

Coulomb excitation with radioactive ion beams

a tool to study nuclear collectivity and more

- Motivation and introduction
- Theoretical aspects of Coulomb excitation
- Experimental considerations, set-ups and analysis techniques
- Recent experiments and future perspectives

Lecture given at the International School of Physics "Enrico Fermi" Varenna, July 2017
Wolfram KORTEN - CEA Paris-Saclay

Irfu

Quadrupole deformation of nuclei

Oblate deformed nuclei are far less abundant than prolate nuclei Shape coexistence possible for certain regions of N & Z

Irfu CCO saclay

Shape coexistence around A=70

- Observation of 0 shape isomers
- Coulomb excitation to determine shape parameters and configuration mixing

Coulomb excitation of 74,76Kr at SPIRAL

- \rightarrow ⁷⁴Kr + ²⁰⁸Pb at 4.7 MeV/u (SPIRAL)
 - → multi-step Coulomb excitation
- $ightharpoonup \gamma$ -ray yields as function of scattering angle (differential excitation cross section)
- experimental spectroscopic data (lifetimes, branching ratios)
- ➤ least squares fit of ~ 30 matrix elements (transitional and diagonal)

E. Clément et al., Phys. Rev. C 75, 054313 (2007)

Quadrupole moments (Q_0) in ⁷⁴Kr and ⁷⁶Kr

- ➤ direct confirmation of the prolate oblate shape coexistence
- first reorientation measurement with radioactive beam.

Experimental results and comparison with theory

- > complete set of e.m. matrix elements, incl. static moments
- > quantitative understanding of shape coexistence and configuration mixing
- > triaxiality is the key to reproduce experimental data and shape evolution

Quadrupole deformation from sum rules

Model-independent method to determine charge distribution parameters (Q,δ) from a (full) set of E2 matrix elements

$$\mathcal{M}(E2, \mu = 0) = Q \cos \delta$$

$$\mathcal{M}(E2, \mu = \pm 1) = 0$$

$$\mathcal{M}(E2, \mu = \pm 2) = \frac{1}{\sqrt{2}}Q \sin \delta$$

$$\langle s|[E2\times E2]_{0}|s\rangle = \frac{1}{\sqrt{5}}Q^{2} + \frac{(-1)^{2s}}{\sqrt{2s+1}} \sum_{t} \langle s|[E2|t\rangle\langle t||E2||s\rangle \left\{ \begin{array}{ccc} 2 & 2 & 0 \\ s & s & t \end{array} \right\}$$

$$\langle s|[[E2\times E2]_{2}\times E2]_{0}|s\rangle = -\sqrt{\frac{2}{35}}Q^{3}\cos(3\delta) = \frac{1}{2s+1} \sum_{tu} \langle s|[E2|t\rangle\langle t||E2||u\rangle\langle u||E2||s\rangle \left\{ \begin{array}{ccc} 2 & 2 & 2 \\ s & t & u \end{array} \right\}$$

$$2^{+}_{1}$$

$$2^{+}_{2}$$

$$2^{+}_{1}$$

$$2^{+}_{1}$$

$$2^{+}_{2}$$

$$2^{+}_{2}$$

$$2^{+}_{2}$$

$$2^{+}_{2}$$

$$2^{+}_{2}$$

$$2^{+}_{3}$$

$$2^{+}_{2}$$

$$2^{+}_{3}$$

$$2^{+}_{3}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+}_{4}$$

$$2^{+$$

"intrinsic ground state shape can be determined by a full set of E2 matrix elements linking the ground state to all (collective) 2+ states

What do we know in the N \sim Z nuclei around A=70

SPIRAL LE CoulEx:

Irfu ceo saclay

Coulomb excitation of 70Se at CERN / ISOLDE

- > 70Se on 104Pd at 2.94 MeV/u
- > integral measurement
- ➤ excitation probability P(2+) via normalization to known ¹⁰⁴Pd
- P₂₊ depends on
- ➤ transitional matrix element B(E2)
- ➤ diagonal matrix element Q₀

Gamma-ray energy (keV)

one measurement, but two unknowns!

⁶⁸Se intermediate-energy Coulex GANIL E. Clément et al., NIM A 587, 292 (2008)

A.M. Hurst et al., PRL 98, 072501 (2007) (Univ. Liverpool)

Irfu callot

Lifetimes in ⁷⁰Se revisited

Recoil-distance Doppler shift 40 Ca(36 Ar, α 2p) 70 Se

GASP and Köln Plunger at Legnaro

- \triangleright literature value: $\tau = 1.5(3)$ ps
 - J. Heese et al., Z. Phys. A 325, 45 (1986)
- \triangleright new lifetime for 2+ in ⁷⁰Se: τ = 3.2(2) ps
 - J. Ljungvall et al., Phys. Rev. Lett. 100, 102502 (2008)

What do we know in the N \sim Z nuclei around A=70

Coulomb excitation - the different energy regimes

Low-energy regime (< 5 MeV/u)

High-energy regime (>>5 MeV/u)

Energy cut-off
$$\Delta E_{max} = \frac{\hbar v_{\infty}}{a \epsilon} \approx 2 \text{ MeV}$$
 $\Delta E_{max} = \hbar c \frac{\beta \gamma}{a \epsilon} \approx 10 \text{MeV} (\beta = 0.4)$

$$\Delta E_{\text{max}} = \hbar c \frac{\beta \gamma}{a \epsilon} \approx 10 \text{MeV}(\beta = 0.4)$$

Spin cut-off:
$$L_{max}$$
: up to 30ħ

mainly single-step excitations

Cross section:
$$d\sigma/d\theta \sim \langle I_i | M(\sigma\lambda) | I_f \rangle$$

$$\sigma_{\lambda}$$
~ $(Z_pe^2/\hbar c)^2 B(\sigma\lambda, 0\rightarrow\lambda)$ integral

High energy Coulex of 70,72Kr at RIBF

ZeroDegree identification:

BigRIPS identification by: ΔE , TOF, B ρ

F5

SRC

secondary target: Be, Au

- performed at RIBF, RIKEN Nishina Center
- two beam settings, centered on ⁷²Kr and ^{70,71}Kr
- DALI2 Na(I) array for γ-ray detection
- PPACs for scattering angle reconstruction

primary

wedge

degrader

F2

target

^{70,71,72}Kr

Irfu

Identification with BigRIPS and ZeroDegree

Inelastic excitation of ⁷²Kr on Be target

saclay

> First observation of new excited states (second 2⁺ and low-lying state 3⁻?)

Irfu

72 Kr γ - γ coincidence analysis

œ

saclay

Electromagnetic excitation of 68Se,72Kr on Au target

nucleus	$B(E2\uparrow)$ (e^2fm^4) prev.	$B(E2\uparrow)$ (e ² fm ⁴) this
⁶⁸ Se	CoulEx 2158(290)	2550 (400)
	lifetime 1960(350)	
⁷² Kr	CoulEx 4997(647)	4910 (700)
	lifetime 4050(750)	1318 (700)

➤ B(E2) values in ⁷²Kr (and ⁶⁸Se) similar to previous CoulEx experiment

corrections for nuclear excitation and feeding (still under investigation)

⁶⁸Se: A. Obertelli et al., Phys. Rev. C 80 (2009) 031304, A. J. Nichols et al., Phys. Lett. B 733 (2014) 52

⁷²Kr : A. Gade et al., Phys. Rev. Lett 95 (2005) 022502, H. Iwasaki et al., Phys. Rev. Lett 112 (2014) 142502

Irfu CCO saclay

Electromagnetic excitation of ⁷⁰Kr on Au target

	⁷⁰ Kr	⁶⁸ Se	⁷⁰ Br	⁷² Kr
Au target				
$\sigma_{2_1^+}$ [mb]	281(28)	231(3)	157(9)	339(5)
$\sigma_{2_{2}^{+}}$ [mb]		20(2)		41(3)
Be target				
$\sigma_{2_1^+}$ [mb]	18(3)	22(1)	17(1)	26.0(10)
$\sigma_{2_2^+}$ [mb]		4.4(4)		4.5(3)

- measurement of absolute, integrated cross section Au(⁷⁰Kr, ⁷⁰Kr*)Au
- nuclear contributions taken from inelastic scattering on Be target
- > preliminary result: B(E2; $0^+ \rightarrow 2^+$) = 3400(500) $e^2 fm^4$
- feeding corrections from (observed) higher-lying states included
- ➤ final uncertainty, statistic and systematic, expected to be ~20 %

Collectivity of A=70 T=1 mirror nuclei

Lower E(2+,4+) and higher B(E2) in ⁷⁰Kr than in mirror ⁷⁰Se

→ may indicate shape change between A=70 T=1 mirror nuclei?

saclay

Coulomb excitation of neutron-rich nuclei at A~100

Z<40 (Se, Kr, Sr) available at standard ISOL facilities: Isolde/CERN, ISAC2/Triumf, SPIRAL2, SPES, ...
Coulex of 96,98Sr, 97,99Rb, 96Kr, ...

HFB Gogny-D1S M.Girod et al.,

40≦Z≦46 (Zr, Mo, Ru, Pd) are refractory elements only available at IGISOL facilities: JYFL, Caribu/ANL Coulex of ¹⁰⁰Zr, ¹⁰⁶Mo & ¹¹⁰Ru

Coulomb excitation of neutron-rich nuclei at A~100

Z<40 (Se, Kr, Sr) available at standard ISOL facilities: Isolde/CERN, ISAC2/Triumf, SPIRAL2, SPES, ...
Coulex of 96,98Sr, 97,99Rb, 96Kr, ...

40≦Z≦46 (Zr, Mo, Ru, Pd) are refractory elements only available at IGISOL facilities: JYFL, Caribu/ANL Coulex of ¹⁰⁰Zr, ¹⁰⁶Mo & ¹¹⁰Ru

Evidence for sudden shape changes at N=60

S. Naimi et al., PRL 105 (2010) 032502

Excitation energies of first 2⁺ and 4⁺ states

Irfu

Shape evolution in 38Sr isotopes at N=60

œ

saclay

Shape transition at N=60 well established from prompt spectroscopy using fission fragments Investigation of the nuclear shapes through **electromagnetic probes**:

B(E2) values to probe the collectivity and the mixing of different configurations Q_0 to determine the quadrupole deformation

Coulomb excitation of ^{96,98}Sr at REX-Isolde (CERN)

Coulomb excitation set-up at REX-ISOLDE

8 MINIBALL Ge cluster detectors (~7% efficiency)
DSSSD for particle detection (proj. & recoil)
Doppler correction and differential cross section

Coulomb excitation on "spherical" 96Sr

⁹⁶Sr 1975

Coulomb excitation of ⁹⁶Sr at Rex-Isolde ≈10⁴ pps, (>80% after awaiting Rb decay) 2.82 MeV/u on ¹⁰⁹Ag and ¹²⁰sn targets → mainly 1st excited 2⁺ state populated

Irfu œ saclay

Coulomb excitation on "deformed" 98 Sr

Coulomb excitation of ⁹⁸Sr at Rex-Isolde **6.10**⁴ pps, (>80% awaiting Rb decay in REX-trap) 2.82 MeV/u on ²⁰⁸Pb and ⁶⁰Ni targets

→ gs band (8⁺) and **second 2⁺ state** populated

E. Clement, M. Zielinska et al, Phys. Rev. Lett. 116, 022701 (2016)

Coulomb excitation results on Sr isotopes at N=60

œ

saclay

96**Sr**

Spectroscopic quadr. moment $Q_0 \sim 0$ despite a quite sizeable B(E2) value

- → No static quadrupole deformation
- Purely vibrational character

98Sr

- → The ground state band behaves like a perfect rotor
- → The excited configuration is similar to ⁹⁶Sr
- The B(E2; $0_2 \rightarrow 2_1$) indicates strong mixing

Coulomb excitation results on Sr isotopes at N=60

Irfu

saclay

œ

⁹⁶Sr

Spectroscopic quadr. moment $Q_0 \sim 0$ albeit the B(E2) is quite sizeable

- → Purely vibrational character (dynamic E2)
- → No static quadrupole deformation

98Sr

- → The ground state band behaves like a perfect rotor
- → The excited configuration is similar to ⁹⁶Sr
- → The B(E2; $0_2 \rightarrow 2_1$) indicates strong mixing
- → The quadrupole moments confirm shape coexistence

$$Q_s = -121(39) \text{ efm}^2$$

$$Q_s = -187 (25) \text{ efm}^2$$

$$Q_s = -52 (24) \text{ efm}^2$$

 $B(E2\downarrow) = 0.045 (11) e^2b^4$

E. Clement, M. Zielinska et al, Phys. Rev. Lett 116, 022701 (2016)

Quadrupole moments from Coulomb excitation

adapted from E. Clement et al. Phys. Rev. C 94, 054326

29

29

Coulomb excitation of neutron-rich nuclei at A~100

Z<40 (Se, Kr, Sr) available at standard ISOL facilities: Isolde/CERN, ISAC2/Triumf, SPIRAL2, SPES, ...
Coulex of 96,98Sr, 97,99Rb, 96Kr, ...

HFB Gogny-D1S M.Girod et al.,

40≦Z≦46 (Zr, Mo, Ru, Pd) are refractory elements only available at IGISOL facilities: JYFL, Caribu/ANL Coulex of ¹⁰⁰Zr, ¹⁰⁶Mo & ¹¹⁰Ru

ATLAS/CARIBU facility at ANL

CAlifornium Rare Isotope Breeder Upgrade

¹⁰⁰Zr at 3.84 MeV/u (10/2014), ¹¹⁰Ru at 3.91 MeV/u (11/2014), ¹⁰⁶Mo at 3.91 MeV/u (04/2015)

Coulomb excitation set-up at CARIBU

Irfu

Coulomb excitation of 110Ru

Particle detection with Chico2

- Scattering angle
- → important for Doppler correction (together with GRETINA position determ.)
- Time of Flight (for kinematical coincidences)
- \rightarrow extremely important for mass identification ($\triangle A/A \sim 10\%$)

Coulomb excitation of 110Ru at CARIBU

Shape evolution in neutron-rich Ru isotopes

Potential energy surfaces for 44Ru isotopes from FRLDM model

P. Moeller et al., At. Data Nucl. Data Tabl. 94 (2008)

Evidence for Triaxiality in 110Ru

Empirical conditions for triaxiality on **excitation energies** satisfied in neutron-rich Ru isotopes

- Systematics of 2⁺₁ energies: E(2⁺)
 approximately constant between
 ¹⁰⁸Ru and ¹¹⁴Ru (around mid shell)
- Energy ratio, R₄₂ never reaches rigid rotational limit, in contrast to Sr and Zr isotopes.
- Energy of E(2⁺₂) falls below E(4⁺₁)
 strong indication for triaxiality
 according to Triaxial Rotor Model

Evidence for Triaxiality in 110Ru?

Empirical conditions for triaxiality on **excitation energies** satisfied in neutron-rich Ru isotopes

From ¹¹⁰Ru energies $\gamma \sim 20$

What about B(E2) values and quadrupole moments?

Irfu CCO saclay

Coulomb excitation results on 110Ru

Coulomb excitation

All B(E2) values in e²b²

Energies & lifetimes from NNDC

Lifetimes and branching rations used as constraints for GOSIA calc.

Normalisation to known data from ¹¹⁰Cd

All excitation energies given in keV All B(E2) values in e²b²

Coulomb excitation results on 110Ru

Coulomb excitation

All B(E2) values in e²b²

 $Q(2^+)=-83\pm39 \text{ e fm}^2$

Lifetimes and branching rations used as constraints for GOSIA calc.

Normalisation to known data from ¹¹⁰Cd

HFB-GCM(GOA) theory with Gogny D1S Force

 $Q(2^+)=-35 \text{ efm}^2$

All excitation energies given in keV All B(E2) values in e²b²

Evidence for Triaxiality in 110Ru

γ	$b(E2; 2_1 \to 0_1)$	$b(E2; 2_2 \to 0_1)$	$b(E2; 2_2 \rightarrow 2_1)$	$\left(\begin{array}{c} b(E2;2_2\rightarrow 2_1) \\ b(E2;2_2\rightarrow 0_1) \end{array}\right)$
00	1.000	0.	0.	1.43
5^0	0.993	0.0074	0.011	1.49
10^{0}	0.972	0.028	0.051	1.70
15^{0}	0.947	0.053	0.143	2.70
20^{0}	0.933	0.067	0.357	5.35
25^{0}	0.955	0.0425	0.865	20.6
30^{0}	1.000	0.	1.43	∞

Table 2: Reduced transition probabilities for several values of γ .

Lifetimes from fast timing: $\tau(2_1^+) = 0.32(2) \, ns$ (Coulex: $\tau(2_2^+) = 16(7) \, ps$

$$\frac{B(E2; 2_2^+ \to 2_1^+)}{B(E2; 2_2^+ \to 0^+)} = 15.5 \qquad \left(\frac{B(E2; 2_2^+ \to 0^+)}{B(E2; 2_1^+ \to 0^+)} \approx 0.07(2)\right) \left(\frac{B(E2; 2_2^+ \to 2_1^+)}{B(E2; 2_1^+ \to 0^+)} \approx 1.55(58)\right)$$

\rightarrow All B(E2) values in accordance with $\gamma \sim 25^{\circ}$

Coulomb excitation studies with low-energy RIBs

Irfu

saclay

Drip lines and shell Structure in light nuclei

✓ Drip-line nuclei: ¹0Be

✓ Mirror nuclei : ^{20,21}Na, ²¹Ne

✓ The "island of inversion": ²⁹Na, ^{30,31,32}Mg

Coulomb excitation studies with low-energy RIBs

Irfu

saclay

Evolution of Shell Structure far from stability

 \checkmark Z=28, N=40-50: ⁶⁸Ni, ^{67,69,71,73}Ci, ^{68,70(m)}Cu, ^{74,76,78,80}Zn, ⁶¹Mn. ⁶¹Fe

 \checkmark N=Z=50 (100Sn): 106,108,110Sn, 100,102,104Cd

 \checkmark Z=50, N=82 (¹³²Sn): ¹²²⁻¹²⁶Cd, ¹²⁶⁻¹³⁴Sn, ¹³²⁻¹³⁶Te, ¹⁴⁰⁻¹⁴⁴Ba

Irfu

Coulomb excitation studies with low-energy RIBs

œ

saclay

Evolution of nuclear shapes and shape coexistence

✓ N=Z ≈ 34: 70 Se, 74,76 Kr,

✓ N ≈ 60: $^{88-96}$ Kr, 96,98 Sr, 97,99 Rb, 100 Zr, 106 Mo, 110 Ru,

End of Lecture 3