Coulomb excitation with radioactive ion beams #### a tool to study nuclear collectivity and more - Motivation and introduction - Theoretical aspects of Coulomb excitation - Experimental considerations, set-ups and analysis techniques - Recent experiments and future perspectives Lecture given at the International School of Physics "Enrico Fermi" Varenna, July 2017 Wolfram KORTEN - CEA Paris-Saclay # Irfu #### Quadrupole deformation of nuclei Oblate deformed nuclei are far less abundant than prolate nuclei Shape coexistence possible for certain regions of N & Z # Irfu CCO saclay #### Shape coexistence around A=70 - Observation of 0 shape isomers - Coulomb excitation to determine shape parameters and configuration mixing ## Coulomb excitation of 74,76Kr at SPIRAL - \rightarrow ⁷⁴Kr + ²⁰⁸Pb at 4.7 MeV/u (SPIRAL) - → multi-step Coulomb excitation - $ightharpoonup \gamma$ -ray yields as function of scattering angle (differential excitation cross section) - experimental spectroscopic data (lifetimes, branching ratios) - ➤ least squares fit of ~ 30 matrix elements (transitional and diagonal) E. Clément et al., Phys. Rev. C 75, 054313 (2007) #### Quadrupole moments (Q_0) in ⁷⁴Kr and ⁷⁶Kr - ➤ direct confirmation of the prolate oblate shape coexistence - first reorientation measurement with radioactive beam. #### Experimental results and comparison with theory - > complete set of e.m. matrix elements, incl. static moments - > quantitative understanding of shape coexistence and configuration mixing - > triaxiality is the key to reproduce experimental data and shape evolution #### Quadrupole deformation from sum rules Model-independent method to determine charge distribution parameters (Q,δ) from a (full) set of E2 matrix elements $$\mathcal{M}(E2, \mu = 0) = Q \cos \delta$$ $$\mathcal{M}(E2, \mu = \pm 1) = 0$$ $$\mathcal{M}(E2, \mu = \pm 2) = \frac{1}{\sqrt{2}}Q \sin \delta$$ $$\langle s|[E2\times E2]_{0}|s\rangle = \frac{1}{\sqrt{5}}Q^{2} + \frac{(-1)^{2s}}{\sqrt{2s+1}} \sum_{t} \langle s|[E2|t\rangle\langle t||E2||s\rangle \left\{ \begin{array}{ccc} 2 & 2 & 0 \\ s & s & t \end{array} \right\}$$ $$\langle s|[[E2\times E2]_{2}\times E2]_{0}|s\rangle = -\sqrt{\frac{2}{35}}Q^{3}\cos(3\delta) = \frac{1}{2s+1} \sum_{tu} \langle s|[E2|t\rangle\langle t||E2||u\rangle\langle u||E2||s\rangle \left\{ \begin{array}{ccc} 2 & 2 & 2 \\ s & t & u \end{array} \right\}$$ $$2^{+}_{1}$$ $$2^{+}_{2}$$ $$2^{+}_{1}$$ $$2^{+}_{1}$$ $$2^{+}_{2}$$ $$2^{+}_{2}$$ $$2^{+}_{2}$$ $$2^{+}_{2}$$ $$2^{+}_{2}$$ $$2^{+}_{3}$$ $$2^{+}_{2}$$ $$2^{+}_{3}$$ $$2^{+}_{3}$$ $$2^{+}_{4}$$ $$2^{+$$ "intrinsic ground state shape can be determined by a full set of E2 matrix elements linking the ground state to all (collective) 2+ states #### What do we know in the N \sim Z nuclei around A=70 **SPIRAL LE CoulEx:** #### Irfu ceo saclay Coulomb excitation of 70Se at CERN / ISOLDE - > 70Se on 104Pd at 2.94 MeV/u - > integral measurement - ➤ excitation probability P(2+) via normalization to known ¹⁰⁴Pd - P₂₊ depends on - ➤ transitional matrix element B(E2) - ➤ diagonal matrix element Q₀ Gamma-ray energy (keV) one measurement, but two unknowns! ⁶⁸Se intermediate-energy Coulex GANIL E. Clément et al., NIM A 587, 292 (2008) A.M. Hurst et al., PRL 98, 072501 (2007) (Univ. Liverpool) ## Irfu callot #### Lifetimes in ⁷⁰Se revisited Recoil-distance Doppler shift 40 Ca(36 Ar, α 2p) 70 Se GASP and Köln Plunger at Legnaro - \triangleright literature value: $\tau = 1.5(3)$ ps - J. Heese et al., Z. Phys. A 325, 45 (1986) - \triangleright new lifetime for 2+ in ⁷⁰Se: τ = 3.2(2) ps - J. Ljungvall et al., Phys. Rev. Lett. 100, 102502 (2008) #### What do we know in the N \sim Z nuclei around A=70 #### Coulomb excitation - the different energy regimes #### Low-energy regime (< 5 MeV/u) **High-energy regime** (>>5 MeV/u) Energy cut-off $$\Delta E_{max} = \frac{\hbar v_{\infty}}{a \epsilon} \approx 2 \text{ MeV}$$ $\Delta E_{max} = \hbar c \frac{\beta \gamma}{a \epsilon} \approx 10 \text{MeV} (\beta = 0.4)$ $$\Delta E_{\text{max}} = \hbar c \frac{\beta \gamma}{a \epsilon} \approx 10 \text{MeV}(\beta = 0.4)$$ Spin cut-off: $$L_{max}$$: up to 30ħ mainly single-step excitations Cross section: $$d\sigma/d\theta \sim \langle I_i | M(\sigma\lambda) | I_f \rangle$$ $$\sigma_{\lambda}$$ ~ $(Z_pe^2/\hbar c)^2 B(\sigma\lambda, 0\rightarrow\lambda)$ integral ## High energy Coulex of 70,72Kr at RIBF #### ZeroDegree identification: BigRIPS identification by: ΔE , TOF, B ρ F5 SRC secondary target: Be, Au - performed at RIBF, RIKEN Nishina Center - two beam settings, centered on ⁷²Kr and ^{70,71}Kr - DALI2 Na(I) array for γ-ray detection - PPACs for scattering angle reconstruction primary wedge degrader F2 target ^{70,71,72}Kr ## Irfu #### Identification with BigRIPS and ZeroDegree ### Inelastic excitation of ⁷²Kr on Be target saclay > First observation of new excited states (second 2⁺ and low-lying state 3⁻?) ### Irfu ### 72 Kr γ - γ coincidence analysis œ saclay ### Electromagnetic excitation of 68Se,72Kr on Au target | nucleus | $B(E2\uparrow)$ (e^2fm^4) prev. | $B(E2\uparrow)$ (e ² fm ⁴) this | |------------------|-------------------------------------|--| | ⁶⁸ Se | CoulEx 2158(290) | 2550 (400) | | | lifetime 1960(350) | | | ⁷² Kr | CoulEx 4997(647) | 4910 (700) | | | lifetime 4050(750) | 1318 (700) | ➤ B(E2) values in ⁷²Kr (and ⁶⁸Se) similar to previous CoulEx experiment corrections for nuclear excitation and feeding (still under investigation) ⁶⁸Se: A. Obertelli et al., Phys. Rev. C 80 (2009) 031304, A. J. Nichols et al., Phys. Lett. B 733 (2014) 52 ⁷²Kr : A. Gade et al., Phys. Rev. Lett 95 (2005) 022502, H. Iwasaki et al., Phys. Rev. Lett 112 (2014) 142502 #### Irfu CCO saclay ### Electromagnetic excitation of ⁷⁰Kr on Au target | | ⁷⁰ Kr | ⁶⁸ Se | ⁷⁰ Br | ⁷² Kr | |---------------------------|------------------|------------------|------------------|------------------| | Au target | | | | | | $\sigma_{2_1^+}$ [mb] | 281(28) | 231(3) | 157(9) | 339(5) | | $\sigma_{2_{2}^{+}}$ [mb] | | 20(2) | | 41(3) | | Be target | | | | | | $\sigma_{2_1^+}$ [mb] | 18(3) | 22(1) | 17(1) | 26.0(10) | | $\sigma_{2_2^+}$ [mb] | | 4.4(4) | | 4.5(3) | - measurement of absolute, integrated cross section Au(⁷⁰Kr, ⁷⁰Kr*)Au - nuclear contributions taken from inelastic scattering on Be target - > preliminary result: B(E2; $0^+ \rightarrow 2^+$) = 3400(500) $e^2 fm^4$ - feeding corrections from (observed) higher-lying states included - ➤ final uncertainty, statistic and systematic, expected to be ~20 % ## Collectivity of A=70 T=1 mirror nuclei Lower E(2+,4+) and higher B(E2) in ⁷⁰Kr than in mirror ⁷⁰Se → may indicate shape change between A=70 T=1 mirror nuclei? saclay #### Coulomb excitation of neutron-rich nuclei at A~100 Z<40 (Se, Kr, Sr) available at standard ISOL facilities: Isolde/CERN, ISAC2/Triumf, SPIRAL2, SPES, ... Coulex of 96,98Sr, 97,99Rb, 96Kr, ... HFB Gogny-D1S M.Girod et al., 40≦Z≦46 (Zr, Mo, Ru, Pd) are refractory elements only available at IGISOL facilities: JYFL, Caribu/ANL Coulex of ¹⁰⁰Zr, ¹⁰⁶Mo & ¹¹⁰Ru #### Coulomb excitation of neutron-rich nuclei at A~100 Z<40 (Se, Kr, Sr) available at standard ISOL facilities: Isolde/CERN, ISAC2/Triumf, SPIRAL2, SPES, ... Coulex of 96,98Sr, 97,99Rb, 96Kr, ... 40≦Z≦46 (Zr, Mo, Ru, Pd) are refractory elements only available at IGISOL facilities: JYFL, Caribu/ANL Coulex of ¹⁰⁰Zr, ¹⁰⁶Mo & ¹¹⁰Ru ## Evidence for sudden shape changes at N=60 S. Naimi et al., PRL 105 (2010) 032502 #### Excitation energies of first 2⁺ and 4⁺ states ## Irfu ## Shape evolution in 38Sr isotopes at N=60 œ saclay Shape transition at N=60 well established from prompt spectroscopy using fission fragments Investigation of the nuclear shapes through **electromagnetic probes**: **B(E2)** values to probe the collectivity and the mixing of different configurations Q_0 to determine the quadrupole deformation Coulomb excitation of ^{96,98}Sr at REX-Isolde (CERN) ## Coulomb excitation set-up at REX-ISOLDE 8 MINIBALL Ge cluster detectors (~7% efficiency) DSSSD for particle detection (proj. & recoil) Doppler correction and differential cross section ## Coulomb excitation on "spherical" 96Sr ⁹⁶Sr 1975 Coulomb excitation of ⁹⁶Sr at Rex-Isolde ≈10⁴ pps, (>80% after awaiting Rb decay) 2.82 MeV/u on ¹⁰⁹Ag and ¹²⁰sn targets → mainly 1st excited 2⁺ state populated #### Irfu œ saclay #### Coulomb excitation on "deformed" 98 Sr Coulomb excitation of ⁹⁸Sr at Rex-Isolde **6.10**⁴ pps, (>80% awaiting Rb decay in REX-trap) 2.82 MeV/u on ²⁰⁸Pb and ⁶⁰Ni targets → gs band (8⁺) and **second 2⁺ state** populated E. Clement, M. Zielinska et al, Phys. Rev. Lett. 116, 022701 (2016) #### Coulomb excitation results on Sr isotopes at N=60 œ saclay #### 96**Sr** Spectroscopic quadr. moment $Q_0 \sim 0$ despite a quite sizeable B(E2) value - → No static quadrupole deformation - Purely vibrational character #### 98Sr - → The ground state band behaves like a perfect rotor - → The excited configuration is similar to ⁹⁶Sr - The B(E2; $0_2 \rightarrow 2_1$) indicates strong mixing #### Coulomb excitation results on Sr isotopes at N=60 Irfu saclay œ ⁹⁶Sr Spectroscopic quadr. moment $Q_0 \sim 0$ albeit the B(E2) is quite sizeable - → Purely vibrational character (dynamic E2) - → No static quadrupole deformation 98Sr - → The ground state band behaves like a perfect rotor - → The excited configuration is similar to ⁹⁶Sr - → The B(E2; $0_2 \rightarrow 2_1$) indicates strong mixing - → The quadrupole moments confirm shape coexistence $$Q_s = -121(39) \text{ efm}^2$$ $$Q_s = -187 (25) \text{ efm}^2$$ $$Q_s = -52 (24) \text{ efm}^2$$ $B(E2\downarrow) = 0.045 (11) e^2b^4$ E. Clement, M. Zielinska et al, Phys. Rev. Lett 116, 022701 (2016) #### Quadrupole moments from Coulomb excitation adapted from E. Clement et al. Phys. Rev. C 94, 054326 29 29 #### Coulomb excitation of neutron-rich nuclei at A~100 Z<40 (Se, Kr, Sr) available at standard ISOL facilities: Isolde/CERN, ISAC2/Triumf, SPIRAL2, SPES, ... Coulex of 96,98Sr, 97,99Rb, 96Kr, ... HFB Gogny-D1S M.Girod et al., 40≦Z≦46 (Zr, Mo, Ru, Pd) are refractory elements only available at IGISOL facilities: JYFL, Caribu/ANL Coulex of ¹⁰⁰Zr, ¹⁰⁶Mo & ¹¹⁰Ru #### ATLAS/CARIBU facility at ANL **CA**lifornium Rare Isotope Breeder Upgrade ¹⁰⁰Zr at 3.84 MeV/u (10/2014), ¹¹⁰Ru at 3.91 MeV/u (11/2014), ¹⁰⁶Mo at 3.91 MeV/u (04/2015) ## Coulomb excitation set-up at CARIBU # Irfu #### Coulomb excitation of 110Ru #### **Particle detection with Chico2** - Scattering angle - → important for Doppler correction (together with GRETINA position determ.) - Time of Flight (for kinematical coincidences) - \rightarrow extremely important for mass identification ($\triangle A/A \sim 10\%$) #### Coulomb excitation of 110Ru at CARIBU #### Shape evolution in neutron-rich Ru isotopes Potential energy surfaces for 44Ru isotopes from FRLDM model P. Moeller et al., At. Data Nucl. Data Tabl. 94 (2008) ## Evidence for Triaxiality in 110Ru **Empirical** conditions for triaxiality on **excitation energies** satisfied in neutron-rich Ru isotopes - Systematics of 2⁺₁ energies: E(2⁺) approximately constant between ¹⁰⁸Ru and ¹¹⁴Ru (around mid shell) - Energy ratio, R₄₂ never reaches rigid rotational limit, in contrast to Sr and Zr isotopes. - Energy of E(2⁺₂) falls below E(4⁺₁) strong indication for triaxiality according to Triaxial Rotor Model ## Evidence for Triaxiality in 110Ru? **Empirical** conditions for triaxiality on **excitation energies** satisfied in neutron-rich Ru isotopes From ¹¹⁰Ru energies $\gamma \sim 20$ What about B(E2) values and quadrupole moments? ### Irfu CCO saclay #### Coulomb excitation results on 110Ru **Coulomb excitation** All B(E2) values in e²b² #### **Energies & lifetimes from NNDC** Lifetimes and branching rations used as constraints for GOSIA calc. Normalisation to known data from ¹¹⁰Cd All excitation energies given in keV All B(E2) values in e²b² #### Coulomb excitation results on 110Ru #### **Coulomb excitation** All B(E2) values in e²b² $Q(2^+)=-83\pm39 \text{ e fm}^2$ Lifetimes and branching rations used as constraints for GOSIA calc. Normalisation to known data from ¹¹⁰Cd #### **HFB-GCM(GOA)** theory with Gogny D1S Force $Q(2^+)=-35 \text{ efm}^2$ All excitation energies given in keV All B(E2) values in e²b² ## Evidence for Triaxiality in 110Ru | γ | $b(E2; 2_1 \to 0_1)$ | $b(E2; 2_2 \to 0_1)$ | $b(E2; 2_2 \rightarrow 2_1)$ | $\left(\begin{array}{c} b(E2;2_2\rightarrow 2_1) \\ b(E2;2_2\rightarrow 0_1) \end{array}\right)$ | |----------|----------------------|----------------------|------------------------------|--| | 00 | 1.000 | 0. | 0. | 1.43 | | 5^0 | 0.993 | 0.0074 | 0.011 | 1.49 | | 10^{0} | 0.972 | 0.028 | 0.051 | 1.70 | | 15^{0} | 0.947 | 0.053 | 0.143 | 2.70 | | 20^{0} | 0.933 | 0.067 | 0.357 | 5.35 | | 25^{0} | 0.955 | 0.0425 | 0.865 | 20.6 | | 30^{0} | 1.000 | 0. | 1.43 | ∞ | Table 2: Reduced transition probabilities for several values of γ . Lifetimes from fast timing: $\tau(2_1^+) = 0.32(2) \, ns$ (Coulex: $\tau(2_2^+) = 16(7) \, ps$ $$\frac{B(E2; 2_2^+ \to 2_1^+)}{B(E2; 2_2^+ \to 0^+)} = 15.5 \qquad \left(\frac{B(E2; 2_2^+ \to 0^+)}{B(E2; 2_1^+ \to 0^+)} \approx 0.07(2)\right) \left(\frac{B(E2; 2_2^+ \to 2_1^+)}{B(E2; 2_1^+ \to 0^+)} \approx 1.55(58)\right)$$ #### \rightarrow All B(E2) values in accordance with $\gamma \sim 25^{\circ}$ #### Coulomb excitation studies with low-energy RIBs Irfu saclay #### Drip lines and shell Structure in light nuclei ✓ Drip-line nuclei: ¹0Be ✓ Mirror nuclei : ^{20,21}Na, ²¹Ne ✓ The "island of inversion": ²⁹Na, ^{30,31,32}Mg #### Coulomb excitation studies with low-energy RIBs Irfu saclay #### **Evolution of Shell Structure far from stability** \checkmark Z=28, N=40-50: ⁶⁸Ni, ^{67,69,71,73}Ci, ^{68,70(m)}Cu, ^{74,76,78,80}Zn, ⁶¹Mn. ⁶¹Fe \checkmark N=Z=50 (100Sn): 106,108,110Sn, 100,102,104Cd \checkmark Z=50, N=82 (¹³²Sn): ¹²²⁻¹²⁶Cd, ¹²⁶⁻¹³⁴Sn, ¹³²⁻¹³⁶Te, ¹⁴⁰⁻¹⁴⁴Ba ## Irfu #### Coulomb excitation studies with low-energy RIBs œ saclay #### Evolution of nuclear shapes and shape coexistence ✓ N=Z ≈ 34: 70 Se, 74,76 Kr, ✓ N ≈ 60: $^{88-96}$ Kr, 96,98 Sr, 97,99 Rb, 100 Zr, 106 Mo, 110 Ru, #### End of Lecture 3