Energy and Transportation

Jo Hermans, Leiden University Varenna, July 2014

Prelude: conversion efficiencies

•	Mechanical ↔ Electrical energy Dynamo, generator Electric motor	80 – 98 % 80 – 98 %
•	HEAT → Mechanical energy (η < 1 – T₁ / T₂) Steam turbine Fuel to electricity at home Petrol engine Diesel engine	40 - 58 % 33 - 40 % 20 - 25 % 25 - 30 %
•	Food → Mechanical energy	20 – 25 %

Transportation Key: RESISTANCE

- Resistance = force = work / distance
- 1 newton = 1 J/m = 1 kJ/km

Two types of resistance

Rolling resistance F_r

Rubber tires: ∫ *F*.d*s* ≠ 0

 \boldsymbol{F}_{r} is proportional to weight

$$\rightarrow$$
 $F_r = C_r \times mg$

Air resistance ('Drag') F_d

$$F_{\rm d} = C_{\rm d} \times A \times \frac{1}{2} \rho v^2$$
 (cf. Bernoulli)

Resistances for a car

Model car:

- m = 1000 kg
- $C_r = 0.01$
- C_d = 0.4
 A = 2 m²

Car in practice (not that bad at high speed):

Engine efficiency > if speed >

Experiment: (Toyota Yaris, 5th gear)

Power (horizontal road, constant speed)

 $P = F \times v$ $v = 100 \text{ km/h} \approx 30 \text{ m/s}$ $\rightarrow F \approx 500 \text{ N (see graph)}$ $\rightarrow P \approx 15 \text{ kW}$

Stopping/accelerating vs. driving

- Stop and accelerate: $E = \frac{1}{2} \text{ mv}^2$ Take m = 1300 kg and v = 100 km/h = 28 m/s $\frac{1}{2} \text{ mv}^2 = 510 \text{ kJ}$
- Driving distance for 510 kJ?
 Resistance at 100 km/h ≈ 500 N
 - → Drive 510 kJ / 500 N ≈ 1 km So for the energy of one stop (100 km/h \leftrightarrow 0) we can drive 1 km

Model car

- m = 1000 kg
- $C_D = 0.40$
- $A = 2 m^2$
- Engine efficiency = 0.2
- Consumption 7 L/100 km

High efficiency car (XL1)

• m = 795 kg

Model car

- m = 1000 kg
- $C_D = 0.40$
- $A = 2 m^2$
- Engine efficiency = 0.2
- Consumption 7 L/100 km

- m = 795 kg
- $C_D = 0.19$

Model car

- m = 1000 kg
- $C_D = 0.40$
- $A = 2 m^2$
- Engine efficiency = 0.2
- Consumption 7 L/100 km

- m = 795 kg
- $C_D = 0.19$
- $A = 1.5 \text{ m}^2$

Model car

- m = 1000 kg
- $C_D = 0.40$
- $A = 2 m^2$
- Engine efficiency = 0.2
- Consumption 7 L/100 km

- m = 795 kg
- $C_D = 0.19$
- $A = 1.5 \text{ m}^2$
- Engine efficiency = 0.3

Model car

- m = 1000 kg
- $C_D = 0.40$
- $A = 2 m^2$
- Engine efficiency = 0.2
- Consumption 7 L/100 km

- m = 795 kg
- $C_D = 0.19$
- $A = 1.5 \text{ m}^2$
- Engine efficiency = 0.3
- Consumption 2 L/100 km

Model car

- m = 1000 kg
- $C_D = 0.40$
- $A = 2 m^2$
- Engine efficiency = 0.2
- Consumption 7 L/100 km

- m = 795 kg
- $C_D = 0.19$
- $A = 1.5 \text{ m}^2$
- Engine efficiency = 0.3
- Consumption 2 L/100 km

Model car

- m = 1000 kg
- $C_D = 0.40$
- $A = 2 m^2$
- Engine efficiency = 0.2
- Consumption 7 L/100 km

- m = 795 kg
- $C_D = 0.19$
- $A = 1.5 \text{ m}^2$
- Engine efficiency = 0.3
- Consumption 2 L/100 km
- Diesel engine 800 cc, 35 kW
- Electr. Motor (50 km), 20 kW
- Hybrid: cons. **1** L/100 km
- Top speed 160 km/h

(semi-) Electric cars

- Hybrid (uses <u>fuel</u> more efficiently)
- Plug-in hybrid (drives partially on electricity)
- All-electric car (range as yet limited: batteries)

Your car Electric?

- Power for driving ≈ 15 kW
- Energy for driving 7 hours ≈ 100 kWh (cheap!)

Your car Electric?

- Power for driving ≈ 15 kW
- Energy for driving 7 hours ≈ 100 kWh (cheap!)

Charging?

- Charge from standard outlet: 3,5 kW
- Charging time ≈ 4 × driving time (long!)

Storing electricity

Batteries and capacitors

```
Lead battery: 40 Ah×12 V \approx 0,5 kWh \approx0,03 kWh/kg NiMH battery \approx0,06 ,, Li-ion battery \approx0,15 ,, Li-ion polymer battery (LiPo) \approx0,20 ,, Supercapacitor \approx0,005 ,, \approx0,002 ,,
```

Storing electricity

Batteries and capacitors

Lead battery: $40 \text{ Ah} \times 12 \text{ V} \approx 0,5 \text{ kWh}$ $\approx 0,03 \text{ kWh/kg}$ NiMH battery $\approx 0,06$,, $\approx 0,15$,, Li-ion battery (LiPo) $\approx 0,20$,, Supercapacitor $\approx 0,005$,, $\approx 0,005$,, $\approx 0,002$,

Remember: 1 hour driving ≈15 kWh

Capacitors and Batteries

(from: Physics Today, December 2008)

Capacitors for <u>Power</u>......Batteries for <u>Energy</u>

All-electric car: Example (BMW i3)

• Mass 1195 kg

Electromotor max power 125 kW

Battery (Li-ion)
 19 kWh

Energy use per 100 km 14-17 kWh

Max. range 130-160 km

Charge to 80% - Rapid, DC: 0.5 h

- AC outlet: 6-8 h

All-electric car: Example (BMW i3)

All-electric car: Example (BMW i3)

What about Solar Car??

What about Solar Car??

- Remember: Solar irradiance max. = 1 kW/m²
- Assume efficiency solar cells 50%
- For 15 kW: needed 30 m²
- So solar family care without storage:

beyond hope!

....and Hydrogen?

Not ideal for mobile storage: Boiling point 20.4 K

1. Liquid?? Heat of vaporisation small \rightarrow boil-off

2. Gas? compress→ bulky / heavy (Not ideal gas!)

3. Metal hydrides? heavy

Hydrogen properties

 Heat of combustion (higher) 142 MJ/kg (lower) 120 MJ/kg

Density (at 0 °C, 1 bar)
 0.090 kg/m³

• Boiling point 20.4 K

Density of liquid H₂
 71.0 kg/m³

Hydrogen car....so far

Future electric car: batteries or H₂?

Probably batteries:

- Infrastructure ≈ present
- Change-over can be gradual

Intelligent Transport Systems

Objectives:

- Increase Road Capacity
- Reduce Energy use (Drag!)
- Improve traffic safety

Cooperative Adaptive Cruise Control

(J. Ploeg et al; TU/e)

- Automatic short-distance vehicle following
- Use: wireless communication & on-board sensors
- One- or two vehicle look-ahead communication

Cooperative Adaptive Cruise Control

(J. Ploeg et al; TU/e)

Requirements

- Accurately follow preceding vehicle
- String stability
- Graceful degradation if communication errors

Cooperative Adaptive Cruise Control Prototype platoon

Road Capacity and Safety

- Capacity (throughput) C = nv
- Safe spacing (e.g., official Dutch traffic rule):

n =
$$(L + \tau v + v^2/2a)^{-1}$$

C = $v/(L + \tau v + v^2/2a)$

Road Capacity and Safety

Buses

- C_r and m per seat similar to car
 - → Rolling resistance per seat: bus ≈ car
 - So at low speed no advantage

- Drag <u>per seat</u>: bus has *smaller* A (factor 3 4)
 - bus has *larger* C_d (factor 1.5 2)
 - Net effect: bus has smaller drag (factor 2-3)
 - So at high speed bus beats car by factor 2 3

Trains

Rolling resistance: C_r much smaller (steel wheels!)
 m <u>per seat somewhat larger</u>
 Net effect rolling resistance: train wins by factor
 3

Drag per seat: train has smaller A (factor 20)
 train has larger C_d (factor 2)

Net effect: train has smaller drag by factor 10 So train beats car by factor 3 - 10

Trains: drawbacks

Large m disadvantage if stops are frequent:
 Energy of 1 stop ≈ 10 km ride
 →Frequent stops can kill advantage
 unless regenerative breaking

Electric <u>heating</u> NOT free (cf. car, bus)

Aircraft

- Only drag
- HIGH SPEED → high drag...... But:
- Air density (10 km) ≈ ¼ density at sea level
- Streamline excellent (low C_d)

Result: 30 – 35 pass.km/L (full plane)

cf. car: 60 pass.km/L (full car)

The Zeppelin

No rolling resistance. BUT:
 Frontal area per passenger!! (13 m² Hindenburg)

The Zeppelin

No rolling resistance. BUT:
 Frontal area per passenger!! (13 m² Hindenburg)

- Calculation Hindenburg (v = 135 km/h = 37.5 m/s)
- Power 3560 kW, = $F \times v$
- F = 3560 kW / 37.5 m/s = 95 kN (100 passengers)
- F per passenger = 950 N (cf. car: 100-150)
- So: beyond hope

Bicycles

- Human engine ≈ 100 W
- = Climbing stairs, 1 step/s

Bicycles

- Human engine $\approx 100 \text{ W}$ $P = mg \, dh/dt$
- = Climbing stairs, 1 step/s
- $P = mg \, dh/dt$ $P = 70 \times 10 \times 0.15 \, W$

 $\approx 100 \text{ W} \text{ (mechanical)}$

Bicycles

- Energy use bicycle? Depends on speed,
- Estimate:

```
100 W mechanical = 400 W food (remember \eta \approx \frac{1}{4})
400 W during 1 day = 1 litre of oil
Cycling during 1 day = 24 h: 500 km
```

A bicycle runs 1 L per 500 km (BUT....)

Resistances for a city bike

Standard city bicycle:

- m = 90 kg
- $C_r = 0.006$

- $C_d = 1.0$
- $A = 0.6 \text{ m}^2$

The bicycle beats them all....

...and can even be improved: HPV

Reduce drag for speed records:

133.3 km/h

Sam Wittingham

(2009, Battle Mountain, Nevada)

Energy efficiency: comparison

	Number of	Speed	Energy
	passengers	(km/h)	efficiency (pass.km /litre)
Bicycle	1	20	500
Electric bicycle	1	20	400
Train 250	250	13	0
Bus	50	100	170
Car	4	100	60
TGV	377	300	50
Aircraft	400	900	30*
Passenger ship	2000	50	4

• Bus beats car by factor 2 - 3

- Bus beats car by factor 2 3
- Train beats car by factor 3 10

- Bus beats car by factor 2 3
- Train beats car by factor 3 10
- Plane <u>loses</u> from car by factor 2

- Bus beats car by factor 2 3
- Train beats car by factor 3 10
- Plane <u>loses</u> from car by factor 2
- Improvements batteries & capacitors vital

- Bus beats car by factor 2 3
- Train beats car by factor 3 10
- Plane <u>loses</u> from car by factor 2
- Improvements batteries & capacitors vital
- Nothing beats the comfort of fossil fuels

- Bus beats car by factor 2 3
- Train beats car by factor 3 10
- Plane <u>loses</u> from car by factor 2
- Improvements batteries & capacitors vital
- Nothing beats the comfort of fossil fuels
- Environmental concerns? Cycle....

- Bus beats car by factor 2 3
- Train beats car by factor 3 10
- Plane <u>loses</u> from car by factor 2
- Improvements batteries & capacitors vital
- Nothing beats the comfort of fossil fuels
- Environmental concerns? Cycle....and recycle!