
Structural transitions  
in ion crystals:  

a platform to study criticality



Low dimensional structures



Phase diagram

Nature 357, 310 (1992)



Structural instability: 
Linear-Zigzag

J.P. Schiffer,  PRL 1993.

J.Eschner and coworkers, Barcelona, 2007.

decrease transverse confinement



Instability for ions in a ring

Find transverse displacement b with  

Transition point

Fixed interparticle distance a 
( thermodynamic limit)



Normal modes – Ring

transverse motion

No axial confinement: periodic distribution 
Modes are phononic waves with quasimomentum k in BZ

Spectra of excitations



Normal modes – linear chain



Normal modes – linear chain

Critical value: 



Transition linear-zigzag

Linear chain Zigzag

decrease transverse confinement



Transition linear-zigzag

Linear chain ZigzagTransition point

Zigzag mode

decrease transverse confinement



Linear-Zigzag:  
second-order phase transition?

Educated guess: 

Symmetry breaking: line to plane 

Order parameter: Equilibrium distance from the axis 

Control field: Transverse frequency 

Soft mode: Zigzag mode  



Mapping to Landau’s model-I
Simplified version: Longitudinal positions fixed 
only transverse oscillations in one direction.

zigzag mode: wavelength 

close to the instability



Mapping to Landau’s model-II

close to the instability

all coefficients are positive: 

the mean value of all       vanishes —> Linear chain

the effective potential to minimize is



Mapping to Landau’s model-III

Transverse equilibrium positions
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Why taking only the zigzag mode  
and ignore the other transverse 

modes?
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Why taking only the zigzag mode  
and ignore the other transverse 

modes?
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For then and

the quadratic term for mode 2 is  

>0



Why taking only the zigzag mode  
and ignore the other transverse 

modes?
Consider

with and

For then

For then and

For (small) the quadratic term is still
>0 thus 



Cylindrical potential

The other modes are stably trapped by a harmonic potential

Ansatz: the zigzag mode is the soft mode. 
One finds the effective potential for the zigzag mode: 



 Scaling laws at the  
structural phase transition



Correlation length

 Scaling laws at the  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Correlation length

Relaxation time

 Scaling laws at the  
structural phase transition



 Linear-Zigzag like Ferromagnetism

Same critical behaviour as  
a ferromagnet at B=0



Fluctuations
In 1 D: no long-range order for nonzero temperature 

But if the chain is shorter than the correlation length 
it will look ordered in one of the zigzag phases

> length L



Fluctuations
In 1 D: no long-range order for nonzero temperature 

But if the chain is shorter than the correlation length 
it will look ordered in one of the zigzag phases

> length L

T=0 and     no fluctuations 
transition at 



Quantum fluctuations

linear

Mapping to an Ising model with transverse field.

zigzag

decrease transverse confinement
disordered  

phase

tunneling 
between the 

minima



Quantum fluctuations at the 
mechanical instability

Soft mode: 

Modes close to the instability:

Partition function

Euclidean action



Quantum fluctuations at the 
mechanical instability

Soft mode: 

Modes close to the instability:

Partition function

Euclidean action

Fluctuations (1+1 dimensions)



Quantum fluctuations at the 
mechanical instability

Soft mode: 

Modes close to the instability:

Partition function

Euclidean action

local potential



Mapping to an Ising model 
with transverse field

Two wells: two values of the spin

Effective Hamiltonian

transverse field (tunneling)

exchange coupling  (Coulomb interaction)



Phase diagram

=

classical stability point

quantum critical point at J=h



Experimental parameters

Resolution for trap frequency

Temperatures required:

interparticle distance in units of µm

atomic number



DMRG results



DMRG results

shift of the critical frequency from the mean-field value

Ions



DMRG results

shift of the critical frequency from the mean-field value

Dipolar gases



Measuring the critical behaviour

1) Ramsey interferometry 

2) Quenches 

3) …



Ramsey interferometry



Initial state: 

Ramsey interferometry



Initial state: 

Ramsey interferometry



Initial state: 

Ramsey interferometry



Initial state: 

Probability to be in the ground state:

Ramsey interferometry



Interferometric signal
Probability to be in the ground state:

Visibility:

It gives the autocorrelation function of the crystal:



Visibility for an ion chain

Away from the critical point: Close to the critical point:



Visibility at the critical point

(short elapsed times)

(distance of transverse frequency from critical value)



Testing criticality with quenches

Slow quench across the phase transition

Kibble-Zurek mechanism:  

Adiabatic regime: quench time << relaxation time 

Impulse regime: quench time >> relaxation time 

Defects are formed when quench time = relaxation time



Density of defects 
after the quench

Scaling of the density of defects as a function of the quench rate:

it depends on the critical exponents 
it provides a way to measure the critical behaviour

Use in (domain size at freeze-out)



Experimental quenches

See also: Schätz (Freiburg) and Schmidt-Kaler (Mainz)

T. Mehlstäubler and coworkers (PTB)

Evidence of the classical criticality  
(in agreement with KZ in inhomogeneous systems)

4



Seeing quantum criticality?

linear zigzagdisordered  
phase

classical 
(mean-field) 
exponents

quantum  
critical 
region
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Seeing quantum criticality

mean-field 
exponent

quantum critical 
exponent

(DMRG by Pietro Silvi, Uni Ulm)
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