

Out-of-equilibrium density dynamics of a quenched fermionic system

S. Porta¹, <u>F. M. Gambetta</u>^{1,2}, F. Cavaliere^{1,2}, N. Traverso Ziani³, M. Sassetti^{1,2}

¹Dipartimento di Fisica, Università degli Studi di Genova ²SPIN-CNR Genova ³Institute for Theoretical Physics and Astrophysics, University of Würzburg

Reference: Phys. Rev. B 94, 085122 (2016)

— Padova, 102° Congresso Nazíonale SIF — 26-30 Settembre 2016

Introduction

Quantum quenches

Definition: a change in time of the parameter(s) that governs the dynamics of an isolated quantum system.

- sudden, adiabatic, or more general: linear ramps,...
- parameter(s): coupling constants, external fields, confinement,...
- isolated quantum system: no coupling with the environment → unitary time-evolution

Thermalization in isolated quantum systems

Does an isolated quantum system thermalize?

- thermal density matrix $ho^{ ext{th}}=rac{e^{ho_H}}{Z}$, with eta fixed by $\langle \Psi_0^i|H_f|\Psi_0^i\rangle=\mathrm{Tr}[
 ho^{ ext{th}}H_f]$
- ightharpoonup reduced density matrix $ho_A(\infty) = \lim_{t \to \infty} \mathrm{Tr}_B
 ho(t)$
- \blacktriangleright thermalization if $\rho_A(\infty) = \rho_A^{\rm th}$

Polkovnikov et al., RMP (2011)

What happens in integrable systems?

- ightharpoonup GGE "thermalization" $ho_A(\infty)=
 ho_A^{\rm GGE}$

Quench in a open boundaries LL

Cazalilla, PRL (2006); Dóra et. al, PRL (2011)

Average particle density
$$(\hat{\rho}(x,t) = \hat{\Psi}^{\dagger}(x,t)\hat{\Psi}(x,t))$$

 $\langle \rho(x,t)\rangle_i = \frac{N}{L} \{1 - E(x,t)\cos{[2k_Fx - 2f(x)]}\}$

Density in a <u>standard</u> 1D LL with OBC

Density in a quenched 1D LL with OBC

Light cones dynamics — sudden quench

Focus on

$$\delta E(x, t) = E(x, t) - E(x, 0)$$
 over one period.

ightharpoonup Sudden quench: a LC perturbation emerges at the boundaries and moves *ballistically* at velocity v_f

$$H_f = \sum_{q>0} q v_f \beta_{q,f}^{\dagger} \beta_{q,f}$$

ightharpoonup Analytically $E(x,t)=E_{
m sq}^{(GGE)}(x)f_{
m sq}(t)\mathcal{C}_{
m sq}(x,v_ft)$

$$\mathcal{C}_{sq}(x,y) = \mathcal{C}_{sq}^{R}(x-y)\mathcal{C}_{sq}^{L}(x+y)$$

Light cones dynamics — finite duration quench

Adiabatic quench

$$(\tau \gg \tau_{\rm ad} \sim L|\eta|/v_i)$$

$$E(x,t) = G(x,t)C_{\rm ad}(x,\ell(t))$$

$$C_{\mathrm{ad}}(x,y) = C_{\mathrm{ad}}^{R}(x-y) + C_{\mathrm{ad}}^{L}(x+y)$$

On-ramp: LC1 emerges at the boundaries

$$H(\bar{t}) = \sum_{q \ge 0} q\bar{v}(\bar{t})\beta_{q,\bar{t}}^{\dagger}\beta_{q,\bar{t}} \longrightarrow \bar{v}(t) = v_i\sqrt{1 + \frac{\eta t}{\tau}}$$

Light cones dynamics — finite duration quench

Adiabatic quench

$$(\tau \gg au_{\rm ad} \sim L|\eta|/v_i)$$

$$E(x,t) = E_{\text{ad}}^{(\text{GGE})}(x) [f_{\text{ad}}(t) + A_1 \mathcal{C}_{\text{ad}}(x, v_f(t-\tau) + d)$$

$$-A_2 \mathcal{C}_{\text{ad}}(x, v_f(t-\tau))]$$

$$C_{\mathrm{ad}}(x,y) = C_{\mathrm{ad}}^{R}(x-y) + C_{\mathrm{ad}}^{L}(x+y)$$

On-ramp: LC1 emerges at the boundaries

$$H(\bar{t}) = \sum_{q \ge 0} q\bar{v}(\bar{t})\beta_{q,\bar{t}}^{\dagger}\beta_{q,\bar{t}} \longrightarrow \bar{v}(t) = v_i\sqrt{1 + \frac{\eta t}{\tau}}$$

 \blacktriangleright Post-quench: LC2 emerges at the boundaries, LC1 goes on with velocity v_f

$$H_f = H(t \ge \tau) = \sum_{q>0} q v_f \beta_{q,f}^{\dagger} \beta_{q,f}$$

Light cones dynamics — finite duration quench

Adiabatic quench $(\tau \gg au_{
m ad} \sim L|\eta|/v_i)$

$$E(x,t) = E_{\text{ad}}^{(\text{GGE})}(x) [f_{\text{ad}}(t) + A_1 \mathcal{C}_{\text{ad}}(x, v_f(t-\tau) + d)$$

$$-A_2 \mathcal{C}_{\text{ad}}(x, v_f(t-\tau))]$$

$$C_{\mathrm{ad}}(x,y) = C_{\mathrm{ad}}^{R}(x-y) + C_{\mathrm{ad}}^{L}(x+y)$$

On-ramp: LC1 emerges at the boundaries

$$H(\bar{t}) = \sum_{q \ge 0} q\bar{v}(\bar{t})\beta_{q,\bar{t}}^{\dagger}\beta_{q,\bar{t}} \longrightarrow \bar{v}(t) = v_i\sqrt{1 + \frac{\eta t}{\tau}}$$

Post-quench: LC2 emerges at the number of the puncture v_f with velocity v_f

$$H_f = H(t \ge \tau) = \sum_{q \ge 0} q v_f \beta_{q,f}^{\dagger} \beta_{q,f} \dots$$

LCs move with the instantaneous bosonic velocity

Interference between light cones

Conclusions

Thermalization

Prethermalization

Light-cone spreading of correlations

Rel. QFT → information propagation bounded by c → light-cone effect

How fast "information" can spread in CM systems?

- Short-range interactions → Lieb-Robinson bound
- Quench in ultracold atomic gases

14/11

Where are the LCs?

- ightharpoonup Sudden quench $E(x,t) = E_{\mathrm{sq}}^{(\mathrm{GGE})}(x) f_{\mathrm{sq}}(t) \mathcal{C}_{\mathrm{sq}}(x,v_f t)$
- ightharpoonup Adiabatic quench ($au\gg au_{
 m ad}\sim L|\eta|/v_i$)
 - transient $E(x,t) = G(x,t) \mathcal{C}_{ad}(x,\ell(t))$
 - o post-quench $E(x,t)=E_{\mathrm{ad}}^{\mathrm{(GGE)}}(x)\left[f_{\mathrm{ad}}(t)+A_{1}\mathcal{C}_{\mathrm{ad}}(x,v_{f}(t-\tau)+d)\right]$ $+A_{2}\mathcal{C}_{\mathrm{ad}}(x,v_{f}(t-\tau))\right]$

Approach to GGE

Approach to final envelope

- How the GGE is approached?
- Is the final envelope approached by the GGE envelope?

