Geothermal energy

Adele Manzella

CNR - Institute of Geosciences and Earth Resources
Via Moruzzi 1 – 56124 PISA, Italy
manzella@igg.cnr.it
Geothermal Energy

1. What is
2. How is used
3. Pros
4. Cons
5. Research frontiers

Status and perspectives
What is the source of geothermal energy? What part is used?

What is Geothermal Energy
What is Geothermal Energy

Geothermal Energy
From Greek \textit{gêo} (earth) and \textit{thermòs} (heat)

Heat inside the Earth

The basis of geothermal energy is the immense heat content of the earth’s interior: the Earth is slowly cooling down. Since billions of years the heat in the Earth Crust is constantly supplied by the decay of natural radioactive isotopes or the cooling of hot, shallow magmatic bodies.

The resource is vast and ubiquitous and has a corresponding large potential for utilization.
Temperature in the ground has a daily (few cm) and seasonal (few meters) fluctuations, becoming essentially constant and equal to the average air temperature at about 18-20 m depth. Below this depth, it essentially increases with depth (geothermal gradient).

Deep geothermal: exploits the underground heat at $T \gg \text{air } T$

Shallow geothermal: exploits the underground constant $T = \text{average air } T$

The resource is vast and ubiquitous and has a corresponding large potential for utilization.
The temperature increase with depth, as well as volcanoes, geysers, hot springs etc., are in a sense the visible or tangible expression of the heat in the interior of the Earth, but this heat also engenders other phenomena that are less discernable by man, but of such magnitude that the Earth has been compared to an immense "thermal engine".
The Earth’s heat flow at the surface is the amount of heat that is released into space from the interior though a unit area in a unit of time. It is measured in milliwatt per square meter (mWm\(^{-2}\)).

The heat flow is the product of the geothermal gradient and the thermal conductivity of rocks. On average, heat flow is 40-90 mW/m\(^2\).

The total global output is over \(4 \times 10^{13}\) W, four times more than the present world energy consumption, which is \(10^{13}\) W.

The thermal energy of the Earth is, therefore immense, but only a fraction can be utilized by man.
Another way to take advantage of the underground thermal state is to use the thermal stability at depth of a few meters.
WHAT is Geothermal energy
WHAT is Geothermal energy

Shallow geothermal
- Open loop GSHP 4-50 m
- Vertical GSHP field 40-250 m
- District heating 0.3-2 km

Deep geothermal
- EGS 2-5 km
- Conventional hydrothermal power production 1-5 km
WHAT is Geothermal energy

Low enthalpy
- Open loop GSHP 4-50 m
- Vertical GSHP field 40-250 m
- Horizontal GSHP 1-2 m

Medium enthalpy
- Vertical GSHP field 40-250 m
- District heating 0.3-2 km

High enthalpy
- EGS 2-5 km
- Conventional hydrothermal power production 1-5 km

Legend:
- Low enthalpy: 8-14 °C
- Medium enthalpy: 10-20 °C
- High enthalpy: 20-70 °C
- Medium enthalpy: 150-200 °C
- High enthalpy: 90-300 °C
What is Geothermal energy

A heat source alone is not enough for creating a geothermal resource.

A **geothermal system** can be described schematically as "convecting water in the upper crust of the Earth, which, in a confined space, transfers heat from a heat source to a heat sink, usually the free surface".

In a geothermal system the meteoric waters are trapped in the reservoir, are heated and a natural convective circulation is activated, driving the heat up to the surface.
WHAT is Geothermal energy

- Heat source
- Impermeable basement
- Impermeable coverage
- Reservoir: fluid inside a porous and permeable rock
WHAT is Geothermal energy

Hydrostatic pressure in the reservoir: Water dominated systems.
Steam dominated systems

In some situations, the pressure is relatively low and the temperature is regulated by the steam phase: Steam dominated systems
WHAT is **Geothermal energy**

Geyser - Iceland

Boiling spring - USA
The most “precious” geothermal resources are confined to areas of the Earth’s crust where heat flow is higher than in surrounding areas and heats the water contained in permeable rocks (reservoirs) at depth. The resources with the highest energy potential are mainly concentrated on the boundaries between plates where geothermal activity frequently exists.
WHAT is Geothermal energy

- Continental rift
- Subduction
- Hot spots
- Sedimentary basins
- Various geodynamical conditions
High heat flow conditions → rift zones, subduction zones and mantle plumes. Thick blankets of thermally insulating sediment covering a basement rock that has a relatively normal heat flow → lower grade

Other sources of thermal anomaly:
• Large granitic rocks rich in radioisotopes
• Very rapid uplift of meteoric water heated by normal gradient
How Geothermal Energy is used

Heat? Power? Depending on what?
Warm and hot fluids can be extracted from the underground in a wide range of temperature and discharge rate, and used **directly for their heat content or to produce electric power**. Even the modest temperatures found at shallower depths can be used to extract or store heat by means of ground source heat pumps, that are nowadays a widespread application for geothermal energy.
How Geothermal Energy is used

When the ground and aquifer has a temperature similar to what we need at surface we may use the “free cooling” and “free heating” systems. Energy efficiency is guaranteed.
How Geothermal Energy is used

Geothermal heat pump (GHP) or Ground Source Heat Pump (GSHP)

The heat pump systems exploit the physical property of fluids to absorb and release heat when they vaporize or condense, respectively, and move heat from a space (to keep it cool) discharging heat at higher temperature (heating mode).

compressor
(power consumption)
to compress the vapour

cold source (ground)

In the evaporator the fluid absorbs heat and evaporates

condenser where the warm vapour releases heat and becomes liquid while heating
How Geothermal Energy is used

Mean annual Temperature

depth in m

5°C 10°C 15°C 20°C

February

August

Heat pump

Radiant system

Gigg
How **Geothermal Energy** is used
How Geothermal Energy is used
Closed loop systems
A ground-coupled systems where a plastic pipe is placed in the ground, either horizontally at 1-2 m depth or vertically in a borehole down to 50-250 m depth. A water-antifreeze solution is circulated through the pipe collecting heat from the ground in the winter and optionally rejecting heat to the ground in the summer.

Open loop systems
It uses groundwater or lake water as a heat source in a heat exchanger and then discharges it into another well, a stream or lake or even on the ground.
How Geothermal Energy is used

For single units requiring a thermal capacity within 35 kW one heat pump is enough. The energy efficiency may reach 150% (it is 80% for a gas heater, and energy consumption is almost halved). For larger volumes the units are installed in parallel.

The process may be inverted (reversible units), obtaining heating and cooling systems. Single units may provide 18 kW (cold).

District heating using heat pumps is becoming very popular, and may provide temperature up to 90°C

Heat pumps may have one (40°C) or two (85°C) blocks. COP (coefficient of production, ratio heat/power) is 2.6-3
How Geothermal Energy is used

Figure 28 • Representative efficiencies of air- and ground-source heat pump installations in selected countries

Note: The COP (heat to electricity ratio) values above are based on values provided by the manufacturers, and refer to the heat pump only. Heat to electricity ratios for the whole heat pump cycle typically lie well below the values indicated of the heat pump only.

How Geothermal Energy is used

In the European Union, heat generated by hydrothermal, air- and ground-source heat pumps is considered renewable under the Renewable Energy Directive (Directive 2009/28/EC).

According to the EU Directive 2009/28/EC, heat pumps can be considered a renewable technology as long as they result in a primary energy efficiency of at least 115%, which corresponds to a seasonal performance factor of 2.875 at an average efficiency of the electricity production of 40% (EC/RHC Platform, 2012).

The energy considered renewable is the heat delivered, minus the electricity consumption of the pump.
How Geothermal Energy is used

Heating and cooling system of Palazzo Lombardia, Milan, by geothermal heat pump
How Geothermal Energy is used

UTES (Underground Thermal Energy Storage) is an increasing research field for storing heat/cold and use it when necessary.

ATES (Aquifer Thermal Energy Storage)

BTES (Borehole Thermal Energy System)
Space heating, of which more than 80% are district heating, is among the most important direct uses of geothermal energy.

Open loop (single pipe) distribution systems are used where the water quality is good and recharge into the geothermal system adequate (fluids are wasted). In the more commonly used closed loop (double pipe) systems the spent water is disposed into reinjection wells.
How Geothermal Energy is used

These pumps are used to pump the heated water to buildings in a district heating system, after it has passed through the heat exchanger.
How Geothermal Energy is used

Energy source for district heating in Iceland
Untapped geothermal resources could significantly contribute to the decarbonisation of the DH market

12% of the total communal heat demand is DH

Geo-DH would be available for 26% of EU-27 population

heat supply to DH systems:
- power plants: 17%
- waste: 7%
- industrial heat: 3%
- biomass: 1%
- geothermal: 0.001%

proportion of NUTS-3 regions, where in 2000 m deep
- 4%: T > 200 °C
- 8%: 200 °C > T > 100 °C
- 19%: 100 °C > T > 60 °C

Figure 17: District heating systems in Europe by city size and for cities having more than 5000 inhabitants. The map shows 2779 systems. Source: Halmstad University DMC Database.

Geo-DH heat at 2000 m

3882 – Europe
3070 – EU-27

How Geothermal Energy is used

- Fish and other animal farming
- Greenhouse heating
- Bathing and balneology

The most common direct uses of geothermal heat
How Geothermal Energy is used

Food processes using heated fluids or heating & cooling may benefit from geothermal energy.
Spirulina is being farmed in a number of tropical and sub-tropical countries, in lakes or artificial basins, where conditions are ideal for its fast and widespread growth (a hot, alkaline environment rich in CO$_2$).

Other kinds of algae are grown to extract oil and produce bio-fuels

A “new” trend is to grow nutraceutical products
How Geothermal Energy is used

1 - Geothermal Heat Pumps
2 - Space Heating
3 - Greenhouse Heating
4 - Aquaculture Pond Heating
5 - Agricultural Drying
6 - Industrial Uses
7 - Bathing and Swimming
8 - Cooling / Snow Melting
9 - Others

from Lund and Boyd, WGC 2015
Italy has been the first country in the world to produce electricity by geothermal energy on 1904.

Power production started on 1908 and increased in Italy and the world since then.

Larderello, 1904
How Geothermal Energy is used

Geothermal power production

By means of turbine generators, geothermal heat (high temperature) is converted in mechanical energy and then in electrical energy.
How Geothermal Energy is used

Steam Dominated systems
vapourstatic pressure

Dry steam plants

Single or double flash plants
separation of steam and liquid phase

Binary plants

Combined plants
flash and binary, cascade

Liquid dominated systems
hydrostatic pressure
Dry steam plants use hydrothermal fluids that are primarily steam. The steam goes directly to a turbine, which drives a generator that produces electricity.
Flash steam power plants tap into reservoirs of water with temperatures higher than 180°C. As it flows, the fluid pressure decreases and some of the hot water boils or "flashes" into steam. The steam is then separated at the surface and is used to power a turbine/generator unit.
Binary cycle power plants operate on water at lower temperatures of about **105-180° C**. These plants use the heat from the geothermal water to boil a working fluid, usually an organic compound with a low boiling point.
How Geothermal Energy is used

![Graphs showing efficiency and reservoir enthalpy relationship for single and double flash processes.](image)

![Graph showing binary systems efficiency vs. inlet enthalpy](image)
27 countries in the world use geothermal energy for power production (from WGC2015 data)

12.7 GWe
How Geothermal Energy is used

Installed capacity in MWe for each typology

Number of units for each typology (total 613)

<table>
<thead>
<tr>
<th>Country</th>
<th>Back Pressure</th>
<th>Binary</th>
<th>Double Flash</th>
<th>Dry Steam</th>
<th>Hybrid</th>
<th>Single Flash</th>
<th>Triple flash</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>48</td>
<td>11</td>
<td>525</td>
<td>464</td>
<td>543</td>
<td>0</td>
<td>0</td>
<td>602</td>
</tr>
<tr>
<td>Asia</td>
<td>236</td>
<td>525</td>
<td>464</td>
<td>2614</td>
<td>3758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>268</td>
<td>273</td>
<td>796</td>
<td>796</td>
<td>2133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>90</td>
<td>135</td>
<td>610</td>
<td>908</td>
<td>1642</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>873</td>
<td>881</td>
<td>1584</td>
<td>2</td>
<td>50</td>
<td>3450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceania</td>
<td>44</td>
<td>266</td>
<td>356</td>
<td>259</td>
<td>132</td>
<td>1056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>181</td>
<td>1790</td>
<td>2544</td>
<td>2863</td>
<td>5079</td>
<td>182</td>
<td>12640</td>
<td></td>
</tr>
</tbody>
</table>
The efficiency of geothermal utilisation is enhanced considerably by cogeneration plants (combined heat and power plants), compared with conventional geothermal plants. A cogeneration plant produces both electricity and hot water which can be used for district heating as well as other direct uses. A necessary condition for the operation of a cogeneration power plant is that a relatively large market for hot water exists at a distance not too far from the plant.
What is the production? What about the cost? And emissions?

The advantages of using Geothermal Energy
The two main applications of geothermal energy, electric power generation and direct use of heat, are currently producing more than 67 TWh/a$_e$ and 12 GW$_e$ of installed capacity, and about 300 TJ/yr with 30 GW$_{th}$

And are **constantly growing**.
Geothermal Energy **pros**

World Geothermal Electricity

Figure 9: Growth of geothermal power capacities by technology (GW)

![Graph showing growth of geothermal power capacities from 2010 to 2050. The graph includes two technologies: EGS (light blue) and Low temperature (hydrothermal) binary plants (red). The EGS capacity starts at 50 MW in 2020 and continues to grow, reaching almost 200 GW by 2050. Low temperature plants show a steady increase as well, starting at 0 GW and reaching about 150 GW by 2050.]*

- EGS
- Low temperature (hydrothermal) binary plants

MW

- 250
- 200
- 150
- 100
- 50

GW

- 0
- 50
- 100
- 150
- 200

Years:

- 2010
- 2015
- 2020
- 2025
- 2030
- 2035
- 2040
- 2045
- 2050

2020

50 (10 MW) EGS plants
Not depending, directly or indirectly, on sun, geothermal may produce 24 hours per day: a **base-load energy** like fossil and nuclear sources.

It is most economical for geothermal power stations to serve as **base load** throughout the year.
The **total cost (LCOE)** of geothermal power production is **cheap** if compared to those of others renewables.

Levelized Cost of New Generation Resources in the Annual Energy Outlook 2011, EIA
The total cost (LCOE) of geothermal heat production is cheap if compared to those of others renewables and fuels.

Full cost of Heat, calculated for small building or flat

GeoDH Systems in Europe
CO₂ emission mitigation of Geothermal Heat. For each Geothermal Heat Pump (blue) it assumes an emission of 50 tonnes CO₂-equivalent/TJ. For other sources of geothermal heating (red) it assumes an emission of 4 tonnes CO₂-equivalent/TJ. Both assume an emission of 100 tonnes CO₂ equivalent/TJ for fossil heat provision. Fridleifsson et al., 2008
Disadvantages, needs and gaps of Geothermal Energy

What are the risks? Environmental impact?
Thanks to the high capacity factor, the total cost (LCOE) of geothermal power production is comparable or cheap if compared to those of other renewables.

However, the capital, up-front costs remain too high, due to the scarcity of on-site data, the difficulty to forecast the production prior to drill combined with the high drilling costs.
The average geothermal capacity on the entire 613 units in operation is 20.6 MW

BIG

Only 48 units with capacity > 55 MW, with an average of 79.5 MW.

SMALL

There are 259 units with capacity < 10 MW, with an average capacity of 3.2 MW. The majority of them is binary (196 units), 22 are back pressure, 22 are single flash and 17 double flash.

- The economics of electricity production is influenced by the drilling costs and resource development;
- The productivity of electricity per well is a function of reservoir fluid thermodynamic characteristics (phase and temperature);
- The small dimension of most plants enhance the risk of investment
The real **geothermal potential is scarcely known**, it is seldom defined in detail by the countries and properly introduced in the Energy Plans.

Although geothermal energy has a long tradition for application in Italy, there is little **awareness** of its potential, and the role it might play for energy production among renewables.

Larderello, 1904
Power (mainly) and heat production from geothermal resources may have an impact on any environmental matrix (air, water, ground, ecosystems).

The potential impacts are:

- **surface-visual effects** (land use, landscape, flora and fauna);
- **physical effects** (induced seismicity, subsidence, geological hazards);
- **acoustic effects** (noise during drilling, construction and management);
- **thermal effects** (release of steam in the air, ground heating and cooling for fluid withdrawal or injection);
- **chemical effects** (gaseous emissions into the atmosphere, re-injection of fluids, disposal of liquid and solid waste).

Monitoring, mitigation, remediation are a must
Reducing cons while increasing pros: how?

Research frontiers of Geothermal Energy
Exploration and investigation technology: Improvement of the probability of finding an unknown geothermal reservoir and better characterize known reservoir, optimizing exploration and modeling of the underground prior to drill. Require also clear terminology, methodology and guidelines for the assessment of geothermal potential. It will result in an increased success rate.

Drilling technology: improvements on conventional approaches to drilling such as more robust drill bits, innovative casing methods, better cementing techniques for high temperature, improved sensors, electronic capable of operating at higher temperature in downhole tools, revolutionary improvements utilizing new methods of rock penetration. It will result in reducing the drilling cost and it will allow to access deep and hot regions.

Power conversion technology: improving heat-transfer performance for low temperature fluid, developing plant design with high efficiency and low parasitic losses. It will increase the available resource basis to the huge low-temperature regions, not only those having favorable geological conditions.
Operation technology: increasing production flow rate by targeting specific zones for stimulation, improving heat-removal efficiency in fractured rock system. Refine stimulation methods (permeability enhancement) for Engineered Geothermal Systems (EGS) and reduce the risk associated with induced seismicity. It will lead to an immediate *cost reduction increasing the output per well and extending reservoir operating life.*

Management technology: retrieve, simulate and monitor geothermally relevant reservoir parameters that influence the potential performance and long-term behavior. It includes the development of a *Zero-emission technology*, by mean of the total reinjection of fluid (and gases) within the reservoir without cooling and secondary effects. It will secure the *sustainable production* achieved by using the correct production rates, taking into account the local resource characteristics (field size, natural recharge rate, etc.), extending the reservoir operating life and producing a benefit for the environment.
Unconventional Geothermal Systems (UGR) technology: emerging activities to harness energy from nowadays non-economic reservoir would make significant progress with qualified input from research. In particular, EGS, reservoirs with supercritical fluids (fluids in the thermodynamic area above the critical temperature and pressure) and geopressurized reservoirs (deep sedimentary basins where fluids show high pressure and are rich of chemical elements or gases). This includes, beside peculiar power conversion and reservoir technology, also Operation & Maintenance techniques in aggressive geothermal environments, since they require specific solutions for corrosion and scaling problems. It will lead to an overall increase in power production.
Originally Hot Dry Rocks (HDR), then Hot Wet Rocks (HFR), nowadays Enhanced or Engineered Geothermal Systems, these systems comprehend the development of geothermal systems where the natural flow capacity of the system is not sufficient to support adequate power production but where artificial fracturing of the system by chemical and/or hydraulic stimulation can allow production at a commercial level. The reservoirs are created to produce energy from geothermal resources that are otherwise not economical due to lack of water and/or permeability.

The term is rather confused, and sometime EGS is referred to unconventional geothermal systems.
Research in Geothermal Energy

Target 1: Increase fluid mass, improve permeability

Hydrothermal Reservoir

Fluid

Permeability

Temperature

Enhanced Geothermal System (EGS)
How it works

ebility rocks
How it works

Water is injected at P able to fracture or expand existing fractures
How it works

Hydrofracturing expand fractures
How it works

Through a **production well** fractures are intercepted and water is circulated and heated.
Production by new wells and enhanced fracturation/circulation
A fluid is called “super-critical” when temperatures and pressures are high enough (for pure water $T>374^\circ C$ and $P>22$ MPa) that there is no longer any distinction between its liquid and vapour phases. Super-critical water occurs naturally in deep underground reservoirs close to magmatic intrusions, where minerals in aqueous solutions near or above the critical point have existed for millions of years. Lab experiment (Hashida et al., 2001; Tsuchiya et al., 2001) proved that at about 25-50 Mpa and 400-600 °C, fluid circulation within unsealed fractures is possible in a granitic rock.
The basic idea of deep well development is to bring water-dominated super-critical fluid to the surface in such a way that it is directly transformed to superheated steam along an adiabatic decompression path.
The enthalpy is one order of magnitude higher, per unit volume, than for a conventional hydrothermal fluid. A deep well producing 2500 m3/h of steam from a reservoir with a temperature significantly above 450° C could yield enough high-enthalpy steam to generate 40-50 MW of electric power. This exceeds by a factor of ~10 the power typically obtained from conventional geothermal wells, implying that much more energy could be obtained from presently exploited high-temperature geothermal fields from a smaller number of wells. Fluids are supposedly rich of F and Cl, and probably rich of other, possibly economically viable, materials and chemicals.

To be considered:
• electricity production
• heat production (e.g. by in-hole heat exchange)
• material production (lithium? metals? ...)
A deep investigation. A consortium of Icelandic power companies and the Icelandic government in January drilled in Iceland a geothermal well that is 4.7 km deep—deep enough to reach fluids at supercritical conditions—at the Reykjanes geothermal field, which is a region characterized by high volcanic activity and submarine hot springs. *Courtesy: DEEPGS Geothermal*
DESCRAMBLE
Drilling in dEep Super-CRitical AMBient of continental Europe

Drilling down to a new frontier of the geothermal development: the deep supercritical fluids in Larderello, Italy
The DESCRAMBLE PROJECT is the first part of an innovation path in three phases:

• PHASE I – R&D: the activity partly financed by H2020 of deepening the Venelle_2 well, for testing new material and procedure for drilling and fluid handling in supercritical conditions (450°C and 250 bar);

• PHASE II - PILOT: in case of success of PHASE I, a Pilot Plant of 40 MW could be realized, fed by a two supercritical wells, with possibility of grants from EU (as follow up of DESCRAMBLE), MIUR and Tuscan Region;

• PHASE III - Deployment: after the R&D and Pilot phases, the supercritical plant could be replied in different locations in Italy and abroad, with a substantial cost reduction due to a learning curve effect.
The strategic objective is to develop a novel and potentially disruptive technological solution that can help satisfy the European needs for energy and strategic metals in a single interlinked process. In the CHPM technology vision, the metal-bearing deep geological formation will be manipulated in a way that the co-production of energy and metals will be possible, and may be optimised according to the market demands.
STRATEGIC TARGETS of the SET Plan - Declaration of intent
in the context of an Initiative for Global Leadership in Deep Geothermal Energy
(adopted in September 2016)

1. Increase reservoir performance resulting in power demand of reservoir pumps to below 10% of gross energy generation and in sustainable yield predicted for at least 30 years by 2030.
2. Improve the overall conversion efficiency, including bottoming cycle, of geothermal installations at different thermodynamic conditions by 10% in 2030 and 20% in 2050;
3. Reduce production costs of geothermal energy (including from unconventional resources, EGS, and/or from hybrid solutions which couple geothermal with other renewable energy sources) below 10 €ct/kWhe for electricity and 5 €ct/kWhth for heat by 2025
4. Reduce the exploration costs by 25% in 2025, and by 50% in 2050 compared to 2015;
5. Reduce the unit cost of drilling (€/MWh) by 15% in 2020, 30% in 2030 and by 50% in 2050 compared to 2015;
6. Demonstrate the technical and economic feasibility of responding to commands from a grid operator, at any time, to increase or decrease output ramp up and down from 60% - 110% of nominal power.
Conclusions

Geothermal is a “cheap”, sustainable, clean, flexible and base load energy

... when we are lucky enough to produce it economically (T and fluid). Co-production of power, heat and materials will help

Geothermal is an energy known and used since the dawn of civilization

... but very few are aware of it

Geothermal energy still requires a lot of efforts in research, to optimize technology, to use new materials and to reduce the investment risk

Geothermal energy may provide an important contribution to energy efficiency in many processes (most of our energy consumption is for heating!)

Geothermal energy is very suitable for co-production, co-generation, hybrid systems. We need to test and prove it!