Energy Economics: The Case of Renewable Electricity

Prof. Dr. Georg Erdmann, TU Berlin
President, GEE e.V., Former President IAEE
Member of the German Expert Group "Energie der Zukunft"
Steering Committee Member, ICEF, Tokyo

Joint EPS-SIF Intl. School on Energy. 22 July 2017
• Published in December 2016
• Topics:
 – Targets and indicators
 – Renewables
 – Energy demand and efficiency
 – Buildings
 – Transportation
 – Greenhouse gases and environmental impacts
 – Power plants and supply security
 – Affordable energy and competition
 – Grid infrastructure
 – Integration of the energy system
 – International context

Published in December 2016

Topics:

- Credibility of the energy transformation
- Organizing climate protection
- Improving energy efficiency
- Broad approach to transportation
- Strategic REN development
- Securing electricity infrastructure
- Affordability of energy
- Using digitalization
Renewable Electricity Generation in Germany

[Source: Arbeitsgemeinschaft Energiebilanzen AGEB]
Agenda of my Presentation Today

1. Economics of Renewable Energy Investment
2. Renewable Electricity Support Schemes
3. Merit Order Effect of Renewable Electricity
4. The Intermittency Problem
5. Sector Coupling
A Primer on Levelized Cost of Energy (LCOE)

1. Economics of Renewable Energy Investment

- How should an investor of a renewable electricity plant determine whether or not the investment is profitable?

- Solution: Define a time series of the expected cash flows CF_t ($t = 1, ..., T$) over the economic lifetime T of the investment project ...

- ... and discount the cash flows of different years with an interest rate i in order to make them comparable
Simplified Calculation of the Net Present Value

\[
NPV = \sum_{t=0}^{T} \frac{CF_t}{(1+i)^t} = -I_0 + \sum_{t=1}^{T} \frac{CF_t}{(1+i)^t}
\]

Net Present Value

\[
NPV = -I_0 + \sum_{t=1}^{T} \left(p_{E,t} - oc_t \right) \cdot Q_t \cdot \frac{1}{(1+i)^t} = -I_0 + (p_E - oc) \cdot Q \cdot \frac{1}{(1+i)^t}
\]

\[
RBF_{i,T} = \sum_{t=1}^{T} \frac{1}{(1+i)^t} = \frac{1}{i} - \frac{1}{i \cdot (1+i)^T}
\]

Annuity factor

- \(CF_t \) Cash flow in period \(t \)
- \(I_0 \) Investment expenditure in period 0
- \(i \) Interest rate / discount rate
- \(oc \) Operating cost per output unit \(Q \)
- \(p_E \) Revenue per output unit \(Q \)
- \(T \) Economic lifetime
NPV and Break Even Conditions

The economic evaluation of an investment project is positive if the Net Present Value $NPV > 0$

To calculate break even conditions, set $NPV = 0$:

$$NPV = -I_0 + (p_E - oc) \cdot Q \cdot RBF_{i,t} = 0$$

$$I_0 = (p_E - oc) \cdot Q \cdot RBF_{i,t}$$

- Solving for p_E gives the LCOE (break-even price)

$$p_E = \frac{I_0}{Q \cdot RBF_{i,t}} + oc$$

- Solving for i gives the Internal Rate of Return IRR, or the profitability of the investment (no closed form solution exists)
Example: Wind Power LCOE

\[
p = \frac{I_0}{CAP} \cdot \frac{1}{oh} \cdot \frac{1}{RBF_{i,T}} + oc
\]

- **CAP** = installed capacity [kW]
- \(\frac{I_0}{CAP} = 975\), - EUR/kW unit investment costs
- \(oc = 42\), - EUR/kW unit operation costs (1-10 year)
- \(58\), - EUR/kW unit operation costs (11-20 year)
- \(i = 5\) percent
- \(T = 20\) years of economic use
Interpretation of Wind Power LCOE

• The LCOE varies between 0.05 and 0.15 Ct/kWh or 50.- and 150.- Euro/MWh

• Key determinants are the unit investment cost, the interest rate, and the annual full load hours which strongly depend on the location of the wind turbine

• Land lords with particularly good wind conditions have bargaining power against potential investors

• The same holds for wind turbine manufacturers. The economic calculus of their customers is fully transparent to them once they know the investment location of the wind turbine

• The wind energy investor holds the economically weak position along the value chain
Agenda of my Presentation Today

1. Economics of Renewable Energy Investment

2. Renewable Electricity Support Schemes

3. Merit Order Effect of Renewable Electricity

4. The Intermittency Problem

5. Sector Coupling
<table>
<thead>
<tr>
<th>Price control</th>
<th>Volume control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable Electricity Support Schemes</td>
<td></td>
</tr>
<tr>
<td>Obligation of grid operators (or ISO) to purchase all offered renewable</td>
<td>Renewable portfolio standard (retailers must physically purchase a minimum share of renewable</td>
</tr>
<tr>
<td>electricity at legally defined (and technology specific) fixed feed-in</td>
<td>electricity)</td>
</tr>
<tr>
<td>payments</td>
<td>Do retailers have the capacity to comply?</td>
</tr>
<tr>
<td>Dominant model but challenged by the EU Commission</td>
<td>Model preferred by the EU Commission</td>
</tr>
<tr>
<td>Legally defined and technology specific market premium (on top of the</td>
<td></td>
</tr>
<tr>
<td>market price) granted to renewable generators that have sold the electricity</td>
<td></td>
</tr>
<tr>
<td>Similar to Contract for Differences</td>
<td></td>
</tr>
<tr>
<td>Obligation of retailers to hold a minimum number of Renewable Electricity</td>
<td></td>
</tr>
<tr>
<td>Certificates (RECs) issued by registered renewable generators</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewable investment tenders (government defines the renewable capacity</td>
<td></td>
</tr>
<tr>
<td>additions and selects the investors that ask for the lowest market premium)</td>
<td></td>
</tr>
</tbody>
</table>

© Prof. Dr. Georg Erdmann
FIT, Flexible or Constant Market Premiums

Prices / costs [Euro/MWh]

- FIT Wind
- FIT Photovoltaics
- Market premium

Day-ahead Price
Development of the German REN Legislation

- 1990: Preferred grid access for renewable sources with the obligation of the grid owners to pay the market price (Stromeinspeisegesetz)

- 2000: German Renewable Energy Sources Act (EEG) with 12 paragraphs. Mandatory feed-in tariff (FIT) Grid owners become sellers of renewable electricity

- Determination of the market premiums by technology specific auctions (experimental since 2014, mandatory after 2017)

- Why so many legal reforms?
Costs of Renewable Electricity Generation

[My forecast of 2014 calculated from EEG-2014]

Costs of renewable electricity [million Euro]

- **Market value of renewable electricity**
- **Net payments for renewable electricity** (~22 bn Euro in 2014)
Unit Payments for Renewable Electricity
[only EEG electricity; calculated from EEG 2014]
Direct and Indirect REN Costs

[Cost of new REN capacity invested in Germany in January 2012]

<table>
<thead>
<tr>
<th>Euro/MWh\textsubscript{el}</th>
<th>Onshore wind</th>
<th>Offshore wind</th>
<th>PV</th>
<th>Bio methane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium above electricity price</td>
<td>55</td>
<td>152</td>
<td>153</td>
<td>182</td>
</tr>
<tr>
<td>Integration costs gas grid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>Transportation costs gas grid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Power distribution grid extension</td>
<td>26</td>
<td>-</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Power transmission grid extension</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Costs offshore grid</td>
<td>-</td>
<td>26</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Risk offshore grid</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Merit-order effect</td>
<td>-28</td>
<td>-29</td>
<td>-32</td>
<td>-29</td>
</tr>
<tr>
<td>Backup capacity</td>
<td>27</td>
<td>22</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>Power grid losses</td>
<td>3</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>67</td>
<td>194</td>
<td>164</td>
<td>194</td>
</tr>
</tbody>
</table>
Expenditures for Electricity in Germany

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total annual expenditures</td>
<td>60.9</td>
<td>63.6</td>
<td>64.3</td>
<td>71.0</td>
<td>70.3</td>
<td>69.4</td>
</tr>
<tr>
<td>Expenditures induced by governm</td>
<td>17.2</td>
<td>23.0</td>
<td>23.3</td>
<td>30.0</td>
<td>32.3</td>
<td>31.3</td>
</tr>
<tr>
<td>Electricity taxes</td>
<td>6.4</td>
<td>7.2</td>
<td>7.0</td>
<td>7.0</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Concession fees</td>
<td>2.1</td>
<td>2.2</td>
<td>2.1</td>
<td>2.1</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Renewable electricity levy</td>
<td>8.3</td>
<td>13.4</td>
<td>14.0</td>
<td>19.8</td>
<td>22.3</td>
<td>22.0</td>
</tr>
<tr>
<td>Combined heat and power Levy</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Offshore grid levy (§ 17F ENWG)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.7</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Expenditures regulated by the government</td>
<td>16.9</td>
<td>17.6</td>
<td>19.0</td>
<td>21.2</td>
<td>21.4</td>
<td>21.4</td>
</tr>
<tr>
<td>Fees for the transmission grid</td>
<td>2.2</td>
<td>2.2</td>
<td>2.6</td>
<td>3.0</td>
<td>3.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Fees for the distribution grid</td>
<td>14.7</td>
<td>15.4</td>
<td>16.4</td>
<td>18.2</td>
<td>18.3</td>
<td>17.9</td>
</tr>
<tr>
<td>Expenditures driven by the market</td>
<td>26.8</td>
<td>23.1</td>
<td>22.0</td>
<td>19.8</td>
<td>16.6</td>
<td>16.8</td>
</tr>
<tr>
<td>Market value of REN electricity</td>
<td>3.5</td>
<td>4.4</td>
<td>4.8</td>
<td>4.2</td>
<td>4.1</td>
<td>4.7</td>
</tr>
<tr>
<td>Generation, marketing and sales</td>
<td>23.3</td>
<td>18.6</td>
<td>17.2</td>
<td>15.6</td>
<td>12.6</td>
<td>12.0</td>
</tr>
</tbody>
</table>
Perspectives of the Renewable Support

- The financial support for renewable electricity has passed 22 billion Euros annually – not including the additional grid costs

- The financial support is financed through the renewable electricity levy (REN levy) paid by final electricity customers to the grid operators

- In particular energy intensive companies lobby successfully in favor of a reduction of the REN levy

- The REN levy could be reduced by
 - Cuts of the legally defined market premiums
 - Reduced growth of renewable electricity (as far as it is subject to financial support)
 - Higher wholesale power prices (higher CO$_2$ prices)
Agenda of my Presentation Today

1. Economics of Renewable Energy Investment
2. Renewable Electricity Support Schemes
3. Merit Order Effect of Renewable Electricity
4. The Intermittency Problem
5. Sector Coupling
Pricing on Perfectly Competitive Markets

\[\Pi = p_E \cdot Q - C(Q) \]

Profit (per period)

\(p_E \)
Sales price

\(Q \)
Output (Quantity)

\(C \)
Costs depending on \(Q \)

Profit maximizing output of a “price taker”

\[\frac{d\Pi}{dQ} = \frac{d(p_E \cdot Q)}{dQ} - \frac{dC}{dQ} = 0 \]

\[\frac{d\Pi}{dQ} = \frac{dp_E \cdot Q + p_E \cdot dQ}{dQ} - \frac{dC}{dQ} = 0 \]

\[p_E = \frac{dC}{dQ} \]
“Marginal cost = Price“ rule

\[
\begin{align*}
\Pi &= p_E \cdot Q - c_{var} \cdot Q - C_f \\
\frac{dC}{dQ} &= c_{var} \\
p_E &= \frac{dC}{dQ} = c_{var}
\end{align*} \]
What is the Merit Order of Power Plants?

- On perfectly competitive markets each operator of an existing generator reaches the profit maximum if the dispatch of the plant is organized according to its marginal cost.

- The marginal cost corresponds to the additional expenditures for fuel and greenhouse gas allowances associated with the generation of one additional electricity Unit [MWh]. In addition, the wear of the equipment might be taken into account.

- Allocating all power plants according to their marginal costs gives the merit order.

- Compared to fossil fuel plants, wind and photovoltaic generators have rather low marginal costs and therefore stand at the beginning of the merit order.
Example: Merit Order Curve for Germany
[without CO₂ cost; data source: EU Sector Enquiry 2007, p. 260]
Merit Order of the German Power Plant Portfolio with/without Nuclear

Marginal cost [Euro/MWh]

Electric load 93 GW

Hydro, Biomass, CHP

Nuclear

Lignite

Hard coal

CCGT

Hard coal

Gas

Load (wo wind and PV)
Merit Order of the German Power Plants with Additional Wind and PV Capacities

Marginal cost [Euro/MWh]

Electric load 93 GW

Load (wo wind and PV)

Hydro, Biomass, CHP
Lignite
Hard coal
CCGT
Hard coal
Gas
Merit Order Effect of Wind and PV in Germany

<table>
<thead>
<tr>
<th>Literature review</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensfuß et al. (2008)</td>
<td>-7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weigt (2009)</td>
<td>-6.2</td>
<td>-10.4</td>
<td>-13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vbw (2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensfuß (2012)</td>
<td>-5.8</td>
<td>-5.3</td>
<td>-6.0</td>
<td>-5.2</td>
<td>-8.7</td>
<td>-8.9</td>
<td></td>
</tr>
<tr>
<td>Speth, Stark (2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-5.6</td>
<td>-5.6</td>
<td></td>
</tr>
<tr>
<td>Cludius et al. (2013)</td>
<td>-10.8</td>
<td>-7.8</td>
<td>-6.0</td>
<td>-7.7</td>
<td>-10.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Merit-Order-Effect of Renewable Electricity
[2012; Source: Own calculations from EEX and TSO data]

Day-ahead price [EUR/MWh]

- Without wind: $\bar{\varnothing} = 48.06 \text{ €/MWh}$
- Without wind + PV: $\bar{\varnothing} = 51.13 \text{ €/MWh}$
- Day-ahead price 2012: $\bar{\varnothing} = 42.60 \text{ €/MWh}$

$\Delta = 8.53 \text{ €/MWh}$
Merit-Order-Effect of Renewable Electricity
[2014; Source: Own calculations from EEX and TSO data]

Day-ahead price 2014: \(\bar{\varnothing} = 33.70 \text{ €/MWh} \)

Without solar: \(\bar{\varnothing} = 38.28 \text{ €/MWh} \)

Without wind + PV: \(\bar{\varnothing} = 45.73 \text{ €/MWh} \)

\(\Delta = 12.03 \text{ €/MWh} \)
Wholesale Power Prices [Sources: EEX, EPEX]

Baseload [Euro/MWh] vs. Year-ahead

Day-ahead vs. Year-ahead

Merit-order effect of renewables
Implications of the Merit Order Effect

• The increase in the renewable electricity share has reduced the German wholesale power prices

• The merit order effect of renewable electricity challenges the economics of conventional power generation. In particular new gas fired power stations are not able to cover their investment costs by selling electricity

• Power in Germany becomes attractive for customers in neighboring countries. Therefore the German net electricity exports increased to >50 TWh or >8% of national generation

• The net exports spread the merit order effect to neighboring countries and challenge the economics of gas fired power plants all over Europe
Effect of European Emission Allowances

<table>
<thead>
<tr>
<th></th>
<th>Carbon content [kg CO(_2) per GJ]</th>
<th>Carbon content [kg CO(2) per kWh({th})]</th>
<th>Assumed wholesale fuel price [Ct/kWh(_{th})]</th>
<th>Price markup of 10 EUR/t CO(_2) [percent]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignite</td>
<td>108</td>
<td>0.39</td>
<td>0.6</td>
<td>65</td>
</tr>
<tr>
<td>Hard coal</td>
<td>93</td>
<td>0.33</td>
<td>0.8</td>
<td>41</td>
</tr>
<tr>
<td>Heavy oil</td>
<td>78</td>
<td>0.28</td>
<td>1.2</td>
<td>23</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>74</td>
<td>0.27</td>
<td>1.9</td>
<td>14</td>
</tr>
<tr>
<td>Natural gas</td>
<td>55</td>
<td>0.20</td>
<td>2.2</td>
<td>9</td>
</tr>
</tbody>
</table>
Agenda of my Presentation Today

1. Economics of Renewable Energy Investment
2. Renewable Electricity Support Schemes
3. Merit Order Effect of Renewable Electricity
4. The Intermittency Problem
5. Sector Coupling
Volatility of Wind Power [Source: Ehlers 2011, p. 100]

Wind power generation [MW]

Virtually no capacity contribution

Gradient 8'000 MW/h

© Prof. Dr. Georg Erdmann
Nature of the Intermittency Problem

• Electricity cannot be stored in macro-economically relevant volumes. Therefore the electricity generation should follow the demand

• While generation of fossil and hydro power generators can be controlled accordingly, wind and photovoltaic generators cannot

• In the absence of large electricity storage capacities (hydro power storage plants, accumulators, ...) and without an effective demand side management, (fossil) backup power generators are necessary to balance supply and demand

• But the merit order effect of renewables hinders such investments. In the future this may lead to electric shortages
Renewables Replacing Thermal Generation
[Data source: 50Hertz GmbH 2009]
Market Clearing Price (MCP) under Capacity Shortages

Missing Money:
For institutional, political or social reasons there is a ceiling on (wholesale) power prices

Market Clearing Price MCP [Euro/MWh]

Load [MW] Available capacity

Available capacity short-term marginal cost

p_1 p_2 p_3
Possible State Intervention: Capacity Market

• Some (new or old) power plants are eliminated from the normal market supply and scheduled according to the requirements of the regulator. Thus available power capacity shrinks in normal periods and increases in critical periods.

• Plants in the strategic reserve are selected through a competitive bidding process organized by the regulator. Successful plants receive a capacity premium financed through the grid fees. If scheduled, the plants become regular market participants.

• Alternative: Any market participant that feeds electricity into the grid (takes electricity out of the grid) must hold an equivalent number of capacity guarantees issued by flexible generators or flexible demand (“Decentralized capacity market”)

Agenda of my Presentation Today

1. Economics of Renewable Energy Investment
2. Renewable Electricity Support Schemes
3. Merit Order Effect of Renewable Electricity
4. The Intermittency Problem
5. Sector Coupling
Distributed Generation in Germany

<table>
<thead>
<tr>
<th>Generation units</th>
<th>Installed Capacity [MW]</th>
<th>Generation 2014 [GWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>12'068</td>
<td>97'100</td>
</tr>
<tr>
<td>Coal, gas, oil</td>
<td>84'893</td>
<td>353'700</td>
</tr>
<tr>
<td>Wind</td>
<td>40'456</td>
<td>55'970</td>
</tr>
<tr>
<td>Solar</td>
<td>38'236</td>
<td>34'930</td>
</tr>
<tr>
<td>Biomass</td>
<td>6'867</td>
<td>43'000</td>
</tr>
<tr>
<td>Hydro</td>
<td>5'590</td>
<td>20'500</td>
</tr>
<tr>
<td>Other renewables</td>
<td>1'245</td>
<td>6'210</td>
</tr>
</tbody>
</table>
"Power-to-X [Source: from Grosse Böckmann 2010]"
Nature of the Problem to be Solved

- With growing shares of wind and photovoltaic capacities the number of hours with excess electricity will increase. Without additional electricity demand in these hours the renewable generation potential cannot fully be used

- The curtailment of renewable electricity can also be due to bottlenecks in the electric grid

- Use of the excess renewable electricity in heat and fuel markets where fossil fuels are thereby replaced

- Examples:
 - Transportation market (electric mobility)
 - Heat market (Power-to-Heat, hybrid heating systems)
 - Chemistry, refineries (Power-to-Gas)
 - Chemical energy storage (Power-to-Gas)
Negative Day-ahead Prices in Germany

[Own calculations; data source: EPEX]

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of hours with day ahead price ≤ 0</th>
<th>Minimal day-ahead price [Euro/MWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>12</td>
<td>-20.45</td>
</tr>
<tr>
<td>2011</td>
<td>16</td>
<td>-38.82</td>
</tr>
<tr>
<td>2012</td>
<td>55</td>
<td>-221.99</td>
</tr>
<tr>
<td>2013</td>
<td>621</td>
<td>-100.93</td>
</tr>
<tr>
<td>2014</td>
<td>61</td>
<td>-65.03</td>
</tr>
<tr>
<td>2015</td>
<td>118</td>
<td>-79.94</td>
</tr>
<tr>
<td>2016</td>
<td>97</td>
<td>-130.09</td>
</tr>
</tbody>
</table>
What happened on 08.05.2016, 14-15 h?

Day-ahead price [Euro/MWh]

\[MCP = -130.09 \text{ Euro/MWh} \]
Electricity Price Components in Germany in the Year 2016

<table>
<thead>
<tr>
<th></th>
<th>Power purchase from the grid</th>
<th>Auto generation</th>
<th>Generation in „local context“</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid fee</td>
<td>18.00 – 30.00</td>
<td>18.00 – 30.00</td>
<td></td>
</tr>
<tr>
<td>REN levy</td>
<td>63.54</td>
<td>22.24</td>
<td>0.00</td>
</tr>
<tr>
<td>Electricity tax</td>
<td>20.50</td>
<td></td>
<td>Legally unclear</td>
</tr>
<tr>
<td>Concession fee</td>
<td>1.1 – 23.90</td>
<td></td>
<td>1.1 – 23.90</td>
</tr>
<tr>
<td>CHP levy</td>
<td>4.45</td>
<td></td>
<td>4.45</td>
</tr>
<tr>
<td>§ 19 StromNEV</td>
<td>3.78</td>
<td></td>
<td>3.78</td>
</tr>
<tr>
<td>Offshore levy</td>
<td>0.40</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>Total</td>
<td>86.77 – 121.57</td>
<td>22.24 – 42.74</td>
<td>23.73 – 83.03</td>
</tr>
</tbody>
</table>
Challenge of Sector Coupling

- Wholesale electricity is cheap, in particular during hours with excess supply from wind and PV
- Electricity used for substituting fossil fuels should not be more expensive than the price of the substituted fuel (example gas 40 to 90 Euro/MWh)
- In spite of low wholesale prices, electricity end user prices are usually above this benchmark, due to grid access fees, levies and taxes
- What could be the solution?
 - Selective exemptions from certain price components for certain electricity uses ...
 - ... a modified model for financing grid and levies: Shift from energy pricing to capacity pricing
Agenda of my Presentation Today

1. Economics of Renewable Energy Investment
2. Renewable Electricity Support Schemes
3. Merit Order Effect of Renewable Electricity
4. The Intermittency Problem
5. Sector Coupling
6. Backup: Economics of Electricity Storage
Business Case for Storage Capacities

![Graph showing the business case for storage capacities](image)

- **Price [Euro/MWh]**
- **Storage capacity**
- **Welfare loss**
- **Consumer surplus**
- **Initial Price spread**
- **Storage surplus**

- **A**
- **B**
- **$Q_{\text{max-surplus}}$**

© Prof. Dr. Georg Erdmann
Price Spread and Power Storage Capacities

[Source: Ehlers 2010]
Price Spread and Power Storage Capacities

[Source: Ehlers 2010]

Wholesale electricity price [Euro/MWh]

Consumer surplus

Producer surplus

Storage rent

Optimal capacity

$CAP^* = \frac{CAP_{max}}{3}$

Storage capacity CAP_{max}
Economics of Energy Storage Investments

• Merchant investments into energy storage are economic if the price spread between different time periods is sufficiently large. (Similarly investments into electricity grids are economic if regional price spreads are sufficiently large)

• Cannibalization effect of storage investments: Additions into storage volumes reduce the price spread. This underlines the complexity of competitive markets for electricity storage infrastructures (grid infrastructures)