
Ion chains in a cavity: 
a novel paradigma 

of static friction



Cavity Quantum 
Electrodynamics  

Single-mode cavity:  
damped quantum harmonic oscillator

Energy 

Electric field 



Quantum structures 
in cavity QED

Originate from the mechanical effects of light 
in a high-finesse cavity 



Mechanical effects of light

Laser photon: hω

Spontaneous emission: hω

ω < ω: energy is transferred from the atom  
center of mass into the electromagnetic field.  
 



Mechanical effects of light 
in a cavity

atom coherently scatter into the cavity field 
The phase of the emitted light depends on the atom 

position in the cavity mode 

ω < ω: (cavity) cooling 

 



Photon-mediated interactions

The phase of the emitted light depends on  
the atomic positions in the cavity 

The cavity field mediates an effective interaction 

 



Long-range interactions
Potential scales with 1/r 

with exponent a < dimension d 

a

Cavity Quantum Electrodynamics
Trapped ions (effective models)



Photon-mediated interactions 
depend on the pump intensity 
Correlations can form when the field is sufficiently strong

Interplay between pump and losses 

Dynamics and phase transitions 
are intrinsically out-of-equilibrium



Theoretical model
•  Atoms driven far-off resonance: coherent scattering into the 

cavity mode - classical dipoles 
• Atoms move (quantum motion): dynamical refractive index 



Ion crystal in a high-Q cavity



The ingredients

Ion chain in a lattice: Frenkel-Kontorova model & 
friction 

Ion chain in a cavity: long-range interactions lead to a 
novel paradigma of friction



Ion crystal in a lattice



Ion crystal in a lattice



Microscopic models  
for friction

From sliding to stick-slip motion between two crystal surfaces: 
Features reproduced in 1D by the Frenkel-Kontorova model

T. Kontorova & J. Frenkel,
Zh. Eksp. Teor. Fiz. 8 (1938)



The Frenkel-Kontorova model



The Frenkel-Kontorova model



Frenkel-Kontorova features



Frenkel-Kontorova with ions



Frenkel-Kontorova with ions



Experimental realizations



Ion crystal in a cavity



Ion crystal in a cavity



Ion crystal in a cavity



Ion crystal in a cavity



A deformable substrate



Phase diagrams: preliminary



Phase diagrams: preliminary



Phase diagrams



Phase diagrams



Beyond mean-field: 
Crystal vibrations  

Dynamics of crystal vibrations and field fluctuations

cavity losses



Beyond mean-field: 
Crystal vibrations  

optomechanical coupling between crystal vibrations and field fluctuations

coupling strength



Beyond mean-field: 
Crystal vibrations  

optomechanical coupling between crystal vibrations and field fluctuations



Fluctuations & Stability



Crystal’s steady state
mean occupation number / mode

(C<0 is an unstable region) 



The cavity can cool the 
crystal vibrations

ω < ω: (cavity) cooling of the vibrations 

 



Sideband cooling  
to the zero-point motion



Spectrum 

mode  
spectrum (11 ions)

pinned  
phase



Resonances

mode  
spectrum (11 ions)

pinned  
phase

Sliding phase:
distance between the modes

>



Resonances

pinned  
phase: 
mode are 
bunched



Cooling to the  
zero-point motion

mode spectrum (11 ions) simultaneous ground-state cooling

pinned  
phase

cooling times: about 1-10 milliseconds



Quantum reservoir 
engineering 

of kinks

ω < ω: (cavity) cooling of the vibrations 

 



Kink manipulation
The cavity can cool selectively a localized mode (kink) 



Kink manipulation
Cavity and kink are entangled  

(quantum reservoir gives a stationary nonclassical state)

Visible in the spectra of light at the cavity output



Outlook

• Entangle several kinks at steady state 

• Explore the interplay between cavity 
and Coulomb interaction at the linear-
zigzag instability (zero-phonon mode 
and soft mode)

C. Cormick, G. Morigi - Linear-zigzag transition in an optical cavity - Aarhus, December 2011 7/28

Linear-zigzag transition in an ion chain

For �t � �a, the ions form a
linear chain.

Relaxing the transverse
trapping a transition to a
zigzag takes place. [Birkl et al., Nature 357, 310 (1992)]

The transition is driven by
the instability
of the soft mode:



Back to the structural diagram…



Topological Phase Transitions 
in Ion Crystals



(M. Drewsen & coworkers, Aahrus)

Planar instability

D.H.E. Dubin, PRL 1993

Continuous transition from a single to three planes
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Symmetries and Model

Ginzburg-Landau free energy

6-state clock model 
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Phase diagram
6-state clock model 



Long-range interactions
Potential scales with 1/r 

with exponent a < dimension d 

a

one-component plasmas
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