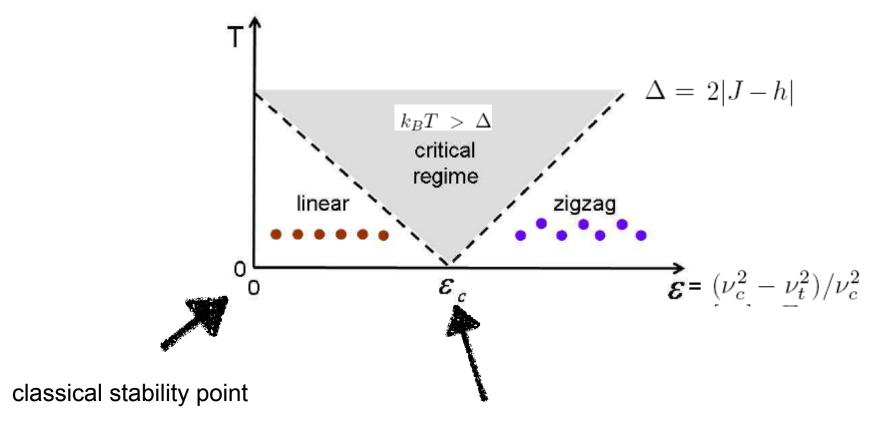
$$H_I = -\sum_{j=1}^{N} (J\sigma_j^z \sigma_{j+1}^z + h\sigma_j^x)$$

 $h \approx C_h \left(U_P U_K^2 \right)^{1/3}$ transverse field (tunneling)

$$J = K\phi_0^2 = C_J U_P \varepsilon$$
 exchange coupling (Coulomb interaction)

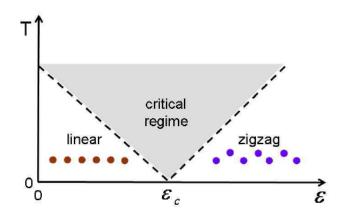


Phase diagram



quantum critical point at J=h

Experimental parameters



Resolution for trap frequency

$$\delta \nu \approx 10^{-4} \frac{1}{2(n_A a_0)^{2/3}} \nu_c$$

Temperatures required:

$$T[\text{mK}] \ll 0.25 \left(\frac{1}{n_A^2 a_0^5}\right)^{1/3}$$

 a_0 interparticle distance in units of μm

 n_A atomic number

DMRG results

$$\mathcal{H} = \frac{1}{2} \sum_{j=1}^{L} \left[\pi_j^2 - \varepsilon \phi_j^2 + (\phi_j - \phi_{j+1})^2 + 2g\phi_j^4 \right]$$

$$[\phi_j, \pi_\ell] = i\tilde{\hbar}\delta_{j,\ell}$$

$$ilde{\hbar} \sim \sqrt{rac{U_K}{U_P}}$$

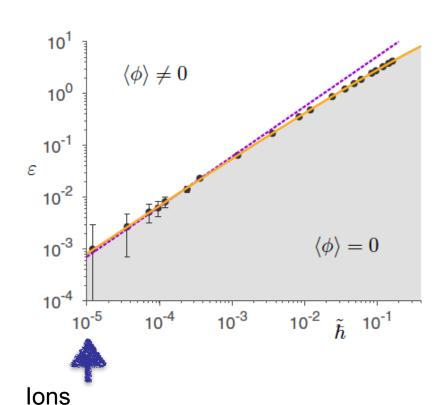
Table 1 Resume of the computed critical exponents.			
	Quantity	Computed	Theory [7]
η	Anomalous dimension	0.258 ± 0.012	0.25
β	Spont. magnetization	0.126 ± 0.011	0.125
ν	Correlation length	1.03 ± 0.05	1
c	Central charge	0.487 ± 0.015	0.5

DMRG results

$$\mathcal{H} = \frac{1}{2} \sum_{j=1}^{L} \left[\pi_j^2 - \varepsilon \phi_j^2 + (\phi_j - \phi_{j+1})^2 + 2g\phi_j^4 \right]$$

 $[\phi_j,\pi_\ell]=i ilde{\hbar}\delta_{j,\ell}$ shift of the critical frequency from the mean-field value

$$\tilde{\hbar} \sim \sqrt{\frac{U_K}{U_P}}$$

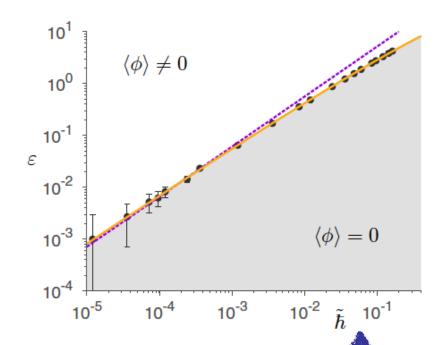


DMRG results

$$\mathcal{H} = \frac{1}{2} \sum_{j=1}^{L} \left[\pi_j^2 - \varepsilon \phi_j^2 + (\phi_j - \phi_{j+1})^2 + 2g\phi_j^4 \right]$$

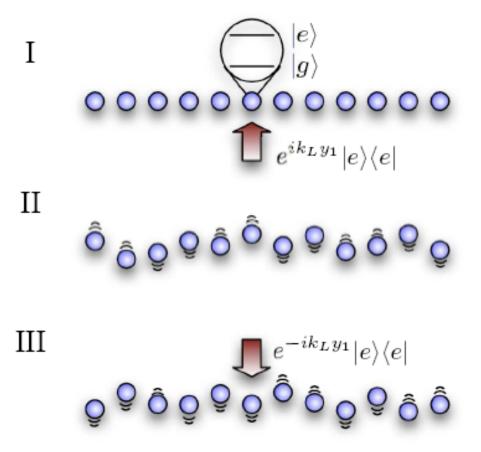
 $[\phi_j,\pi_\ell]=i ilde{\hbar}\delta_{j,\ell}$ shift of the critical frequency from the mean-field value

$$\tilde{\hbar} \sim \sqrt{\frac{U_K}{U_P}}$$



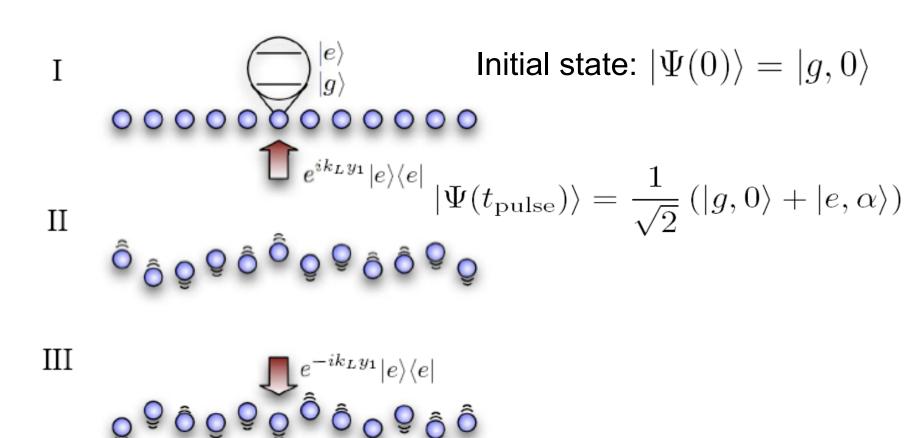
Measuring the critical behaviour

- 1) Ramsey interferometry
- 2) Quenches
- 3) ...



I
$$|e\rangle \text{ Initial state: } |\Psi(0)\rangle = |g,0\rangle$$

$$|e\rangle \text{ of } |g\rangle \text{ of$$



I Initial state:
$$|\Psi(0)\rangle = |g,0\rangle$$

$$|g\rangle \qquad \text{Initial state: } |\Psi(0)\rangle = |g,0\rangle$$
II
$$|e^{ik_L y_1}|e\rangle\langle e| |\Psi(t_{\text{pulse}})\rangle = \frac{1}{\sqrt{2}} \left(|g,0\rangle + |e,\alpha\rangle\right)$$
III
$$|\Psi(t+t_{\text{pulse}})\rangle = \frac{1}{\sqrt{2}} \left(|g,0\rangle + e^{i\phi}|e,\alpha e^{-i\nu t}\rangle\right)$$

$$|\Psi(t+t_{\text{pulse}})\rangle = \frac{1}{\sqrt{2}} \left(|g,0\rangle + e^{i\phi}|e,\alpha e^{-i\nu t}\rangle\right)$$

$$|\Psi(t+t_{\text{pulse}})\rangle = \frac{1}{\sqrt{2}} \left(|g,0\rangle + e^{i\phi}|e,\alpha e^{-i\nu t}\rangle\right)$$

I Initial state:
$$|\Psi(0)\rangle = |g,0\rangle$$

$$|g\rangle \qquad \text{Initial state: } |\Psi(0)\rangle = |g,0\rangle$$
II
$$|e^{ik_L y_1}|e\rangle\langle e| \qquad |\Psi(t_{\text{pulse}})\rangle = \frac{1}{\sqrt{2}}\left(|g,0\rangle + |e,\alpha\rangle\right)$$
III
$$|\Psi(t+t_{\text{pulse}})\rangle = \frac{1}{\sqrt{2}}\left(|g,0\rangle + e^{i\phi}|e,\alpha e^{-i\nu t}\rangle\right)$$

$$|\Psi(t+t_{\text{pulse}})\rangle = \frac{1}{\sqrt{2}}\left(|g,0\rangle + e^{i\phi}|e,\alpha e^{-i\nu t}\rangle\right)$$
Probability to be in the ground state:
$$\mathcal{P}_g(t) = \frac{1}{2}\left[1 + \operatorname{Re}\left\{e^{i\phi}\mathcal{S}(t)\right\}\right]$$

Interferometric signal

Probability to be in the ground state:

$$\mathcal{P}_g(t) = \frac{1}{2} \left[1 + \text{Re} \left\{ e^{i\phi} \mathcal{S}(t) \right\} \right]$$

Visibility: $\mathcal{V} = |\mathcal{S}(t)|$

It gives the autocorrelation function of the crystal:

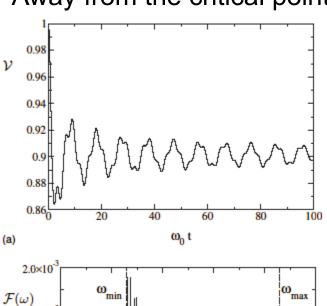
$$\mathcal{V}(t) = \exp\left[-\frac{k_L^2}{2}\mathcal{G}(t)\right]$$

$$\mathcal{G}(t) = \langle [y(t) - y(0)]^2 \rangle$$

Visibility for an ion chain

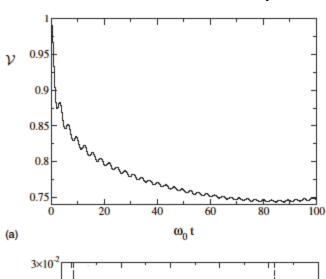
$$\mathcal{V} = |\langle \{\alpha_{k\sigma}\} | \{\alpha_{k\sigma}(t)\} \rangle| = \exp[-A(t)] \qquad A(t) = 2\sum_{k\sigma} |\alpha_{k\sigma}|^2 \sin^2 \frac{\omega_y(k)t}{2}$$

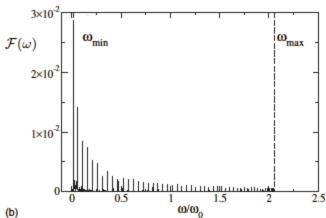
Away from the critical point:





Close to the critical point:





Visibility at the critical point

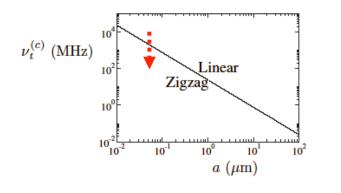
$$\mathcal{V} = |\langle \{\alpha_{k\sigma}\}| \{\alpha_{k\sigma}(t)\}\rangle| = \exp[-A(t)]$$

$$A(t) = 2\sum_{k\sigma} |\alpha_{k\sigma}|^2 \sin^2\frac{\omega_y(k)t}{2} \simeq \Gamma t^2 \quad \text{(short elapsed times)}$$

$$0.007 \qquad 0.005 \qquad 0.005$$

Testing criticality with quenches

Slow quench across the phase transition



$$\nu_t = \sqrt{\nu_t^{(c)2} + \epsilon(t)}$$

$$\epsilon(t) = -\delta_0 \frac{t}{\tau_Q}$$

$$\tau \sim |\epsilon|^{-z\nu}$$

Kibble-Zurek mechanism:

Adiabatic regime: quench time << relaxation time

Impulse regime: quench time >> relaxation time

Defects are formed when quench time = relaxation time

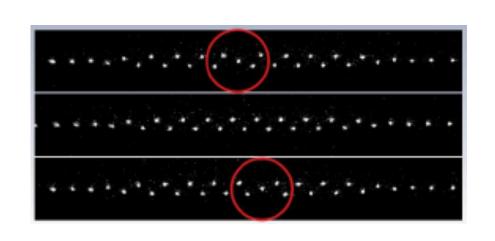
Density of defects after the quench

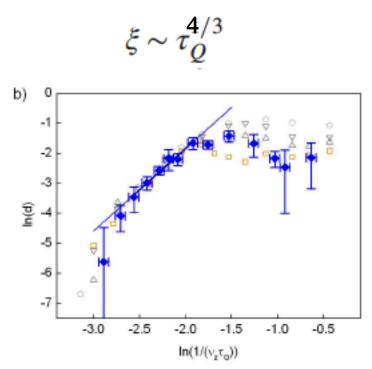
Scaling of the density of defects as a function of the quench rate:

Use
$$au\sim |\epsilon|^{-z\nu}$$
 in $\hat{\xi}\sim |\hat{\epsilon}|^{-\nu}$ (domain size at freeze-out)
$$\hat{\xi}\sim |\hat{\epsilon}|^{-\nu}\sim \tau_Q^{\nu/(1+z\nu)}$$

it depends on the critical exponents it provides a way to measure the critical behaviour

Experimental quenches





T. Mehlstäubler and coworkers (PTB)

Evidence of the classical criticality (in agreement with KZ in inhomogeneous systems)

See also: Schätz (Freiburg) and Schmidt-Kaler (Mainz)

Seeing quantum criticality?

$$\hat{\xi} \sim |\hat{\epsilon}|^{-\nu} \sim \tau_Q^{\nu/(1+z\nu)}$$

 ν_t

linear

disordered phase

classical (mean-field) exponents

$$\nu = 1/2$$
 $\nu = 1$

$$z = 1$$

$$\xi \sim \tau_Q^{1/3}$$

$$\nu = 1$$

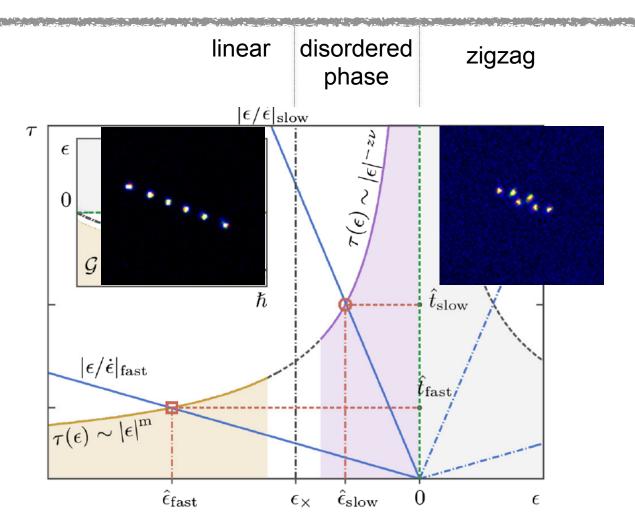
$$z = 1$$
. $z = 1$.

$$\xi \sim \tau_Q^{1/3} \quad \hat{\xi} \sim \tau_Q^{1/2}$$

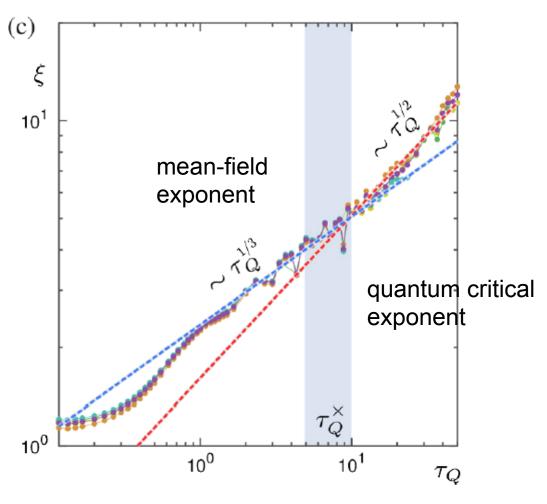
Seeing quantum criticality?

$$\hat{\xi} \sim |\hat{\epsilon}|^{-\nu} \sim \tau_Q^{\nu/(1+z\nu)}$$

 ν_t



Seeing quantum criticality



(DMRG by Pietro Silvi, Uni Ulm)

Thanks to

S. Fishman A. Retzker M. Plenio G. De Chiara T. Calarco

E. Shimshoni D. Podolsky S. Montangero

P. Silvi

A. del Campo

Some literature

- S. Fishman, et al, Phys. Rev. B 77, 064111 (2008).
- G. De Chiara et al, Phys. Rev. A 78, 043414 (2008).
- A. del Campo, et al, Phys. Rev. Lett. 105, 075701 (2010).
- G. De Chiara, et al, New J. Phys. 12, 115003 (2010).
- E. Shimshoni, et al, Phys. Rev. Lett 106, 010401 (2011).
- J. D. Baltrusch, et al, Phys. Rev. A 84, 063821 (2011); 86, 032104 (2012).
- P. Silvi, et al, Ann. Phys. 525, No. 10-11, 827-832 (2013).
- D. Podolsky, et al, Phys. Rev. B 89, 214408 (2014).
- P. Silvi, et al, Phys. Rev. Lett. 116, 225701 (2016).