Spatio-Temporal Infrastructure Networks

From single networks to networks of networks

2000-Barabasi

2010

Shlomo Havlin Bar-Ilan University multilevel multilayer multiplex

Electric grid, Communication Transportation Services

Two types of links:

- 1. Connectivity
- 2. Dependency

Protein networks, brain networks-Different functions can be regarded as different networks Dependency – nodes in one network depend on nodes in another network to function.

Cascading failures-abrupt transition

How interdependent are infrastructures?

Extensive Studies Since 2000 -- Single Networks

- A Network is a structure of N nodes and M edges (or 2M links)
- Called usually graph in Mathematics
- Complex systems can be described and understood using networks

Internet: nodes represent computers

links the connecting cables

Airline systems: nodes represent

airports links their destinations

Climate system: nodes represent locations

links similar climate

Successful results: Efficient immunization strategies, identifying key players, robustness, climate, physiology, protein networks-function

Complex Single Networks- Since 2000

Poisson distribution (ER - 1959)

Erdős-Rényi Network

Scale-free distribution (Barabasi – Albert 1999)

Scale-free Network

Networks in Physics

Metabolic Network

Nodes: chemicals (substrates)

Links: bio-chemical reactions

Jeong, Tombor, Albert, Barabasi, Nature (2000)

Internet Network

Faloutsos et. al., SIGCOMM '99

Global Airline Network

Colizza, Vespignani et al PNAS (2006)

Scale free-degree distribution:

$$p(k) \sim k^{-\lambda}$$

Many real networks are non-Poissonian

Exponential

$$P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

Scale-free

$$P(k) = \begin{cases} ck^{-\lambda} & m \le k \le K \\ 0 & otherwise \end{cases}$$

Classical Erdos-Renyi (1960)

Homogeneous, similar to lattices

$$d \sim \log N$$
--- Small world

$$p_c = 1 - q_c = 1/\langle k \rangle$$

$$P_{\infty} = p[1 - \exp(-\langle k \rangle P_{\infty})]$$

Barabasi-Albert (1999)

Heterogeneous-translational symmetry breaks! New universality class-many anomalous laws

$$e.g., d \sim \log \log N; p_c = 0$$

Ultra Small worlds (Cohen and SH, PRL (2003))

Breakthrough in understanding many problems!

Many real networks are non-Poissonian

Exponential

$$P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

Scale-free

$$P(k) = \begin{cases} ck^{-\lambda} & m \le k \le K \\ 0 & otherwise \end{cases}$$

Classical Erdos-Renyi (1960)

Homogeneous, similar to lattices

$$d \sim \log N$$
-- Small world $p_c = 1 - q_c = 1/\langle k \rangle$

$$P_{\infty} = p[1 - \exp(-\langle k \rangle P_{\infty})]$$

Barabasi-Albert (1999)

Heterogeneous-translational symmetry breaks! New universality class-many anomalous laws

$$e.g., d \sim \log \log N; p_c = 0$$

Ultra Small worlds (Cohen and SH, PRL (2003))

Breakthrough in understanding many problems!

Many real networks are non-Poissonian

Long-range links More robust!

SF more robust!!

Classical Erdos-Renyi (1960)

Homogeneous, similar to lattices $d \sim \log N$ --- Small world $p_c = 1 - q_c = 1/< k >$

 $P_{\infty} = p[1 - \exp(-\langle k \rangle P_{\infty})]$

Barabasi-Albert (1999)

Heterogeneous-translational symmetry breaks! New universality class-many anomalous laws

$$e.g., d \sim \log \log N; p_c = 0$$

Ultra Small worlds (Cohen and SH, PRL (2003))
Breakthrough in understanding many problems!

Comparing random, targeted, and equal graph partition strategies

Random scale-free network: N=50; λ =2.5 – immunizing 7 nodes

Chen et al, Phys. Rev. Lett. **101**, 058701 (2008)

Best Method

WHAT IS DIFFERENT?

Known values of epidemic thresholds:

Infectious disease	Critical Threshold $q_c=1-p_c$
Malaria	99%
Measles	90-95%
Whooping cough	90-95%
Fifths disease	90-95%
Chicken pox	85-90%

Internet

more than 99%

Such immunization thresholds were not understood since they were well above the expected value of percolation in classical random networks:

$$q_c = 1 - p_c = 1 - 1/ < k >$$

This puzzle is solved due to the broad degree distribution (HUBS) of social networks which does not occur in random graphs!

Mitigation of malicious attacks on networks

Traffic and Network Theory

- 1. Mapping traffic in Beijing as a dynamic network
- 2. Percolation theory identify bottlenecks

Daqing Li, Bowen Fu, Yungpeng Wang, Guangquan Lu et al, PNAS (2015)

PERCOLATION AND TRAFFIC

Daqing Li et al PNAS, 2015, also (in press, 2018) Identifying systematic bottlenecks

DIFFERENT HOURS DIFFERENT BOTTLENECKS

Percolation critical exponents

Percolation Model

Physiological Networks

Bashan, Ivanov et al, Nature Communication [2012]
Structure and Function

Ludescher et al PNAS (2014, 2015)

EL-NINO BECOMES AUTONOMOUS: ONLY INFUENCE-NOT INFLUENCED

$$\langle I_l^y \rangle_{y \in El-Nino}$$

Gozolchiani et al PRL (2011)

VERY EARLY PREDICTION!!! Ludescher et al, PNAS (2014)

Forecasting the onset and global influence

Ludescher et al, PNAS (2013,2014)

Jing-fang Fan et al, PNAS (2017)

Resilience of Networks with Community Structure: External Field Interlinks - Flights between Continents-Back to Physics

Α

Network Model

A fraction *r* of nodes are interconnected nodes

r=0.5

Scaling with field *r*

The field r removes the transition Like magnetic field in spin system

 $S(p_c, r) \sim r^{1/\delta}$

G. Dong et al PNAS 201801588, (2018)

arXiv:1805.01032

Scaling with field *r* in scale free modules

G. Dong et al PNAS (2018) arXiv:1805.01032

Scaling with field *r* in spatially embedded modules

Trains and Flights between Europe and North America

Fan et al arXiv:1806.00756

Scaling with field r in spatially embedded modules

Scaling with field *r* in real spatially embedded modules

Trains and Flights between Europe and North America

Fan et al arXiv:1806.00756

Introducing Recovery-Single Networks

Spontaneous Recovery and Failure 0.4

Majdanzik et al Nature Phys. 10, 3438 (2014)

Introducing Recovery-Single Networks

Diffusion of a SYSTEM in phase space

Spontaneous Recovery and Failure

Majdanzik et al Nature Phys. 10, 3438 (2014)

How interdependent are infrastructures?

