Generation, dynamics and coherent structures in RF-excited non-neutral plasmas

Giancarlo Maero

on behalf of

G. Maero¹, R. Pozzoli¹, M. Romé¹ and M. Cavenago²

¹ Dipartimento di Fisica, Università degli Studi di Milano, Italy

and INFN Sezione di Milano, Italy

² INFN Laboratori Nazionali di Legnaro, Italy

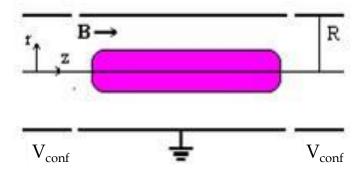
Synopsis

Introduction

- Penning-Malmberg traps (basics)
- The experimental device (ELTRAP)

How to subvert simple things (and then scratch your head)

- Radio-frequency electron plasma generation: Empirical observations
- Equilibrium structures: Single and double vortex


Getting to know something: Measurements and interpretations

- Formation and evolution: The role of trapped ions
- Equilibrium structures: Resonant manipulation

Conclusions and outlook

Penning-Malmberg traps and non-neutral plasma confinement

Penning traps in a nutshell: three (or more) electrodes (axial confinement) in an axial magnetic field (radial confinement) and ultra-high vacuum conditions.

Penning-Malmberg version:

- Elongated cylindrical structure → axial potential with a flat bottom
- Confinement of many particles/plasma column (10⁶-10⁸ cm⁻³)
- Nearly 2D system where self-consistent potential dictates transverse (single-particle and collective) dynamics by $\underline{E} \underline{x} \underline{B}$ effect $\omega_c >> \omega_z >> \omega_l$
- Applications: accumulation and cooling (for spectrometry, antimatter), basic plasma and fluid physics (equilibrium and stability properties, turbulence)

Pure electron plasma and fluid analogy

Transverse dynamics: ExB – collective (diocotron) modes and vortices (isomorphic to 2D Eulerian fluid). Conditions: single species, (near) absence of perturbations, forcings, sources of dissipation. Integral quantities conserved (charge, energy, angular momentum).

plasma

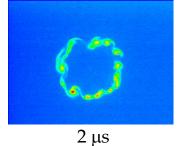
$$\begin{cases} \frac{\partial n}{\partial t} + \vec{v} \cdot \vec{\nabla} n = 0 \\ \vec{v} = -\frac{\vec{\nabla} \Phi \times \hat{e}_z}{B} \\ \nabla^2 \Phi = \frac{en}{\varepsilon_0}, \quad \Phi(r_w, t = 0) \end{cases} \begin{cases} \frac{\partial \varsigma}{\partial t} + \vec{v} \cdot \vec{\nabla} \varsigma = 0 \\ \vec{v} = -\vec{\nabla} \psi \times \hat{e}_z \\ \nabla^2 \psi = \varsigma \end{cases}$$

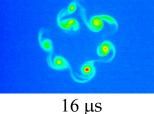
fluid

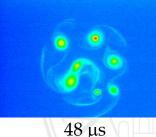
$$\vec{\partial} \frac{\partial \zeta}{\partial t} + \vec{v} \cdot \vec{\nabla} \zeta = 0$$

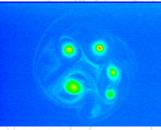
$$\vec{v} = -\vec{\nabla} \psi \times \hat{e}_z$$

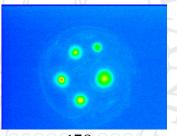
$$\nabla^2 \psi = \zeta$$

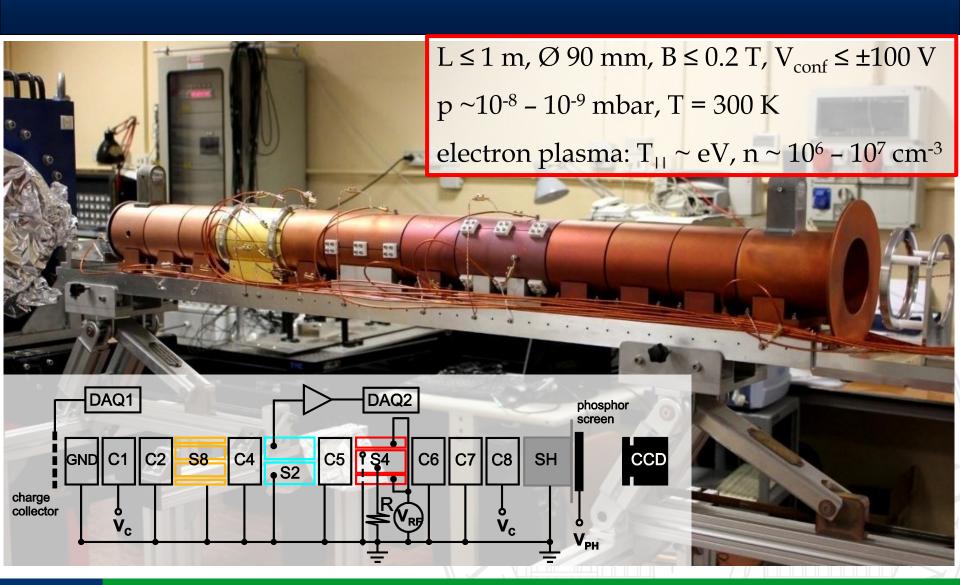




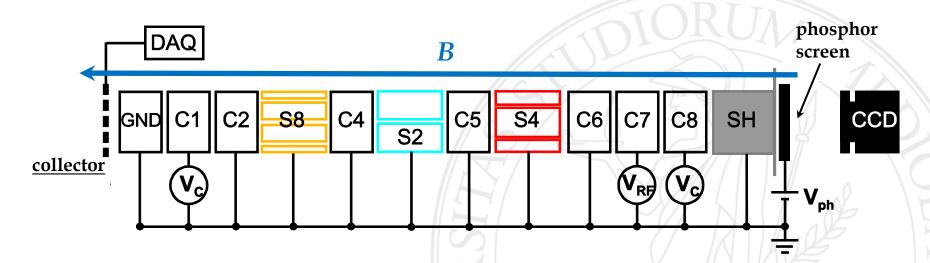



etc.

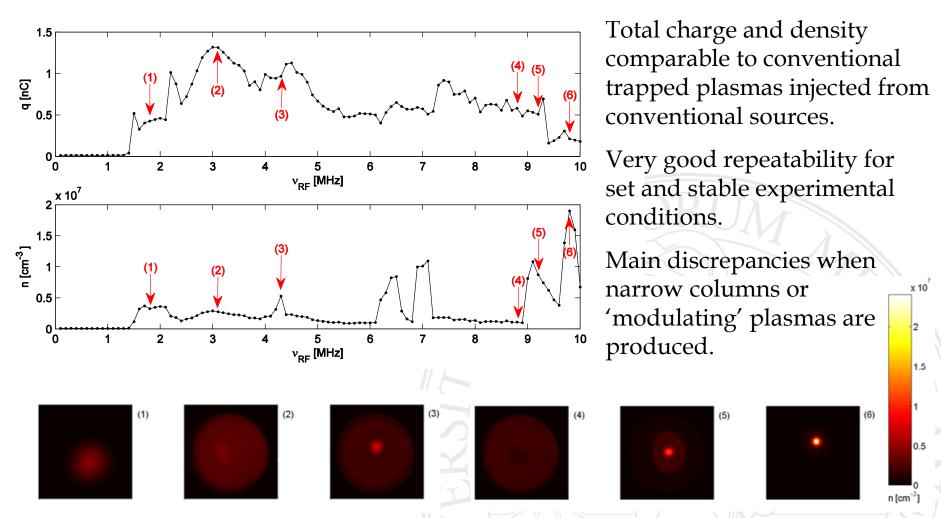

$$\frac{en}{\varepsilon_0 B} \sim \varsigma = (\vec{\nabla} \times \vec{v})_z \qquad \frac{\Phi}{B} \sim \psi \qquad \vec{v} \sim \vec{v}$$



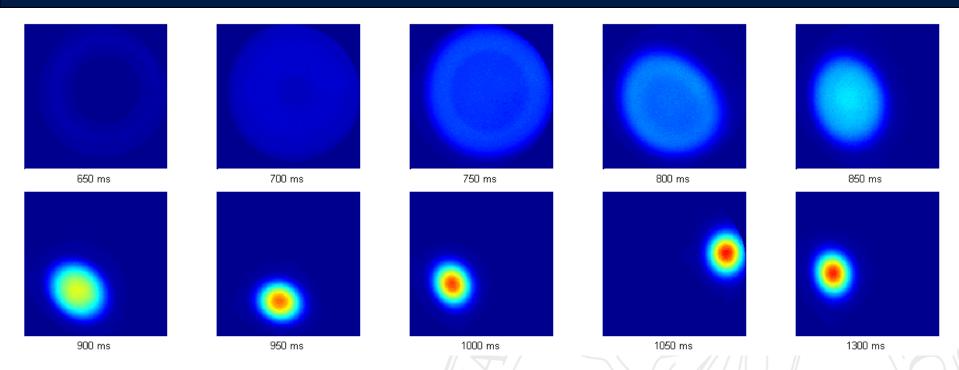
 $78 \mu s$


 $458 \mu s$

ELTRAP

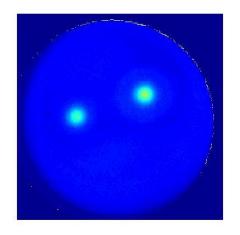

RF electron plasma generation

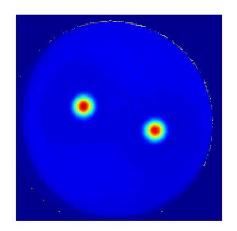
The application of a RF excitation on one of the inner electrodes heats the free electrons in the background gas leading to ionization. Typical RF parameters: $f(t)=V_{RF}\sin(2\pi v_{RF}t)$, $V_{RF}\sim1-5$ V, $v_{RF}\sim1-30$ MHz (vs diocotron mode frequencies in the **10-100** kHz range). A balance is established in a time range of **seconds**.

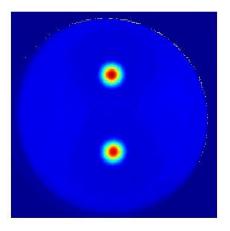


Conditions are very different: external forcing, ionization, continuous creation and loss of e^- and ions \rightarrow sources of dissipation (instabilities)

RF electron plasma generation

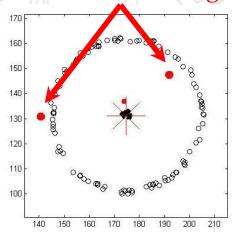



Persistent structures: Single vortex

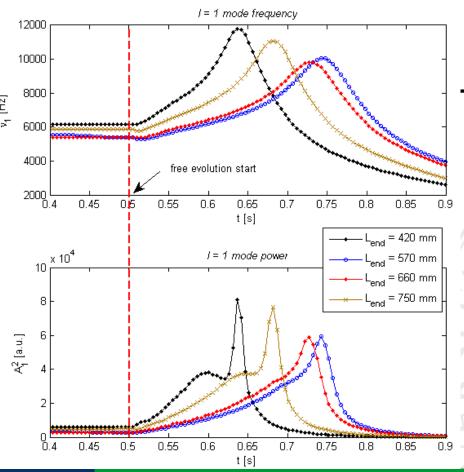


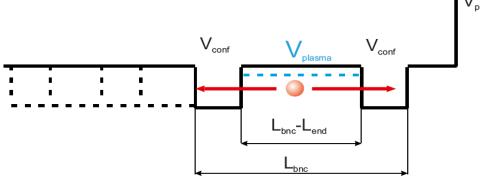
Diffuse, low-density plasma typically formed at large radii (higher electric field, more heating and ionization). But then the density profile may evolve to **high-density structures**, eventually showing **enhanced stability** with respect to perturbations or common sources of dissipation (e.g., resistive-wall dissipation) **as long as RF is on**.

Persistent structures: Double vortex

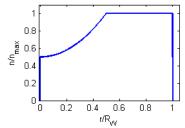


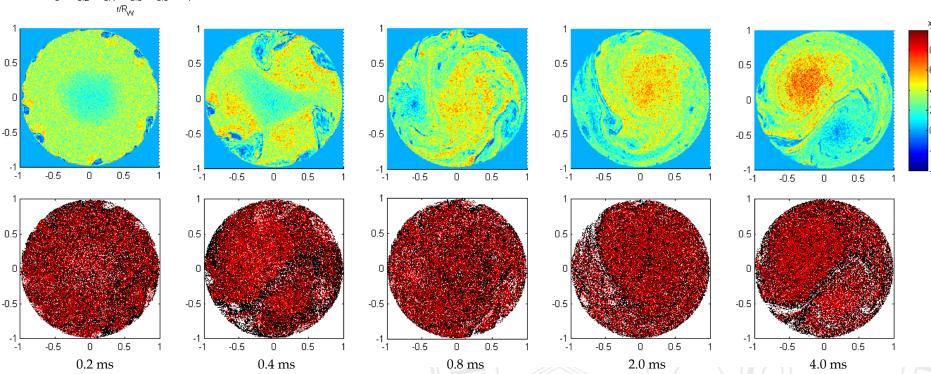
 $[B=0.15\ T, L_{trap}=570\ mm,\ quadrupolar\ excitation:\ V_{RF}=0.9\ V,\ v_{RF}=9.9\ MHz,\ t=several\ seconds]$


Peak vortex density: $1.5 \cdot 10^7$ cm⁻³, background density: $2 \cdot 10^6$ cm⁻³, **indefinite lifetime:** Double vortex sets on a stable (charge, distance) configuration (with a residual l=1 mode) lasting for many seconds, no mergers.


In formation stage

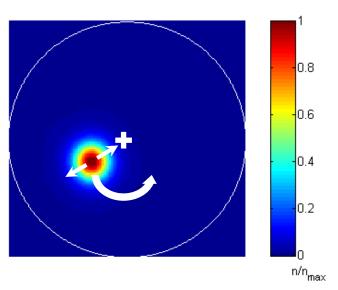
Ion trapping – ion instability


$$l=1$$
 growth rate (with RF off): $\gamma_1 = (N_i / N_e) v_1 [1 - \cos(2\pi \tau_{end} / \tau_{bnc})]$

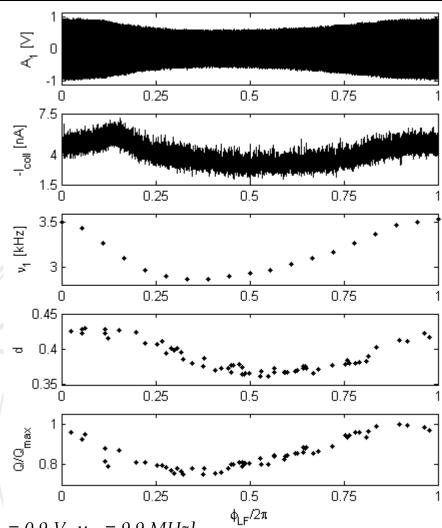


- Ions trapped in the e⁻ space charge
- Differential drift → change in angular momentum (→ mean square radius) of the column and instability
- ≠ trapping lengths → ≠ drifts and growth rates
 - N_i/N_e as high as 10^{-2} ?? [preliminary]

PIC simulation – e^- and H_2^+

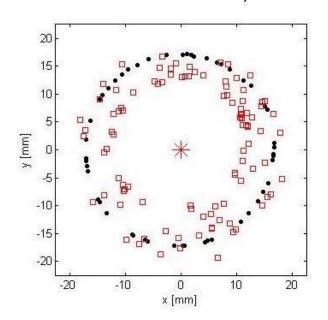


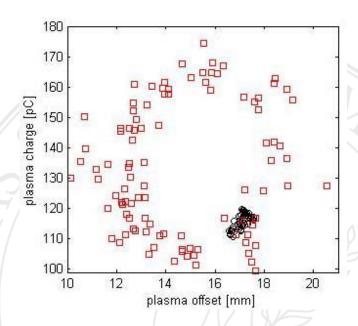
2D particle-in-cell simulation (fluid, ExB drift e⁻; kinetic H_2^+). Initial hollow profile. Overall balance: Lost particles are randomly reinjected.


[B = 0.15 T, $\varnothing_{trap} = 45 \text{ mm}$, initial electron density 2.5-5 · 10⁶, ion fraction f = 0.3. Black: electrons, red: ions.]

l=1 diocotron mode modulation

As long as the RF drive is present, the l=1 instability can be suppressed, but the mode may be modulated (1-10 Hz)


$$\omega_1 = \frac{\omega_d}{1 - d^2}$$
, with $d = \frac{D}{R_W}$, $\omega_d = \frac{\lambda_p}{2\pi\varepsilon_0 B R_W^2}$



 $[B = 0.15 \text{ T}, L_{trap} = 570 \text{ mm}, \text{ quad. excitation: } V_{RF} = 0.9 \text{ V}, v_{RF} = 9.9 \text{ MHz}]$

l=1 modulation: autoresonant excitation

Frequency-swept excitation crossing the natural l=1 modulation frequency can increase/decrease the modulation frequency AND amplitude => a way to manipulate offset and charge variation (autoresonant excitation)

Dipole excitation 1.5 V, frequency sweep 2.3-5.2 Hz crossing the modulation frequency 4.0 Hz. No excitation (black): offset **17.1±0.5** mm. With excitation (red): offset **10.1-20.5** mm.

Conclusions and outlook

- RF plasma generation: A dirty (and interesting) business
- Forget 'easy' evolution of single-species non-neutral plasma
- Typical integrals (charge, angular momentum, energy) not conserved over whole evolution
- A balance can be reached involving particle loss and refurbishment, continuous excitation
- Ion-related instabilities are crucial in the evolution and structure formation
- Non-trivial equilibria beyond collision scales (1-2 vortices)
- More to do: better measure of electron and possibly ion evolution
- → experimental data into refined theoretical/simulation model