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CLIMATE AND “WEATHER”

Common sense often leads us to confuse the two things; the necessity to define
separately climatology and meteorology is not completely clear and a simple widely
accepted distinction between the two disciplines is essentially based on the different
temporal scale.

Actually, the different objectives imply a clearer cut separation of method and general
theoretical formulations.

The definition of weather is very simple: if is the state of the system (particularly of
the atmosphere) at a precise moment.

Instead, the definition of climate is more complex: in fact, climate is represented by the
mean state and variations over time of the same system; but since climatic phenomena
have variations that occur on different time scales, from 1 day to 1 million years or
more, it is not possible to consider them all contemporarily, but it is necessary to focus
on a time scale of interest and each time consider the phenomena that have typical
variations on longer time scales as constant, and those that have variations on shorter
time scales as rapid casual fluctuations of the system.




CLIMATE AND TIME-SPACE PARAMETERS

- What meteorological parameter should be chosen to represent climate?

- On what time scale (years, decades, centuries) should the arithmetic mean
operation be performed, that elementary statistics suggests as being the most
natural for quantitative determination of this type of parameters?

- Are there significant space scales to connect to different climate
characterizations?

- No observation is “better” a priori than the others to represent climate; one
answer may be a targeted choice based on the subject being studied.

- In that case the answer is obtained by trial and error, and by improving
algorithms and conceptualizations with experience.

- For this situation a rather simple physico-mathematical scheme may
exist on which to build a theory of the phenomenon in a traditional way.
Therefore, the precision and completeness of the experimental data to
work on is even more important.
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DATA ON THE EVOLUTION OF PAST CLIMATE

clomaL | 1 | Suitable to study long-term climate change (up

to geologic scales)

They provide information on the climate in past ages
They are less accurate than instrumental data
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1,000 years

Little Ice Age

W—

Medieval
Warm Period

Temperature Change (°C)

R

= [

I ) |
1500 AD 1900 AD

Year

]
1000 AD



10,000 years

Holocene Maximum Little

l Ags

| (0 |

Y Jd d

J

Temperature Change (°C)

] I 1 1 i Y
10,000 8,000 6,000 4,000 2,000 0

Years Before Present
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Temperature Change (°C)
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4.5 billion years

Mean global temperarure
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SOLAR RADIATION
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RADIATION BALANCE

EVEN THE EARTH, AS EVERY BODY HAVING A TEMPERATURE ABOVE ABSOLUTE
ZERO (-273°C), EMITS RADIATION!!

THE RADIATION WAVELENGTH EMITTED DEPENDS ON TEMPERATURE:

Total Energy = oT*

THE RADIATION EMITTED DEPENDS ON TEMPERATURE:
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THUS THE SUN AND THE EARTH EMIT IN TWO DISTINCT BANDS OF THE SPECTRUM



RADIATION BALANCE
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THE ATMOSPHERE
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The atmosphere is transparent enough to visible radiation,
but it has a great ability to absorb infrared radiation.



EARTH' S ATMOSPHERE TRANSMITTANCE
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GREENHOUSE EFFECT

The consequence is that only a small part of the radiation emitted by the earth’s
surface and the lower layers of the atmosphere can leave our Planet, while most is
absorbed by the surrounding atmosphere. Naturally, it also emits infrared radiation, a
large part of which is reabsorbed by the ground and the underlying atmosphere.

This phenomenon of infrared radiation entrapment is called:

Incoming Solar Radiation is
absorbed by the earth

GREENHOUSE
EFFECT




GREENHOUSE EFFECT MODEL

Working hypothesis: THE SURFACE BALANCE IS:

- The ground emits as a black body; S OF WHICH S
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ENERGY BALANCE
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WHY DOES THE CLIMATE CHANGE?

Water vapor
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RADIATION CHANGES AT THE TOP OF THE ATMOSPHERE

ASTROPHYSICAL ASTRONOMICAL

SOLAR ACTIVITY MILANKOVITCH THEORY

- SUNSPOTS ~ SOLAR WIND

VARIATIONS IN THE
EARTH’S AXIS

VARIATIONS IN THE

EARTH’S ORBIT
CORONAL MASS EJECTIONS FLARES




VARIATIONS IN ATMOSPHERIC COMPOSITION

CAUSES

NATURAL

INTERACTIONS BETWEEN THE DIFFERENT

CLIMATE SYSTEM COMPONENTS

El Nifio
Atmosphere-ocean : Exchange of aqueous vapor
interactions and CO, between
Atmosphere- atmosphere and ocean
biosphere :V,\ Exchange of aqueous vapor

interactions and CO, between biosphere

and atmosphere

VOLCANIC ERUPTIONS

Introduction of aerosols into the ——> S0,CO,
atmosphere

OCEAN AND ATMOSPHERE CIRCULATION

Hydrologic ——>|  Aqueous vapor precipitations
cycle and cloud cover

ANTHROPIC

INTRODUCTION OF GREENHOUSE GASES

INTO THE ATMOSPHERE
SO, CO, O, Fossil fuels
CO, CH, Fires
CH, Breeding

INTRODUCTION OF AEROSOLS INTO THE
ATMOSPHERE

Black Carbon, Organic Carbon Fossil fuels

Black Carbon Fires

EXPLOITATION OF THE EARTH

Variations in the albedo Reduction of the forests



THE CLIMATE SYSTEM

From a climatic point of view the Earth can be divided into 5 components
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LITHOSPHERE

ATMOSPHERE
(gaseous component of the climate system, is
the most rapidly changing one over time

RYOSPHE
(includes glaciers,
snowfields, and ocean ices)

(orographic structure of the Earth, it
changes very slowly over time)

BIOSPHERE

(flora, fauna, human activity)

HYDROSPHERE

(oceans, seas, rivers and lakes)
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OCEAN-ATMOSPHERE INTERACTIONS

The ocean and the atmosphere interact through the heat fluxes and
aqueous vapor that determine the dynamics of the two fluids

sensible
heat flux

longwave
radiation

solar ‘
radiation —lv- flux of

—p-/ Momentum




PRECIPITATION-EVAPORATION
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OCEAN CIRCULATION

The general oceanic circulation is schematically
described by the so-called one "conveyor belt."
The Gulf Stream reaches the marginal seas, it
releases heat into the atmosphere and sinks to
the bottom of the ocean.

The deep current connects
the masses of water of the
oceans. The mixing time of
the oceans has a 1,000-year
time scale.
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EL NINO

In normal, non-El Nino conditions

* Trade winds blow westwards.

» Sea surface is about 1/2 meters higher at
Indonesia than at Ecuador.

« SST is about 8 degrees C lower in the east
supporting marine ecosystems fisheries.

« West Pacific regions are wet, while the
east Pacific is relatively dry.

During EI Niio

* Trade winds relax in the western Pacific

* Depression of the thermocline in the
eastern Pacific and elevation of the
thermocline in the west.

* Rise in SST and a drastic decline in
primary productivity.

* Rainfall follows the warm water eastward,
flooding in Peru and drought in Indonesia
and Australia.

« Large changes in the global atmospheric
circulation.
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EL NINO
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ATMOSPHERE-BIOSPHERE INTERACTION

Vegetation influences the climate in different ways

PHOTOSYNTHESIS

Trees absorb carbon dioxide (CO2),
holding back the carbon (C) from the
CO2 molecule and release oxygen
(O2) into the atmosphere. The
biosphere contributes to the removal
of CO2 from the atmosphere.

EVAPORATION

RADIATIVE BALANCE

The reflecting power of the vegetation
(albedo) is lower than that of the ground.

There is more evaporation in forested,
because the tree roots absorb water
from the ground and transfer it to the
atmosphere in the form of vapor.



THE CARBON CYCLE




ATMOSPHERE-OCEAN CO, EXCHANGE

Net Annual Flux of 002 between the Sea Surface and the Atmosphere
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CONCENTRAZIONI DI CO,
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RADIATIVE EFFECTS OF CLOUDS

* Clouds cause an increase in the albedo (cloud albedo forcing).

* Clouds cause a greenhouse effect (cloud greenhouse forcing).

4 S ' « It is estimated that clouds increase, on
o \\ average, the outgoing flux of solar radiation by
around -48 Wm -2 on a global scale.

« Jt is estimated that clouds decrease, on
average, the outgoing flux of infrared
radiation by around -31 Wm™ on a global
scale.

Thus, the effect of clouds on the net radiative flux is -17 Wm>2, i. e. a
global mean effect of atmosphere cooling



AEROSOLS

1.  Aerosols are liquid or solid bodies suspended in air.
2. They influence the climate in the following way:

a) Direct effects - scattering and absorption of solar and terrestrial radiation.

b) Indirect effects - change in the microphysics, radiative properties, and
lifespan of the clouds.

3.  They vary widely in space and over time.
4. Information on their distribution 1s limited.



BASED ON THE 4TH IPCC REPORT
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RISING SEA LEVELS

=1

Sea level (mm)
&

I'( )l’h\'l'nwllh}n
Jason i

T ipilicd
220017 HIADIZSI0N-TH AD-25 00 25 50 7S5 10DI2AIADITAMNOZ2APN027 83002

) yr

Figure 7. Sea level trends over 1993-2003 from the T/P mission,

Yo

Figure 5. Global mean sea level varations from T/P and Jason




TEMPERATURE

Regional scale: temperature
changes for 19/79-2003




Anthropogenic

Natural

FROM THE 4TH IPCC REPORT

Radiative Forcing Components
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WE ARE TRYING TO IMPROVE....
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